
PGI® User’s Guide
Parallel Fortran, C and C++ for Scientists and
Engineers

The Portland Group™
STMicroelectronics
Two Centerpointe Drive

Lake Oswego, OR 97035

ii

While every precaution has been taken in the preparation of this document, The Portland Group™, a wholly-owned subsidiary of

STMicroelectronics, makes no warranty for the use of its products and assumes no responsibility for any errors that may appear, or

for damages resulting from the use of the information contained herein. The Portland Group retains the right to make changes to

this information at any time, without notice. The software described in this document is distributed under license from

STMicroelectronics and may be used or copied only in accordance with the terms of the license agreement. No part of this document

may be reproduced or transmitted in any form or by any means, for any purpose other than the purchaser's personal use without the

express written permission of The Portland Group.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those

designations appear in this manual, The Portland Group was aware of a trademark claim. The designations have been printed in caps

or initial caps. Thanks is given to the Parallel Tools Consortium and, in particular, to the High Performance Debugging Forum for

their efforts.

PGF95, PGF90, PGC++, Cluster Development Kit, CDK, PGI Unified Binary, PGI Visual Fortran, PVF and The Portland Group are

trademarks and PGI, PGHPF, PGF77, PGCC, PGPROF, and PGDBG are registered trademarks of STMicroelectronics, Inc. Other brands

and names are the property of their respective owners. The use of STLport, a C++ Library, is licensed separately and license,

distribution and copyright notice can be found in the online documentation for a given release of the PGI compilers and tools.

PGI User's Guide
Copyright © 1998 – 2000 The Portland Group, Inc.
Copyright © 2000 – 2007 STMicroelectronics, Inc.

All rights reserved.

Printed in the United States of America
First Printing: Release 1.7, Jun 1998

Second Printing: Release 3.0, Jan 1999
Third Printing: Release 3.1, Sep 1999

Fourth Printing: Release 3.2, Sep 2000
Fifth Printing: Release 4.0, May 2002
Sixth Printing: Release 5.0, Jun 2003

Seventh Printing: Release 5.1, Nov 2003
Eight Printing: Release 5.2, Jun 2004
Ninth Printing: Release 6.0, Mar 2005
Tenth Printing: Release 6.1, Dec 2005

Eleventh Printing: Release 6.2, Aug 2006
Twelfth Printing: Release 7.0-1, December, 2006

Thirteenth Printing: Release 7.0-2, February, 2007
Technical support: http://www.pgroup.com/support/

Sales: sales@pgroup.com

Web: http://www.pgroup.com/

iii

Contents
Preface .xv

Audience Description . xv
Compatibility and Conformance to Standards . xv
Organization . xvi
Hardware and Software Constraints .xvii
Conventions .xvii
Related Publications .xxii

1 Getting Started . 1
Overview .1
Invoking the Command-level PGI Compilers .1

Command-line Syntax .2
Command-line Options .3
Fortran Directives and C/C++ Pragmas .4

Filename Conventions .4
Input Files .4
Output Files .6

Parallel Programming Using the PGI Compilers .8
Running SMP Parallel Programs .9
Running Data Parallel HPF Programs .9

Using the PGI Compilers on Linux .10
Linux Header Files .10
Running Parallel Programs on Linux .10

Using the PGI Compilers on Windows .11
BASH Shell Environment .11
Windows Command Prompt .12

Using the PGI Compilers on SUA and SFU .12
Subsystem for Unix Applications (SUA and SFU) .12
SUA/SFU Header Files .13
Running Parallel Programs on SUA and SFU .13

Customizing the Compilers with siterc and User rc Files .13

2 Optimization & Parallelization . 15
Overview of Optimization .15
Getting Started with Optimizations .17
Local and Global Optimization using -O .19

iv

Scalar SSE Code Generation . 21
Loop Unrolling using -Munroll . 22
Vectorization using -Mvect . 24

Vectorization Sub-options . 24
Assoc Option . 25
Cachesize Option . 25
SSE Option . 25
Prefetch Option . 26

Vectorization Example Using SSE/SSE2 Instructions . 26
Auto-Parallelization using -Mconcur . 30

Auto-parallelization Sub-options . 30
Altcode Option . 31
Dist Option . 31
Cncall Option . 31

Loops That Fail to Parallelize . 32
Innermost Loops . 32
Timing Loops . 32
Scalars . 33
Scalar Last Values . 34

Processor-Specific Optimization and the Unified Binary . 35
Inter-Procedural Analysis and Optimization using –Mipa . 36

Building a Program Without IPA – Single Step . 36
Building a Program Without IPA - Several Steps . 37
Building a Program Without IPA Using Make . 37
Building a Program with IPA . 38
Building a Program with IPA - Single Step . 38
Building a Program with IPA - Several Steps . 39
Building a Program with IPA Using Make . 40
Questions about IPA . 41

Profile-Feedback Optimization using –Mpfi/–Mpfo . 42
Default Optimization Levels . 43
Local Optimization Using Directives and Pragmas . 43
Execution Timing and Instruction Counting . 44
Portability of Multi-Threaded Programs on Linux . 45

libpgbind . 45
libnuma . 46

3 Command Line Options .47
Generic PGI Compiler Options . 55

v

C and C++ -specific Compiler Options .115

4 Function Inlining . 123
Invoking Function Inlining .123

Using an Inline Library .124
Creating an Inline Library .125

Working with Inline Libraries .125
Updating Inline Libraries - Makefiles .126

Error Detection during Inlining .127
Examples .127
Restrictions on Inlining .128

5 OpenMP Directives for Fortran . 131
Parallelization Directives .131
PARALLEL ... END PARALLEL .132
CRITICAL ... END CRITICAL .136
MASTER ... END MASTER .137
SINGLE ... END SINGLE .138
DO ... END DO .139
WORKSHARE ... END WORKSHARE .141
BARRIER .142
DOACROSS .142
PARALLEL DO .143
PARALLEL WORKSHARE .144
SECTIONS … END SECTIONS .145
PARALLEL SECTIONS .145
ORDERED .146
ATOMIC .147
FLUSH .147
THREADPRIVATE .148
Run-time Library Routines .148
Environment Variables .151

6 OpenMP Pragmas for C and C++ . 155
Parallelization Pragmas .155
omp parallel .156
omp critical .159
omp master .160
omp single .161
omp for .161

vi

omp barrier . 164
omp parallel for . 164
omp sections . 165
omp parallel sections . 166
omp ordered . 167
omp atomic . 167
omp flush . 168
omp threadprivate . 168
Run-time Library Routines . 169
Environment Variables . 172

7 Directives and Pragmas .175
PGI Proprietary Fortran Directives . 175
PGI Proprietary Fortran Directive Summary . 176
Scope of Directives and Command Line options . 183
!DEC$ Directives for Windows Fortran . 185
Adding Pragmas to C and C++ . 187
C/C++ Pragma Summary . 187
Scope of C/C++ Pragmas and Command Line Options . 191
Prefetch Directives . 194

8 Libraries and Environment Variables .197
Using builtin Math Functions in C/C++ . 197
Creating and Using Shared Object Files on Linux . 198
Creating and Using Dynamic-Link Libraries on Windows . 199
Using LIB3F . 206
LAPACK, the BLAS and FFTs . 207
The C++ Standard Template Library . 207
Environment Variables . 207

Stack Traceback and JIT Debugging . 211

9 Fortran, C and C++ Data Types .215
Fortran Data Types . 215

Fortran Scalars . 215
FORTRAN 77 Aggregate Data Type Extensions . 219
Fortran 90 Aggregate Data Types (Derived Types) . 220

C and C++ Data Types . 220
C and C++ Scalars . 220
C and C++ Aggregate Data Types . 223
Class and Object Data Layout . 224

vii

Aggregate Alignment .224
Bit-field Alignment .226
Other Type Keywords in C and C++ .226

10 . Programming
 Considerations for 64-Bit
 Environments 229

Data Types in the 64-Bit Environment .229
C/C++ Data Types .229
Fortran Data Types .230

Large Static Data in Linux .230
Large Dynamically Allocated Data .230
64-Bit Array Indexing .231
Compiler Options for 64-bit Programming .231
Practical Limitations of Large Array Programming .234
Example: Medium Memory Model and Large Array in C .234
Example: Medium Memory Model and Large Array in Fortran .236
Example: Large Array and Small Memory Model in Fortran .237

11 Inter-language Calling . 239
Overview of Calling Conventions .239
Inter-language Calling Considerations .239
Functions and Subroutines .240
Upper and Lower Case Conventions, Underscores .241
Compatible Data Types .241

Fortran Named Common Blocks .243
Argument Passing and Return Values .244

Passing by Value (%VAL) .244
Character Return Values .244
Complex Return Values .245

Array Indices .246
Example - Fortran Calling C .246
Example - C Calling Fortran .247
Example - C ++ Calling C .248
Example - C Calling C++ .249
Example - Fortran Calling C++ .250
Example - C++ Calling Fortran .251
Win32 Calling Conventions .253

Win32 Fortran Calling Conventions .253

viii

Symbol Name Construction and Calling Example . 255
Using the Default Calling Convention . 256
Using the STDCALL Calling Convention . 256
Using the C Calling Convention . 257
Using the UNIX Calling Convention . 257

12 C/C++ Inline Assembly and
 Intrinsics 259

Inline Assembly . 259
Extended Inline Assembly . 260

Output Operands . 261
Input Operands . 264
Clobber List . 266
Additional Constraints . 268

Simple Constraints . 269
Machine Constraints . 271
Multiple Alternative Constraints . 274
Constraint Modifiers . 275

Operand Aliases . 277
Assembly String Modifiers . 278
Extended Asm Macros . 280

Intrinsics . 281

13 C++ Name Mangling .283
Types of Mangling . 284
Mangling Summary . 285

Type Name Mangling . 285
Nested Class Name Mangling . 285
Local Class Name Mangling . 285
Template Class Name Mangling . 286

Appendix A. Run-time Environment .287
Linux86 and Win32 Programming Model . 287

Function Calling Sequence . 287
Register Usage Conventions . 287

Function Return Values . 291
Argument Passing . 293

Linux86-64 Programming Model . 297
Function Calling Sequence . 297
Function Return Values . 301

ix

Argument Passing .302
Linux86-64 Fortran Supplement .306

Fortran Fundamental Types .307
Naming Conventions .308
Argument Passing and Return Conventions .308
Inter-language Calling .309
Arrays .311
Common Blocks. .311

Win64/SUA64 Programming Model .313
Function Calling Sequence .313
Function Return Values .317
Argument Passing .317
Win64/SUA64 Fortran Supplement .321

Fortran Fundamental Types .322
Fortran Naming Conventions .323
Fortran Argument Passing and Return Conventions .323
Interlanguage Calling .324

Appendix B. Messages . 329
Diagnostic Messages .329
Phase Invocation Messages .330
Fortran Compiler Error Messages .330

Message Format .330
Message List .330

Fortran Runtime Error Messages .378
Message Format .378
Message List .378

Appendix C. C++ Dialect Supported . 383
Anachronisms Accepted .383
New Language Features Accepted .384
The following language features are not accepted .387
Extensions Accepted in Normal C++ Mode .387
cfront 2.1 Compatibility Mode .389
cfront 2.1/3.0 Compatibility Mode .391

Appendix D. C/C++ MMX/SSE Inline Intrinsics . 393

x

xi

Tables
Table 1-1: Stop after Options, Inputs and Outputs .7
Table 1-2: Examples of Using siterc and User rc Files .14
Table 2-1: Optimization and –O, –g and –M<opt> Options .43
Table 3-1: Generic PGI Compiler Options .48
Table 3-2: C and C++ -specific Compiler Options .52
Table 3-3: –M Options Summary .66
Table 3-4: Optimization and –O, –g, –Mvect, and –Mconcur Options. .104
Table 5-1: Initialization of REDUCTION Variables .135
Table 6-1: Initialization of Reduction Variables .158
Table 7-1: Proprietary Fortran Directive Summary. .177
Table 7-2: C/C++ Pragma Summary. .189
Table 8-1: Supported PGI_TERM Values .212
Table 9-1: Representation of Fortran Data Types .216
Table 9-2: Real Data Type Ranges .218
Table 9-3: Scalar Type Alignment. .218
Table 9-4: C/C++ Scalar Data Types .221
Table 9-5: Scalar Alignment .223
Table 10-1: 64-bit Compiler Options .232
Table 10-2: Effects of Options on Memory and Array Sizes .233
Table 10-3: 64-Bit Limitations .234
Table 11-1: Fortran and C/C++ Data Type Compatibility. .242
Table 11-2: Fortran and C/C++ Representation of the COMPLEX Type .242
Table 11-3: Calling Conventions Supported by the PGI Fortran Compilers .254
Table 12-1: Simple Constraints. .269
Table 12-2: x86/x86_64 Machine Constraints .271
Table 12-3: Multiple Alternative Constraints .274
Table 12-4: Constraint Modifier Characters .275
Table 12-5: Assembly String Modifier Characters .278
Table 12-6: Intrinsic Header File Organization .282
Table A-1: Register Allocation. .288
Table A-2: Standard Stack Frame .289
Table A-3: Stack Contents for Functions Returning struct/union. .292
Table A-4: Integral and Pointer Arguments .293
Table A-5: Floating-point Arguments .294
Table A-6: Structure and Union Arguments .295
Table A-7: Register Allocation. .298

xii

Table A-8: Standard Stack Frame. 299
Table A-9: Register Allocation for Example A-2. 304
Table A-10: Linux86-64 Fortran Fundamental Types . 307
Table A-11: Fortran and C/C++ Data Type Compatibility . 310
Table A-12: Fortran and C/C++ Representation of the COMPLEX Type . 310
Table A-13: Register Allocation . 314
Table A-14: Standard Stack Frame. 315
Table A-15: Register Allocation for Example A-4. 319
Table A-16: Win64/SUA64 Fortran Fundamental Types . 322
Table A-17: Fortran and C/C++ Data Type Compatibility . 325
Table A-18: Fortran and C/C++ Representation of the COMPLEX Type . 325
Table D-1: MMX Intrinsics (mmintrin.h) . 393
Table D-2: SSE Intrinsics (xmmintrin.h) . 395
Table D-3: SSE2 Intrinsics (emmintrin.h). 398
Table D-4: SSE3 Intrinsics (pmmintrin.h) . 400

xiii

Figures
Figure 9-1: Internal Padding in a Structure .225
Figure 9-2: Tail Padding in a Structure. .226

xiv

Audience Description

xv

Preface
This guide is part of a set of manuals that describe how to use The Portland Group (PGI) Fortran, C, and
C++ compilers and program development tools. In particular, these include the PGF77, PGF95, PGHPF,
PGC++, and PGCC ANSI C compilers, the PGPROF profiler, and the PGDBG debugger. These compilers
and tools work in conjunction with an x86 or x64 assembler and linker. You can use the PGI compilers
and tools to compile, debug, optimize and profile serial and parallel applications for x86 (Intel Pentium
II/III/4/M, Intel Centrino, Intel Xeon, AMD Athlon XP/MP) or x64 (AMD Athlon64/Opteron/Turion, Intel
EM64T, Intel Core Duo, Intel Core 2 Duo) processor-based systems.

The PGI User's Guide provides operating instructions for the PGI command-level development
environment. It also contains details concerning the PGI compilers' interpretation of the Fortran
language, implementation of Fortran language extensions, and command-level compilation. Previous
experience with or knowledge of the Fortran programming language is assumed.

Audience Description

This manual is intended for scientists and engineers using the PGI compilers. To use these compilers,
you should be aware of the role of high-level languages (e.g. Fortran, C, C++) and assembly-language
in the software development process and should have some level of understanding of programming. The
PGI compilers are available on a variety of x86 or x64 hardware platforms and operating systems. You
need to be familiar with the basic commands available on your system.

Finally, your system needs to be running a properly installed and configured version of the compilers.
For information on installing PGI compilers and tools, refer to the Release and Installation notes
included with your software.

Compatibility and Conformance to Standards

For further information, refer to the following:

• American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

• ISO/IEC 1539 : 1991, Information technology – Programming Languages – Fortran, Geneva,
1991 (Fortran 90).

xvi

• ISO/IEC 1539 : 1997, Information technology – Programming Languages – Fortran, Geneva,
1997 (Fortran 95).

• Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press, Cambridge,
Mass, 1997.

• High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston, Texas
(1993), http://www.crpc.rice.edu/HPFF.

• High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston, Texas
(1997), http://www.crpc.rice.edu/HPFF.

• OpenMP Application Program Interface, Version 2.5, May 2005, http://www.openmp.org.

• Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

• Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

• American National Standard Programming Language C, ANSI X3.159-1989.

• ISO/IEC 9899:1999, Information technology – Programming Languages – C, Geneva, 1999 (C99).

Organization

This manual is divided into the following chapters and appendices:

Chapter 1, “Getting Started” provides an introduction to the PGI compilers and describes their use and
overall features.

Chapter 2, “Optimization & Parallelization” describes standard optimization techniques that, with little
effort, allow users to significantly improve the performance of programs.

Chapter 3, “Command Line Options” provides a detailed description of each command-line option.

Chapter 4, “Function Inlining” describes how to use function inlining and shows how to create an inline
library.

Chapter 5, “OpenMP Directives for Fortran” provides a description of the OpenMP Fortran
parallelization directives and shows examples of their use.

Hardware and Software Constraints

xvii

Chapter 6, “OpenMP Pragmas for C and C++” provides a description of the OpenMP C and C++
parallelization pragmas and shows examples of their use.

Chapter 7, “Directives and Pragmas” provides a description of each Fortran optimization directive and
C/C++ optimization pragma, and shows examples of their use.

Chapter 8, “Libraries and Environment Variables” discusses PGI support libraries, shared object files,
and environment variables that affect the behavior of the PGI compilers.

Chapter 9, “Fortran, C and C++ Data Types” describes the data types that are supported by the PGI
Fortran, C, and C++ compilers.

Chapter 11, “Inter-language Calling” provides examples showing how to place C Language calls in a
Fortran program and Fortran Language calls in a C program.

Chapter 13, “C++ Name Mangling” describes the name mangling facility and explains the
transformations of names of entities to names that include information on aspects of the entity’s type
and a fully qualified name.

Chapter Appendix A., “Run-time Environment” describes the assembly language calling conventions
and examples of assembly language calls.

Chapter Appendix B., “Messages” provides a list of compiler error messages.

Chapter Appendix C., “C++ Dialect Supported” lists more details of the version of the C++ language
that PGC++ supports.

Hardware and Software Constraints

This guide describes versions of the PGI compilers that produce assembly code for x86 and x64
processor-based systems. Details concerning environment-specific values and defaults and system-
specific features or limitations are presented in the release notes delivered with the PGI compilers.

Conventions

The PGI User's Guide uses the following conventions:

italic is used for commands, filenames, directories, arguments, options and for
emphasis.

xviii

Constant Width is used in examples and for language statements in the text, including
assembly language statements.

[item1] square brackets indicate optional items. In this case item1 is optional.

{ item2 | item 3} braces indicate that a selection is required. In this case, you must select
either item2 or item3.

filename... ellipsis indicate a repetition. Zero or more of the preceding item may
occur. In this example, multiple filenames are allowed.

FORTRAN Fortran language statements are shown in the text of this guide using
upper-case characters and a reduced point size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of the Linux and Windows
operating systems on a variety of x86-compatible processors. There are a wide variety of releases and
distributions of each of these types of operating systems. The PGI User’s Guide defines the following
terms with respect to these platforms:

x86 a processor designed to be binary compatible with i386/i486 and previous
generation processors from Intel* Corporation. Used to refer collectively to
such processors up to and including 32-bit variants.

IA32 an Intel Architecture 32-bit processor designed to be binary compatible
with x86 processors, but incorporating new features such as streaming
SIMD extensions (SSE) for improved performance.

AMD64 a 64-bit processor from AMD designed to be binary compatible with IA32
processors, and incorporating new features such as additional registers
and 64-bit addressing support for improved performance and greatly
increased memory range.

EM64T a 64-bit IA32 processor with Extended Memory 64-bit Technology
extensions that are binary compatible with AMD64 processors.

x64 collectively, all AMD64 and EM64T processors supported by the PGI
compilers.

linux86 32-bit Linux operating system running on an x86 or x64 processor-based
system, with 32-bit GNU tools, utilities and libraries used by the PGI
compilers to assemble and link for 32-bit execution.

Conventions

xix

linux86-64 64-bit Linux operating system running on an x64 processor-based system,
with 64-bit and 32-bit GNU tools, utilities and libraries used by the PGI
compilers to assemble and link for execution in either linux86 or
linux86-64 environments. The 32-bit development tools and execution
environment under linux86-64 are considered a cross development
environment for x86 processor-based applications.

SFU Services for Unix, a 32-bit-only predecessor of SUA, the Subsystem for Unix
Applications. See SUA.

SUA Subsystem for UNIX-based Applications (SUA) is source-compatibility
subsystem for compiling and running custom UNIX-based applications on
a computer running 32-bit or 64-bit Windows server-class operating
system. It provides an operating system for Portable Operating System
Interface (POSIX) processes. SUA supports a package of support utilities
(including shells and >300 Unix commands), case-sensitive file names,
and job control. The subsystem installs separately from the Windows
kernel to support UNIX functionality without any emulation.

Win32 any of the 32-bit Microsoft Windows Operating Systems (XP/2000/Server
2003) running on an x86 or x64 processor-based system. On these targets,
the PGI compiler products include all of the tools and libraries needed to
build executables for 32-bit Windows systems.

Win64 any of the 64-bit Microsoft Windows Operating Systems (XP Professional /
Windows Server 2003 x64 Editions) running on an x64 processor-based
system. On these targets, the PGI compiler products include all of the tools
and libraries needed to build executables for 32-bit Windows systems.

Windows collectively, all Win32 and Win64 platforms supported by the PGI
compilers.

The following table lists the PGI compilers and tools and their corresponding commands:

xx

Table P-1: PGI Compilers and Commands

In general, the designation PGF95 is used to refer to The Portland Group’s Fortran 90/95 compiler, and
pgf95 is used to refer to the command that invokes the compiler. A similar convention is used for each of
the PGI compilers and tools.

For simplicity, examples of command-line invocation of the compilers generally reference the pgf95
command and most source code examples are written in Fortran. Usage of the PGF77 compiler, whose
features are a subset of PGF95, is similar. Usage of PGHPF, PGC++, and PGCC ANSI C99 is consistent
with PGF95 and PGF77, but there are command-line options and features of these compilers that do not
apply to PGF95 and PGF77 (and vice versa).

There are a wide variety of x86-compatible processors in use. All are supported by the PGI compilers and
tools. Most of these processors are forward-compatible, but not backward-compatible. That means code
compiled to target a given processor will not necessarily execute correctly on a previous-generation
processor. The most important processor types, along with a list of the features utilized by the PGI
compilers that distinguish them from a compatibility standpoint, are listed in the following table:

Compiler or
Tool Language or Function Command

PGF77 FORTRAN 77 pgf77

PGF95 Fortran 90/95 pgf95

PGHPF High Performance Fortran pghpf

PGCC C ANSI C99 and K&R C pgcc

PGC++ ANSI C++ with cfront features pgcpp (pgCC)

PGDBG Source code debugger pgdbg

PGPROF Performance profiler pgprof

Conventions

xxi

Table P-2: Processor Options

In this manual, the convention is to use “x86” to specify the group of processors in the previous table
that are listed as “32-bit” but not “64-bit.” The convention is to use x64 to specify the group of
processors that are listed as both “32-bit” and “64-bit.” x86 processor-based systems can run only 32-bit

Processor Prefetch SSE1 SSE2 SSE3 32-bit 64-bit Scalar FP
Default

AMD Athlon N N N N Y N x87

AMD Athlon XP/MP Y Y N N Y N x87

AMD Athlon64 Y Y Y N Y Y SSE

AMD Opteron Y Y Y N Y Y SSE

AMD Opteron Rev E Y Y Y Y Y Y SSE

AMD Opteron Rev F Y Y Y Y Y Y SSE

AMD Turion Y Y Y Y Y Y SSE

Intel Celeron N N N N Y N x87

Intel Pentium II N N N N Y N x87

Intel Pentium III Y Y N N Y N x87

Intel Pentium 4 Y Y Y N Y N SSE

Intel Pentium M Y Y Y N Y N SSE

Intel Centrino Y Y Y N Y N SSE

Intel Pentium 4
EM64T

Y Y Y Y Y Y SSE

Intel Xeon EM64T Y Y Y Y Y Y SSE

Intel Core Duo EM64T Y Y Y Y Y Y SSE

Intel Core 2 Duo
EM64T

Y Y Y Y Y Y SSE

xxii

operating systems. x64 processor-based systems can run either 32-bit or 64-bit operating systems, and
can execute all 32-bit x86 binaries in either case. x64 processors have additional registers and 64-bit
addressing capabilities that are utilized by the PGI compilers and tools when running on a 64-bit
operating system. The prefetch, SSE1, SSE2 and SSE3 processor features further distinguish the various
processors. Where such distinctions are important with respect to a given compiler option or feature, it is
explicitly noted in this manual.

Note that the default for performing scalar floating-point arithmetic is to use SSE instructions on targets
that support SSE1 and SSE2. See section 2.3.1, Scalar SSE Code Generation, for a detailed discussion of
this topic.

Related Publications

The following documents contain additional information related to the x86 and x64 architectures, and
the compilers and tools available from The Portland Group.

• PGI Fortran Reference manual describes the FORTRAN 77, Fortran 90/95, and HPF statements,
data types, input/output format specifiers, and additional reference material related to use of the
PGI Fortran compilers.

• System V Application Binary Interface Processor Supplement by AT&T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

• System V Application Binary Interface X86-64 Architecture Processor Supplement, http://
www.x86-64.org/abi.pdf.

• Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press, Cambridge,
Mass, 1997.

• Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

• The C Programming Language by Kernighan and Ritchie (Prentice Hall).

• C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

• The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T Bell
Laboratories, Inc. (Addison-Wesley Publishing Co., 1990).

Related Publications

xxiii

• OpenMP Application Program Interface , Version 2.5 May 2005 (OpenMP Architecture Review
Board, 1997-2005).

xxiv

Overview

1

1 Getting Started
This chapter describes how to use the PGI compilers. The command used to invoke a compiler, for
example the pgf95 command, is called a compiler driver. The compiler driver controls the following
phases of compilation: preprocessing, compiling, assembling, and linking. Once a file is compiled and
an executable file is produced, you can execute, debug, or profile the program on your system.
Executables produced by the PGI compilers are unconstrained, meaning they can be executed on any
compatible x86 or x64 processor-based system regardless of whether the PGI compilers are installed on
that system.

Overview

In general, using a PGI compiler involves three steps:

1. Produce a program in a file containing a .f extension or another appropriate extension (see “Input
Files” on page 4). This may be a program that you have written or a program that you are
modifying.

2. Compile the program using the appropriate compiler command.

3. Execute, debug, or profile the executable file on your system.

The PGI compilers allow many variations on these general program development steps. These variations
include the following:

• Stop the compilation after preprocessing, compiling or assembling to save and examine
intermediate results.

• Provide options to the driver that control compiler optimization or that specify various features or
limitations.

• Include as input intermediate files such as preprocessor output, compiler output, or assembler
output.

Invoking the Command-level PGI Compilers

To translate and link a Fortran, C, or C++ program, the pgf77, pgf95, pghpf, pgcc, and pgcpp commands
do the following:

Getting Started

2

• Preprocess the source text file

• Check the syntax of the source text

• Generate an assembly language file

• Pass control to the subsequent assembly and linking steps

For example, if you enter the following simple Fortran program in the file hello.f:

print *, "hello"

end

You can compile it from a shell prompt using the default pgf95 driver options.

PGI$ pgf95 hello.f

Linking:

PGI$

By default, the executable output is placed in the file a.out (or, on Windows platforms, a filename based
on the name of the first source or object file on the command line). Use the –o option to specify an
output file name. To place the executable output in the file hello:

PGI$ pgf95 -o hello.f

Linking:

PGI$

To execute the resulting program, simply type the filename at the command prompt and press the
Return or Enter key on your keyboard:

PGI$ hello

 hello

PGI$

Command-line Syntax

The command-line syntax, using pgf95 as an example, is:

pgf95 [options] [path]filename [...]

Where:

Invoking the Command-level PGI Compilers

3

options is one or more command-line options, all of which are described in detail
in Chapter 3, “Command Line Options”. Case is significant for options and
their arguments.

The compiler drivers recognize characters preceded by a hyphen (-) as
command-line options. For example, the –Mlist option specifies that the
compiler creates a listing file (in the text of this manual we show
command-line options using a dash instead of a hyphen, for example –
Mlist). In addition, the pgcpp command recognizes a group of characters
preceded by a plus sign (+) as command-line options.

The order of options and the filename is not fixed. That is, you can place
options before and after the filename argument on the command line.
However, the placement of some options is significant, for example the –l
option.

 Note

If two or more options contradict each other, the last one in the command line takes
precedence.

path is the pathname to the directory containing the file named by filename. If
you do not specify path for a filename, the compiler uses the current
directory. You must specify path separately for each filename not in the
current directory.

filename is the name of a source file, assembly-language file, object file, or library
to be processed by the compilation system. You can specify more than one
[path]filename.

Command-line Options

The command-line options control various aspects of the compilation process. For a complete
alphabetical listing and a description of all the command-line options, refer to Chapter 3, “Command
Line Options”.

Getting Started

4

Fortran Directives and C/C++ Pragmas

Fortran directives or C/C++ pragmas inserted in program source code allow you to alter the effects of
certain command-line options and control various aspects of the compilation process for a specific
routine or a specific program loop. For a complete alphabetical listing and a description of all the
Fortran directives and C/C++ pragmas, refer to 5, “OpenMP Directives for Fortran”, 6, “OpenMP
Pragmas for C and C++”, and 7, “Directives and Pragmas”.

Filename Conventions

The PGI compilers use the filenames that you specify on the command line to find and to create input
and output files. This section describes the input and output filename conventions for the phases of the
compilation process.

Input Files

You can specify assembly-language files, preprocessed source files, Fortran/C/C++ source files, object
files, and libraries as inputs on the command line. The compiler driver determines the type of each input
file by examining the filename extensions. The drivers use the following conventions:

filename.f indicates a Fortran source file.

filename.F indicates a Fortran source file that can contain macros and preprocessor
directives (to be preprocessed).

filename.FOR indicates a Fortran source file that can contain macros and preprocessor
directives (to be preprocessed).

filename.F95 indicates a Fortran 90/95 source file that can contain macros and
preprocessor directives (to be preprocessed).

filename.f90 indicates a Fortran 90/95 source file that is in freeform format.

filename.f95 indicates a Fortran 90/95 source file that is in freeform format.

filename.hpf indicates an HPF source file.

filename.c indicates a C source file that can contain macros and preprocessor
directives (to be preprocessed).

filename.i indicates a pre-processed C or C++ source file.

Filename Conventions

5

filename.C indicates a C++ source file that can contain macros and preprocessor
directives (to be preprocessed).

filename.cc indicates a C++ source file that can contain macros and preprocessor
directives (to be preprocessed).

filename.s indicates an assembly-language file.

filename.o (Linux systems only) indicates an object file.

filename.obj (Windows systems only) indicates an object file.

filename.a (Linux systems only) indicates a library of object files.

filename.lib (Windows systems only) indicates a library of object files.

filename.so (Linux systems only) indicates a library of shared object files.

filename.dll (Windows systems only) indicates a library of shared object files.

The driver passes files with .s extensions to the assembler and files with .o, .so, .a and .lib extensions to
the linker. Input files with unrecognized extensions, or no extension, are also passed to the linker.

Files with a .F (Capital F) or .FOR suffix are first preprocessed by the Fortran compilers and the output is
passed to the compilation phase. The Fortran preprocessor functions similar to cpp for C/C++ programs,
but is built in to the Fortran compilers rather than implemented through an invocation of cpp. This
ensures consistency in the pre-processing step regardless of the type or revision of operating system
under which you’re compiling.

Any input files not needed for a particular phase of processing are not processed. For example, if on the
command line you use an assembly-language file (filename.s) and the –S option to stop before the
assembly phase, the compiler takes no action on the assembly-language file. Processing stops after
compilation and the assembler does not run (in this case compilation must have been completed in a
previous pass which created the .s file). Refer to the following section, Output Files, for a description of
the –S option.

In addition to specifying primary input files on the command line, code within other files can be
compiled as part of “include” files using the INCLUDE statement in a Fortran source file or the
preprocessor #include directive in Fortran source files that use a .F extension or C and C++ source files.

Getting Started

6

When linking a program with a library, the linker extracts only those library components that the
program needs. The compiler drivers link in several libraries by default. For more information about
libraries, refer to 8, “Libraries and Environment Variables”, .

Output Files

By default, an executable output file produced by one of the PGI compilers is placed in the file a.out (or,
on Windows, a filename based on the name of the first source or object file on the command line). As
shown in the preceding section, you can use the –o option to specify the output file name.

If you use one of the options: –F (Fortran only), –P (C/C++ only), –S or –c, the compiler produces a file
containing the output of the last phase that completes for each input file, as specified by the option
supplied. The output file will be a preprocessed source file, an assembly-language file, or an unlinked
object file respectively. Similarly, the –E option does not produce a file, but displays the preprocessed
source file on the standard output. Using any of these options, the –o option is valid only if you specify a
single input file. If no errors occur during processing, you can use the files created by these options as
input to a future invocation of any of the PGI compiler drivers. The following table lists the stop after
options and the output files that the compilers create when you use these options.

Filename Conventions

7

Table 1-1: Stop after Options, Inputs and Outputs

If you specify multiple input files or do not specify an object filename, the compiler uses the input
filenames to derive corresponding default output filenames of the following form, where filename is the
input filename without its extension:

filename.f indicates a preprocessed file (if you compiled a Fortran file using the –F
option).

filename.l stindicates a listing file from the –Mlist option.

filename.o indicates an object file from the –c option.

filename.s indicates an assembly-language file from the –S option.

Note

Unless you specify otherwise, the destination directory for any output file is the current
working directory. If the file exists in the destination directory, the compiler overwrites it.

The following example demonstrates the use of output filename extensions.

$ pgf95 -c proto.f proto1.F

Option Stop after Input Output

–E preprocessing Source files (must have .F extension for For-
tran)

preprocessed file to stan-
dard out

–F preprocessing Source files (must have .F extension, this
option is not valid for pgcc or pgcpp)

preprocessed file – .f

–P preprocessing Source files (this option is not valid for pgf77,
pgf95 or pghpf)

preprocessed file – .i

–S compilation Source files or preprocessed files assembly-language file – .s

–c assembly Source files, preprocessed files or assembly-
language files

unlinked object file – .o

none linking Source files, preprocessed files, assembly-lan-
guage files, object files or libraries

executable files a.out

Getting Started

8

This produces the output files proto.o and proto1.o, both of which are binary object files. Prior to
compilation, the file proto1.F is pre-processed because it has a .F filename extension.

Parallel Programming Using the PGI Compilers

The PGI compilers support three styles of parallel programming:

• Automatic shared-memory parallel programs compiled using the -Mconcur option to pgf77, pgf95,
pgcc, or pgcpp — parallel programs of this variety can be run on shared-memory parallel (SMP)
systems such as dual-core or multi-processor workstations.

• OpenMP shared-memory parallel programs compiled using the -mp option to pgf77, pgf95, pgcc,
or pgcpp — parallel programs of this variety can be run on SMP systems. Carefully coded user-
directed parallel programs using OpenMP directives can often achieve significant speed-ups on
dual-core workstations or large numbers of processors on SMP server systems. 5, “OpenMP
Directives for Fortran” and 6, “OpenMP Pragmas for C and C++” contain complete descriptions of
user-directed parallel programming.

• Data parallel shared- or distributed-memory parallel programs compiled using the PGHPF High
Performance Fortran compiler — parallel programs of this variety can be run on SMP
workstations or servers, distributed-memory clusters of workstations, or clusters of SMP
workstations or servers. Coding a data parallel version of an application can be more work than
using OpenMP directives, but has the advantage that the resulting executable is usable on all types
of parallel systems regardless of whether shared memory is available. See the PGHPF User’s Guide
for a complete description of how to build and execute data parallel HPF programs.

In this manual, the first two types of parallel programs are collectively referred to as SMP parallel
programs. The third type is referred to as a data parallel program, or simply as an HPF program.

Some newer CPUs incorporate two or more complete processor cores (functional units, registers, level 1
cache, level 2 cache, etc) on a single silicon die. These are referred to as multi-core processors. For
purposes of HPF, threads, or OpenMP parallelism, these cores function as 2 or more distinct processors.
However, the processing cores are on a single chip occupying a single socket on a system motherboard.
For purposes of PGI software licensing, a multi-core processor is treated as a single CPU.

Parallel Programming Using the PGI Compilers

9

Running SMP Parallel Programs

When you execute an SMP parallel program, by default it will use only 1 processor. To run on more than
one processor, set the NCPUS environment variable to the desired number of processors (subject to a
maximum of 4 for PGI’s workstation-class products).

You can set this environment variable by issuing the following command:

% setenv NCPUS <number>

in a Windows command prompt window

% setenv NCPUS <number>

in a shell command window under csh, or with

% NCPUS=<number>;

export NCPUS

in sh, ksh, or BASH command window.

Note

If you set NCPUS to a number larger than the number of physical processors, your program
may execute very slowly.

Running Data Parallel HPF Programs

When you execute an HPF program, by default it will use only one processor. If you wish to run on more
than one processor, use the -pghpf -np runtime option. For example, to compile and run the hello.f
example defined above on one processor, you would issue the following commands:

% pghpf -o hello hello.f

Linking:

% hello

 hello

%

To execute it on two processors, you would issue the following commands:

% hello -pghpf -np 2

 hello

%

Getting Started

10

Note

If you specify a number larger than the number of physical processors, your program will
execute very slowly.

Note that you still only see a single “hello” printed to your screen. This is because HPF is a single-
threaded model, meaning that all statements execute with the same semantics as if they were running in
serial. However, parallel statements or constructs operating on explicitly distributed data are in fact
executed in parallel. The programmer must manually insert compiler directives to cause data to be
distributed to the available processors. See the PGHPF User’s Guide and The High Performance Fortran
Handbook for more details on constructing and executing data parallel programs on shared-memory or
distributed-memory cluster systems using PGHPF.

Using the PGI Compilers on Linux

Linux Header Files

The Linux system header files contain many GNU gcc extensions. Many of these extensions are
supported. This should allow the PGCC C and C++ compilers to compile most programs compilable with
the GNU compilers. A few header files not interoperable with the PGI compilers have been rewritten and
are included in $PGI/linux86/include. These files are: sigset.h, asm/byteorder.h, stddef.h, asm/
posix_types.h and others. Also, PGI’s version of stdarg.h should support changes in newer versions of
Linux.

If you are using the PGCC C or C++ compilers, please make sure that the supplied versions of these
include files are found before the system versions. This will happen by default unless you explicitly add a
–I option that references one of the system include directories.

Running Parallel Programs on Linux

You may encounter difficulties running auto-parallel or OpenMP programs on Linux systems when the
per-thread stack size is set to the default (2MB). If you have unexplained failures, please try setting the
environment variable MPSTKZ to a larger value, such as 8MB. This can be accomplished with the
command:

% setenv MPSTKZ 8M

in csh, or with

% MPSTKZ=8M; export MPSTKZ

Using the PGI Compilers on Windows

11

in bash, sh, or ksh.

If your program is still failing, you may be encountering the hard 8 MB limit on main process stack sizes
in Linux. You can work around the problem by issuing the command:

% limit stacksize unlimited

in csh, or

% ulimit -s unlimited

in bash, sh, or ksh.

Using the PGI Compilers on Windows

BASH Shell Environment

On Windows platforms, the tools that ship with the PGI Workstation or PGI Server command-level
compilers include a full-featured shell command environment. After installation, you should have a PGI
icon on your Windows desktop. Double-left-click on this icon to cause an instance of the BASH command
shell to appear on your screen. Working within BASH is very much like working within the sh or ksh
shells on a Linux system, but in addition BASH has a command history feature similar to csh and several
other unique features. Shell programming is fully supported. A complete BASH User’s Guide is available
through the PGI online manual set. Select “PGI Workstation” under Start->Programs and double-left-
click on the documentation icon to see the online manual set. You must have a web browser installed on
your system in order to read the online manuals.

The BASH shell window is pre-initialized for usage of the PGI compilers and tools, so there is no need to
set environment variables or modify your command path when the command window comes up. In
addition to the PGI compiler commands referenced above, within BASH you have access to over 100
common commands and utilities, including but not limited to the following:

vi emacs make

tar / untar gzip / gunzip ftp

sed grep / egrep / fgrep awk

cat cksum cp

Getting Started

12

If you are familiar with program development in a Linux environment, editing, compiling, and
executing programs within BASH will be very comfortable. If you have not previously used such an
environment, you should take time to familiarize yourself with either the vi or emacs editors and with
makefiles. The emacs editor has an extensive online tutorial, which you can start by bringing up emacs
and selecting the appropriate option under the pull-down help menu. You can get a thorough
introduction to the construction and use of makefiles through the online Makefile User’s Guide.

Windows Command Prompt

The PGI Workstation entry in the Windows Start menu contains a submenu titled PGI Workstation Tools.
This submenu contains a shortcut labeled PGI Command Prompt (32-bit). The shortcut is used to
launch a Windows command shell using an environment pre-initialized for the use of the 32-bit PGI
compilers and tools. On x64 systems, a second shortcut labeled PGI Command Prompt (64-bit) will also
be present. This shortcut launches a Windows command shell using an environment pre-initialized for
use of the 64-bit PGI compilers and tools.

Using the PGI Compilers on SUA and SFU

Subsystem for Unix Applications (SUA and SFU)

Subsystem for Unix Applications (SUA) is a source-compatibility subsystem for running Unix
applications on 32-bit nd 64-bit Windows server-class operating systems. PGI Workstation for Windows
includes compilers and tools for SUA and its 32-bit-only predecessor, Services For Unix (SFU).

SUA provides an operating system for POSIX processes. There is a package of support utilities available
for download from Microsoft that provides a more complete Unix environment, including things like
shells, scripting utilities, a telnet client, development tools, and so on.

date diff du

find kill ls

more / less mv printenv / env

rm / rmdir touch wc

Customizing the Compilers with siterc and User rc Files

13

SUA/SFU Header Files

The SUA/SFU system header files contain numerous non-standard extensions. Many of these extensions
are supported. This should allow the PGCC C and C++ compilers to compile most programs compilable
with the GNU compilers. A few header files not interoperable with the PGI compilers have been rewritten
and are included in $PGI/sua32/include or $PGI/sua64/include. These files are: stdarg.h, stddef.h, and
others.

If you are using the PGCC C or C++ compilers, please make sure that the supplied versions of these
include files are found before the system versions. This will happen by default unless you explicitly add a
–I option that references one of the system include directories.

Running Parallel Programs on SUA and SFU

You may encounter difficulties running auto-parallel or OpenMP programs on SUA/SFU systems when
the per-thread stack size is set to the default (2MB). If you have unexplained failures, please try setting
the environment variable MPSTKZ to a larger value, such as 8MB. This can be accomplished with the
command:

% setenv MPSTKZ 8M

in csh, or with

% MPSTKZ=8M; export MPSTKZ

in bash, sh, or ksh.

Customizing the Compilers with siterc and User rc Files

The PGI compiler drivers utilize a file named siterc to enable site-specific customization of the behavior
of the PGI compilers. The siterc file is located in the bin subdirectory of the PGI installation directory.
Using siterc, you can control how the compiler drivers invoke the various components in the
compilation tool chain.

In addition to the siterc file, user rc files can reside in a given user’s home directory, as specified by the
user’s HOME environment variable. On Linux and SUA these files are named .mypgf77rc, .mypgf90rc,
.mypgccrc, .mypgcpprc, and .mypghpfrc, and can be used to control the respective PGI compilers. On
native windows, these files are named mypgf77rc, mypgf90rc, mypgccrc, mypgcpprc, and mypghpfrc. All
of these files are optional.

Getting Started

14

Following are some examples that show how these rc files can be used to tailor a given installation for a
particular purpose.

Table 1-2: Examples of Using siterc and User rc Files
Make the libraries found in/
opt/newlibs/64 available toall
linux86-64 compilations

Add the line:set SITELIB=/opt/newlibs/64;to /opt/
pgi/linux86-64/6.2/bin/siterc

Make the libraries found in/
opt/newlibs/32 available to
alllinux86 compilations.

Add the line:set SITELIB=/opt/newlibs/32;to /opt/
pgi/linux86/6.2/bin/siterc

Add a new library path/opt/
local/fast to alllinux86-64
compilations.

Add the line:append SITELIB=/opt/local/fast;to /
opt/pgi/linux86-64/6.2/bin/siterc

Make the include path/opt/
acml/includeavailable to all
compilations;–I/opt/acml/
include.

Add the line:set SITEINC=/opt/acml/include;to /
opt/pgi/linux86/6.2/bin/siterc and/opt/pgi/
linux86-64/6.2/bin/siterc

Change –Mmpi to link in/opt/
mympi/64/libmpix.a
withlinux86-64 compilations.

Add the lines:set MPILIBDIR=/opt/mympi/64;set
MPILIBNAME=mpix;to /opt/pgi/linux86-64/6.2/
bin/siterc

Have linux86-64 compilation-
salways add–DIS64BIT –
DAMD

Add the line:set SITEDEF=IS64BIT AMD;to /opt/
pgi/linux86-64/6.2/bin/siterc

A user wishes to build an
F90executable for linux86-64
orlinux86 that resolves
PGIshared objects in the rela-
tivedirectory ./REDIST

Add the line:set RPATH=./REDIST;to ~/
.mypgf95rc. NOTE: this will onlyaffect the behav-
ior of PGF95 for thegiven user.

Overview of Optimization

15

2 Optimization & Parallelization
Source code that is readable, maintainable, and produces correct results is not always organized for
efficient execution. Normally, the first step in the program development process involves producing code
that executes and produces the correct results. This first step usually involves compiling without much
worry about optimization. After code is compiled and debugged, code optimization and parallelization
become an issue. Invoking one of the PGI compiler commands with certain options instructs the
compiler to generate optimized code. Optimization is not always performed since it increases
compilation time and may make debugging difficult. However, optimization produces more efficient
code that usually runs significantly faster than code that is not optimized.

The compilers optimize code according to the specified optimization level. Using the –O, –Mvect, –Mipa
and –Mconcur options, you can specify the optimization levels. In addition, several –M<pgflag>
switches can be used to control specific types of optimization and parallelization.

This chapter describes the optimization options and describes how to choose optimization options to use
with the PGI compilers. Chapter 4, “Function Inlining”, describes how to use the function inlining
options.

Overview of Optimization

In general, optimization involves using transformations and replacements that generate more efficient
code. This is done by the compiler and involves replacements that are independent of the particular
target processor’s architecture as well as replacements that take advantage of the x86 or x64
architecture, instruction set and registers. For the discussion in this and the following chapters,
optimization is divided into the following categories:

Local Optimization

This optimization is performed on a block-by-block basis within a program’s basic blocks. A basic
block is a sequence of statements, in which the flow of control enters at the beginning and leaves at
the end without the possibility of branching, except at the end. The PGI compilers perform many types
of local optimization including: algebraic identity removal, constant folding, common sub-expression
elimination, pipelining, redundant load and store elimination, scheduling, strength reduction, and
peephole optimizations.

Optimization & Parallelization

16

Global Optimization

This optimization is performed on a program unit over all its basic blocks. The optimizer performs
control-flow and data-flow analysis for an entire program unit. All loops, including those formed by
IFs and GOTOs are detected and optimized. Global optimization includes: constant propagation, copy
propagation, dead store elimination, global register allocation, invariant code motion, and induction
variable elimination.

Loop Optimization: Unrolling, Vectorization,and Parallelization

The performance of certain classes of loops may be improved through vectorization or unrolling
options. Vectorization transforms loops to improve memory access performance and make use of
packed SSE instructions which perform the same operation on multiple data items concurrently.
Unrolling replicates the body of loops to reduce loop branching overhead and provide better
opportunities for local optimization, vectorization and scheduling of instructions. Performance for
loops on systems with multiple processors may also improve using the parallelization features of the
PGI compilers.

Inter-Procedural Analysis and Optimization (IPA)

Interprocedural analysis allows use of information across function call boundaries to perform
optimizations that would otherwise be unavailable. For example, if the actual argument to a function
is in fact a constant in the caller, it may be possible to propagate that constant into the callee and
perform optimizations that are not valid if the dummy argument is treated as a variable. A wide range
of optimizations are enabled or improved by using IPA, including but not limited to data alignment
optimizations, argument removal, constant propagation, pointer disambiguation, pure function
detection, F90/F95 array shape propagation, data placement, vestigial function removal, automatic
function inlining, inlining of functions from pre-compiled libraries, and interprocedural optimization
of functions from pre-compiled libraries.

Function Inlining

This optimization allows a call to a function to be replaced by a copy of the body of that function. This
optimization will sometimes speed up execution by eliminating the function call and return overhead.
Function inlining may also create opportunities for other types of optimization. Function inlining is
not always beneficial. When used improperly it may increase code size and generate less efficient code.

Getting Started with Optimizations

17

Profile-Feedback Optimization (PFO)

Profile-feedback optimization makes use of information from a trace file produced by specially
instrumented executables which capture and save information on branch frequency, function and
subroutine call frequency, semi-invariant values, loop index ranges, and other input data dependent
information that can only be collected dynamically during execution of a program. By definition, use
of profile-feedback optimization is a two-phase process: compilation and execution of a specially-
instrumented executable, followed by a subsequent compilation which reads a trace file generated
during the first phase and uses the information in the trace file to guide compiler optimizations.

Getting Started with Optimizations

Your first concern should be getting your program to execute and produce correct results. To get your
program running, start by compiling and linking without optimization. Use the optimization level –O0
or select –g to perform minimal optimization. At this level, you will be able to debug your program easily
and isolate any coding errors exposed during porting to x86 or x64 platforms.

If you want to get started quickly with optimization, a good set of options to use with any of the PGI
compilers is –fast –Mipa=fast. For example:

$ pgf95 -fast -Mipa=fast prog.f

For all of the PGI Fortran, C, and C++ compilers, this option will generally produce code that is well-
optimized without the possibility of significant slowdowns due to pathological cases. The -fast option is
an aggregate option that includes a number of individual PGI compiler options; which PGI compiler
options are included depends on the target for which compilation is performed. The –Mipa=fast option
invokes interprocedural analysis including several IPA suboptions.

For C++ programs, add -Minline=levels:10 --no_exceptions:

$ pgcpp -fast -Mipa=fast

-Minline=levels:10 --no_exceptions prog.cc

Note: a C++ program compiled with --no_execptions will fail if the program uses exception handling.

By experimenting with individual compiler options on a file-by-file basis, further significant
performance gains can sometimes be realized. However, individual optimizations can sometimes cause
slowdowns depending on coding style and must be used carefully to ensure performance improvements
result. In addition to –fastsse, the optimization flags most likely to further improve performance are –
O3, –Mpfi/–Mpfo, –Minline, and on targets with multiple processors –Mconcur.

Optimization & Parallelization

18

In addition, the –Msafeptr option can significantly improve performance of C/C++ programs in which
there is known to be no pointer aliasing. However, for obvious reasons this command-line option must
be used carefully.

Three other options which are extremely useful are –help, –Minfo, and –dryrun. You can see a
specification of any command-line option by invoking any of the PGI compilers with –help in
combination with the option in question, without specifying any input files.

For example:

$ pgf95 -help -fast

Reading rcfile /usr/pgi_rel/linux86-64/6.0/bin/.pgf95rc

-fastsse == -fast -Mvect=sse -Mcache_align

-Mflushz

-fast Common optimizations: -O2 -Munroll=c:1 -Mnoframe

-Mlre

. . .

Or to see the full functionality of –help itself, which can return information on either an individual
option or groups of options by type:

$ pgf95 -help -help

Reading rcfile /usr/pgi_rel/linux86-64/6.0/bin/.pgf95rc

-help[=groups|asm|debug|language|linker|opt|other|overall|

phase|prepro|suffix|switch|target|variable]

The –Minfo option can be used to display compile-time optimization listings. When this option is used,
the PGI compilers will issue informational messages to stdout as compilation proceeds. From these
messages, you can determine which loops are optimized using unrolling, SSE instructions, vectorization,
parallelization, interprocedural optimizations and various miscellaneous optimizations. You can also
see where and whether functions are inlined. The –Mneginfo option can be used to display
informational messages listing why certain optimizations are inhibited.

The –dryrun option can be useful as a diagnostic tool if you need to see the steps used by the compiler
driver to pre-process, compile, assemble and link in the presence of a given set of command line inputs.
When you specify the –dryrun option, these steps will be printed to stdout but will not actually be
performed. For example, this allows inspection of the default and user-specified libraries that are
searched during the link phase, and the order in which they are searched by the linker.

Local and Global Optimization using -O

19

The remainder of this chapter describes the –O options, the loop unroller option –Munroll, the
vectorizer option –Mvect, the auto-parallelization option –Mconcur, and the inter-procedural analysis
optimization –Mipa, and the profile-feedback instrumentation (–Mpfi) and optimization (–Mpfo)
options. Usually, you should be able to get very near optimal compiled performance using some
combination of these switches. The following overview will help if you are just getting started with one of
the PGI compilers, or wish to experiment with individual optimizations. Complete specifications of each
of these options are listed in Chapter 3, “Command Line Options” .

The chapters that follow provide more detailed information on other –M<pgflag> options that control
specific optimizations, including function inlining. Explicit parallelization through the use of OpenMP
directives or pragmas is invoked using the –mp option, described in detail in Chapter 5, “OpenMP
Directives for Fortran” and Chapter 6, “OpenMP Pragmas for C and C++”.

Local and Global Optimization using -O

Using the PGI compiler commands with the –Olevel option, you can specify any of the following
optimization levels (the capital O is for Optimize):

–O0 level-zero specifies no optimization. A basic block is generated for each language statement.

–O1 level-one specifies local optimization. Scheduling of basic blocks is performed. Register
allocation is performed.

–O2 level-two specifies global optimization. This level performs all level-one local optimization
as well as level-two global optimization.

–O3 level-three specifies aggressive global optimization. This level performs all level-one and
level-two optimizations and enables more aggressive hoisting and scalar replacement
optimizations that may or may not be profitable.

–O4 level-four performs all level-one, level-two, and level-three optimizations and enables
hoisting of guarded invariant floating point expressions.

Level-zero optimization specifies no optimization (–O0). At this level, the compiler generates a basic
block for each statement. This level is useful for the initial execution of a program. Performance will
almost always be slowest using this optimization level. Level-zero is useful for debugging since there is a
direct correlation between the program text and the code generated.

Optimization & Parallelization

20

Level-one optimization specifies local optimization (–O1). The compiler performs scheduling of basic
blocks as well as register allocation. This optimization level is a good choice when the code is very
irregular; that is it contains many short statements containing IF statements and the program does not
contain loops (DO or DO WHILE statements). For certain types of code, this optimization level may
perform better than level-two (–O2) although this case rarely occurs.

The PGI compilers perform many different types of local optimizations, including but not limited to:

• Algebraic identity removal

• Constant folding

• Common subexpression elimination

• Local register optimization

• Peephole optimizations

• Redundant load and store elimination

• Strength reductions

Level-two optimization (–O2 or –O) specifies global optimization. The –nfast option generally will
specify global optimization; however, the –nfast switch will vary from release to release depending on a
reasonable selection of switches for any one particular release. The –O or –O2 level performs all level-
one local optimizations as well as global optimizations. Control flow analysis is applied and global
registers are allocated for all functions and subroutines. Loop regions are given special consideration.
This optimization level is a good choice when the program contains loops, the loops are short, and the
structure of the code is regular.

The PGI compilers perform many different types of global optimizations, including but not limited to:

• Branch to branch elimination

• Constant propagation

• Copy propagation

• Dead store elimination

• Global register allocation

• Invariant code motion

Local and Global Optimization using -O

21

• Induction variable elimination

You select the optimization level on the command line. For example, level-two optimization results in
global optimization, as shown below:

$ pgf95 -O2 prog.f

Specifying –O on the command-line without a level designation is equivalent to –O2. The default
optimization level changes depending on which options you select on the command line. For example,
when you select the –g debugging option, the default optimization level is set to level-zero (–O0).
However, you can use the -gopt option to generate debug information without perturbing optimization if
you need to debug optimized code. Refer to Section 2.8, Default Optimization Levels, for a description of
the default levels.

As noted above, the –nfast option includes –O2 on all x86 and x64 targets. If you wish to override this
with –O3 while maintaining all other elements of –nfast, simply compile as follows:

$ pgf95 -nfast -O3 prog.f

Note

Beginning in release 7.0, the –fast became synonymous with the –fastsse option, and the
optimizations performed by –fast in previous releases were placed under the –nfast option.
Use –nfast for older x86 processors, as described in the following section.

Scalar SSE Code Generation

For all processors prior to Intel Pentium 4 and AMD Opteron/Athlon64, for example Intel Pentium III
and AMD AthlonXP/MP processors, scalar floating-point arithmetic as generated by the PGI Workstation
compilers is performed using x87 floating-point stack instructions. With the advent of SSE/SSE2
instructions on Intel Pentium 4/Xeon and AMD Opteron/Athlon64, it is possible to perform all scalar
floating-point arithmetic using SSE/SSE2 instructions. In most cases, this is beneficial from a
performance standpoint.

The default on 32-bit Intel Pentium II/III (–tp p6, –tp piii, etc) or AMD AthlonXP/MP (–tp k7) is to use
x87 instructions for scalar floating-point arithmetic. The default on Intel Pentium 4/Xeon or Intel
EM64T running a 32-bit operating system (–tp p7), AMD Opteron/Athlon64 running a 32-bit operating
system (–tp k8-32), or AMD Opteron/Athlon64 or Intel EM64T processors running a 64-bit operating

Optimization & Parallelization

22

system (–tp k8-64 and –tp p7-64 respectively) is to use SSE/SSE2 instructions for scalar floating-point
arithmetic. The only way to override this default on AMD Opteron/Athlon64 or Intel EM64T processors
running a 64-bit operating system is to specify an older 32-bit target (for example –tp k7 or –tp piii).

Note that there can be significant arithmetic differences between calculations performed using x87
instructions versus SSE/SSE2. By default, all floating-point data is promoted to IEEE 80-bit format when
stored on the x87 floating-point stack, and all x87 operations are performed register-to-register in this
same format. Values are converted back to IEEE 32-bit or IEEE 64-bit when stored back to memory (for
REAL/float and DOUBLE PRECISION/double data respectively). The default precision of the x87 floating-
point stack can be reduced to IEEE 32-bit or IEEE 64-bit globally by compiling the main program with
the –pc {32 | 64} option to the PGI Workstation compilers, which is described in detail in Chapter 3,
“Command Line Options”. However, there is no way to ensure that operations performed in mixed
precision will match those produced on a traditional load-store RISC/UNIX system which implements
IEEE 64-bit and IEEE 32-bit registers and associated floating-point arithmetic instructions.

In contrast, arithmetic results produced on Intel Pentium 4/Xeon, AMD Opteron/Athlon64 or Intel
EM64T processors will usually closely match or be identical to those produced on a traditional RISC/
UNIX system if all scalar arithmetic is performed using SSE/SSE2 instructions. You should keep this in
mind when porting applications to and from systems which support both x87 and full SSE/SSE2
floating-point arithmetic. Many subtle issues can arise which affect your numerical results, sometimes
to several digits of accuracy.

Loop Unrolling using -Munroll

This optimization unrolls loops, executing multiple instances of the loop during each iteration. This
reduces branch overhead, and can improve execution speed by creating better opportunities for
instruction scheduling. A loop with a constant count may be completely unrolled or partially unrolled. A
loop with a non-constant count may also be unrolled. A candidate loop must be an innermost loop
containing one to four blocks of code. The following shows the use of the –Munroll option:

$ pgf95 -Munroll prog.f

The –Munroll option is included as part of –fast and –fastsse on all x86 and x64 targets. The loop
unroller expands the contents of a loop and reduces the number of times a loop is executed. Branching
overhead is reduced when a loop is unrolled two or more times, since each iteration of the unrolled loop
corresponds to two or more iterations of the original loop; the number of branch instructions executed is
proportionately reduced. When a loop is unrolled completely, the loop’s branch overhead is eliminated
altogether.

Loop Unrolling using -Munroll

23

Loop unrolling may be beneficial for the instruction scheduler. When a loop is completely unrolled or
unrolled two or more times, opportunities for improved scheduling may be presented. The code
generator can take advantage of more possibilities for instruction grouping or filling instruction delays
found within the loop. Examples 2-1 and 2-2 show the effect of code unrolling on a segment that
computes a dot product.

Example 2-1: Dot Product Code

REAL*4 A(100), B(100), Z

INTEGER I

DO I=1, 100

 Z = Z + A(i) * B(i)

END DO

END

Example 2-2: Unrolled Dot Product Code

REAL*4 A(100), B(100), Z

INTEGER I

DO I=1, 100, 2

 Z = Z + A(i) * B(i)

 Z = Z + A(i+1) * B(i+1)

END DO

END

Using the –Minfo option, the compiler informs you when a loop is being unrolled. For example, a
message indicating the line number, and the number of times the code is unrolled, similar to the
following will display when a loop is unrolled:

dot:

 5, Loop unrolled 5 times

Using the c:<m> and n:<m> sub-options to –Munroll, or using –Mnounroll, you can control whether
and how loops are unrolled on a file-by-file basis. Using directives or pragmas as specified in Chapter 7,
“Directives and Pragmas”, you can precisely control whether and how a given loop is unrolled. See
Chapter 3, “Command Line Options”, for a detailed description of the –Munroll option.

Optimization & Parallelization

24

Vectorization using -Mvect

The –Mvect option is included as part of –fastsse on all x86 and x64 targets. If your program contains
computationally intensive loops, the –Mvect option may be helpful. If in addition you specify –Minfo,
and your code contains loops that can be vectorized, the compiler reports relevant information on the
optimizations applied.

When a PGI compiler command is invoked with the –Mvect option, the vectorizer scans code searching
for loops that are candidates for high-level transformations such as loop distribution, loop interchange,
cache tiling, and idiom recognition (replacement of a recognizable code sequence, such as a reduction
loop, with optimized code sequences or function calls). When the vectorizer finds vectorization
opportunities, it internally rearranges or replaces sections of loops (the vectorizer changes the code
generated; your source code’s loops are not altered). In addition to performing these loop
transformations, the vectorizer produces extensive data dependence information for use by other phases
of compilation and detects opportunities to use vector or packed Streaming SIMD Extensions (SSE)
instructions on processors where these are supported.

The –Mvect option can speed up code which contains well-behaved countable loops which operate on
large REAL, REAL*4, REAL*8, INTEGER*4, COMPLEX or COMPLEX DOUBLE arrays in Fortran and their
C/C++ counterparts. However, it is possible that some codes will show a decrease in performance when
compiled with –Mvect due to the generation of conditionally executed code segments, inability to
determine data alignment, and other code generation factors. For this reason, it is recommended that
you check carefully whether particular program units or loops show improved performance when
compiled with this option enabled.

Vectorization Sub-options

The vectorizer performs high-level loop transformations on countable loops. A loop is countable if the
number of iterations is set only before loop execution and cannot be modified during loop execution.
Some of the vectorizer transformations can be controlled by arguments to the –Mvect command line
option. The following sections describe the arguments that affect the operation of the vectorizer. In
addition, some of these vectorizer operations can be controlled from within code using directives and
pragmas. For details on the use of directives and pragmas, refer to Chapter 7, “Directives and Pragmas” .

The vectorizer performs the following operations:

• Loop interchange

• Loop splitting

Vectorization using -Mvect

25

• Loop fusion

• Memory-hierarchy (cache tiling) optimizations

• Generation of SSE instructions on processors where these are supported

• Generation of prefetch instructions on processors where these are supported

• Loop iteration peeling to maximize vector alignment

• Alternate code generation

By default, –Mvect without any sub-options is equivalent to:

-Mvect=assoc,cachesize:262144

This enables the options for nested loop transformation and various other vectorizer options. These
defaults may vary depending on the target system.

Assoc Option

The option –Mvect=assoc instructs the vectorizer to perform associativity conversions that can change
the results of a computation due to roundoff error (–Mvect=noassoc disables this option). For example,
a typical optimization is to change one arithmetic operation to another arithmetic operation that is
mathematically correct, but can be computationally different and generate faster code. This option is
provided to enable or disable this transformation, since roundoff error for such associativity conversions
may produce unacceptable results.

Cachesize Option

The option –Mvect=cachesize:n instructs the vectorizer to tile nested loop operations assuming a data
cache size of n bytes. By default, the vectorizer attempts to tile nested loop operations, such as matrix
multiply, using multi-dimensional strip-mining techniques to maximize re-use of items in the data
cache.

SSE Option

The option –Mvect=sse instructs the vectorizer to automatically generate packed SSE, SSE2 (streaming
SIMD extensions) and prefetch instructions when vectorizable loops are encountered. SSE instructions,
first introduced on Pentium III and AthlonXP processors, operate on single-precision floating-point
data, and hence apply only to vectorizable loops that operate on single-precision floating-point data.

Optimization & Parallelization

26

SSE2 instructions, first introduced on Pentium 4, Xeon and Opteron processors, operate on double-
precision floating-point data. Prefetch instructions, first introduced on Pentium III and AthlonXP
processors, can be used to improve the performance of vectorizable loops that operate on either 32-bit or
64-bit floating-point data. See table P-2 for a concise list of processors that support SSE, SSE2 and
prefetch instructions.

Note

Programs units compiled with –Mvect=sse will not execute on Pentium, Pentium Pro,
Pentium II or first generation AMD Athlon processors. They will only execute correctly on
Pentium III, Pentium 4, Xeon, EM64T, AthlonXP, Athlon64 and Opteron systems running an
SSE-enabled operating system.

Prefetch Option

The option –Mvect=prefetch instructs the vectorizer to automatically generate prefetch instructions
when vectorizable loops are encountered, even in cases where SSE or SSE2 instructions are not
generated. Usually, explicit prefetching is not necessary on Pentium 4, Xeon and Opteron because these
processors support hardware prefetching; nonetheless, it sometimes can be worthwhile to experiment
with explicit prefetching. Prefetching can be controlled on a loop-by-loop level using prefetch directives,
which are described in detail in “Prefetch Directives” on page 194.

Note

Program units compiled with –Mvect=prefetch will not execute correctly on Pentium,
Pentium Pro, or Pentium II processors. They will execute correctly only on Pentium III,
Pentium 4, Xeon, EM64T, AthlonXP, Athlon64 or Opteron systems. In addition, the prefetchw
instruction is only supported on AthlonXP, Athlon64 or Opteron systems and can cause
instruction faults on non-AMD processors. For this reason, the PGI compilers do not generate
prefetchw instructions by default on any target.

In addition to these sub-options to –Mvect, several other sub-options are supported. See the description
of –Mvect in Chapter 3, “Command Line Options”, for a detailed description of all available sub-options.

Vectorization Example Using SSE/SSE2 Instructions

One of the most important vectorization options is –Mvect=sse. This section contains an example of the
use and potential effects of –Mvect=sse.

Vectorization using -Mvect

27

When the compiler switch –Mvect=sse is used, the vectorizer in the PGI Workstation compilers
automatically uses SSE and SSE2 instructions where possible when targeting processors where these are
supported. This capability is supported by all of the PGI Fortran, C and C++ compilers. See table P-2 for
a complete specification of which x86 and x64 processors support SSE and SSE2 instructions. Using –
Mvect=sse, performance improvements of up to two times over equivalent scalar code sequences are
possible.

In the program in Example 2-3, “Vector operation using SSE instructions”, the vectorizer recognizes the
vector operation in subroutine 'loop' when the compiler switch –Mvect=sse is used. This example shows
the compilation, informational messages, and runtime results using the SSE instructions on an AMD
Opteron processor-based system, along with issues that affect SSE performance.

First note that the arrays in Example 2-3 , “Vector operation using SSE instructions” are single-precision
and that the vector operation is done using a unit stride loop. Thus, this loop can potentially be
vectorized using SSE instructions on any processor that supports SSE or SSE2 instructions. SSE
operations can be used to operate on pairs of single-precision floating-point numbers, and do not apply
to double-precision floating-point numbers. SSE2 instructions can be used to operate on quads of single-
precision floating-point numbers or on pairs of double-precision floating-point numbers.

Loops vectorized using SSE or SSE2 instructions operate much more efficiently when processing vectors
that are aligned to a cache-line boundary. You can cause unconstrained data objects of size 16 bytes or
greater to be cache-aligned by compiling with the –Mcache_align switch. An unconstrained data object
is a data object that is not a common block member and not a member of an aggregate data structure.

Note

In order for stack-based local variables to be properly aligned, the main program or function
must be compiled with –Mcache_align.

The –Mcache_align switch has no effect on the alignment of Fortran allocatable or automatic arrays. If
you have arrays that are constrained, for example vectors that are members of Fortran common blocks,
you must specifically pad your data structures to ensure proper cache alignment; –Mcache_align causes
only the beginning address of each common block to be cache-aligned.

The following examples show results of compiling the example code with and without –Mvect=sse.

Optimization & Parallelization

28

Example 2-3: Vector operation using SSE instructions

 program vector_op

 parameter (N = 9999)

 real*4 x(n),y(n),z(n),w(n)

 do i = 1,n

 y(i) = i

 z(i) = 2*i

 w(i) = 4*i

 enddo

 do j = 1, 200000

 call loop(x,y,z,w,1.0e0,n)

 enddo

 print*,x(1),x(771),x(3618),x(6498),x(9999)

 end

 subroutine loop(a,b,c,d,s,n)

 integer i,n

 real*4 a(n),b(n),c(n),d(n),s

 do i = 1,n

 a(i) = b(i) + c(i) - s * d(i)

 enddo

 end

Assume the above program is compiled as follows:

 % pgf95 -fast -Minfo vadd.f

 vector_op:

 4, Loop unrolled 4 times

 loop:

 18, Loop unrolled 4 times

Following is the result if the generated executable is run and timed on a standalone AMD Opteron 2.2
Ghz system:

 % /bin/time a.out

 -1.000000 -771.000 -3618.000 -6498.00 -9999.00

 5.15user 0.00system 0:05.16 elapsed 99%CPU

Now, recompile with SSE vectorization enabled:

Vectorization using -Mvect

29

% pgf95 -fast –Mvect=sse -Minfo

vadd.f

vector_op:

 4, Unrolling inner loop 8 times

 Loop unrolled 7 times (completely unrolled)

loop:

 18, Generating vector sse code for inner loop

 Generated 3 prefetch instructions for this loop

Note the informational message indicating that the loop has been vectorized and SSE instructions have
been generated. The second part of the informational message notes that prefetch instructions have been
generated for 3 loads to minimize latency of transfers of data from main memory.

Executing again, you should see results similar to the following:

 % /bin/time a.out

 -1.000000 -771.000 -3618.00 -6498.00 -9999.0

 3.55user 0.00system 0:03.56elapsed 99%CPU

The result is a speed-up of 45% over the equivalent scalar (i.e. non-SSE) version of the program. Speed-
up realized by a given loop or program can vary widely based on a number of factors:

• Performance improvement using vector SSE or SSE2 instructions is most effective when the vectors
of data are resident in the data cache.

• If data is aligned properly, performance will be better in general than when using vector SSE
operations on unaligned data.

• If the compiler can guarantee that data is aligned properly, even more efficient sequences of SSE
instructions can be generated.

• SSE2 vector instructions can operate on 4 single-precision elements concurrently, but only 2
double-precision elements. As a result, the efficiency of loops that operate on single-precision data
can be higher.

Note

Compiling with –Mvect=sse can result in numerical differences from the executables
generated with less optimization. Certain vectorizable operations, for example dot products,
are sensitive to order of operations and the associative transformations necessary to enable
vectorization (or parallelization).

Optimization & Parallelization

30

Auto-Parallelization using -Mconcur

With the -Mconcur option the compiler scans code searching for loops that are candidates for auto-
parallelization. –Mconcur must be used at both compile-time and link-time. When the parallelizer finds
opportunities for auto-parallelization, it parallelizes loops and you are informed of the line or loop
being parallelized if the -Minfo option is present on the compile line. See Chapter 3, “Command Line
Options”, for a complete specification of -Mconcur.

A loop is considered parallelizable if doesn't contain any cross-iteration data dependencies. Cross-
iteration dependencies from reductions and expandable scalars are excluded from consideration,
enabling more loops to be parallelizable. In general, loops with calls are not parallelized due to
unknown side effects. Also, loops with low trip counts are not parallelized since the overhead in setting
up and starting a parallel loop will likely outweigh the potential benefits. In addition, the default is to
not parallelize innermost loops, since these often by definition are vectorizable using SSE instructions
and it is seldom profitable to both vectorize and parallelize the same loop, especially on multi-core
processors. Compiler switches and directives are available to let you override most of these restrictions
on auto-parallelization.

Auto-parallelization Sub-options

The parallelizer performs various operations that can be controlled by arguments to the –Mconcur
command line option. The following sections describe these arguments that affect the operation of the
vectorizer. In addition, these vectorizer operations can be controlled from within code using directives
and pragmas. For details on the use of directives and pragmas, refer to Chapter 7, “Directives and
Pragmas”.

By default, –Mconcur without any sub-options is equivalent to:

-Mconcur=dist:block

This enables parallelization of loops with blocked iteration allocation across the available threads of
execution. These defaults may vary depending on the target system.

Auto-Parallelization using -Mconcur

31

Altcode Option

The option –Mconcur=altcode instructs the parallelizer to generate alternate serial code for parallelized
loops. If altcode is specified without arguments, the parallelizer determines an appropriate cutoff length
and generates serial code to be executed whenever the loop count is less than or equal to that length. If
altcode:n is specified, the serial altcode is executed whenever the loop count is less than or equal to n. If
noaltcode is specified, no alternate serial code is generated.

Dist Option

The option –Mconcur=dist:{block|cyclic} option specifies whether to assign loop iterations to the
available threads in blocks or in a cyclic (round-robin) fashion. Block distribution is the default. If
cyclic is specified, iterations are allocated to processors cyclically. That is, processor 0 performs iterations
0, 3, 6, etc.; processor 1 performs iterations 1, 4, 7, etc.; and processor 2 performs iterations 2, 5, 8, etc.

Cncall Option

The option –Mconcur=cncall specifies that it is safe to parallelize loops that contain subroutine or
function calls. By default, such loops are excluded from consideration for auto-parallelization. Also, no
minimum loop count threshold must be satisfied before parallelization will occur, and last values of
scalars are assumed to be safe.

The environment variable NCPUS is checked at runtime for a parallel program. If NCPUS is set to 1, a
parallel program runs serially, but will use the parallel routines generated during compilation. If NCPUS
is set to a value greater than 1, the specified number of processors will be used to execute the program.
Setting NCPUS to a value exceeding the number of physical processors can produce inefficient execution.
Executing a program on multiple processors in an environment where some of the processors are being
time-shared with another executing job can also result in inefficient execution.

As with the vectorizer, the -Mconcur option can speed up code if it contains well-behaved countable loops
and/or computationally intensive nested loops that operate on arrays. However, it is possible that some
codes will show a decrease in performance on multi-processor systems when compiled with -Mconcur
due to parallelization overheads, memory bandwidth limitations in the target system, false-sharing of
cache lines, or other architectural or code-generation factors. For this reason, it is recommended that
you check carefully whether particular program units or loops show improved performance when
compiled using this option.

Optimization & Parallelization

32

If the compiler is not able to successfully auto-parallelize your application, you should refer to Chapter
5, “OpenMP Directives for Fortran”, or Chapter 6, “OpenMP Pragmas for C and C++”, to see if insertion
of explicit parallelization directives or pragmas and use of the –mp compiler option enables the
application to run in parallel.

Loops That Fail to Parallelize

In spite of the sophisticated analysis and transformations performed by the compiler, programmers will
often note loops that are seemingly parallel, but are not parallelized. In this subsection, we’ll look at
some examples of common situations where parallelization does not occur.

Innermost Loops

As noted earlier in this chapter, the PGI compilers will not parallelize innermost loops by default,
because it is usually not profitable. You can override this default using the command-line option –
Mconcur=innermost.

Timing Loops

Often, loops will occur in programs that are similar to timing loops. The outer loop in the following
example is one such loop.

do 1 j = 1, 2

 do 1 i = 1, n

 a(i) = b(i) + c(i)

1continue

The outer loop above is not parallelized because the compiler detects a cross-iteration dependence in the
assignment to a(i). Suppose the outer loop were parallelized. Then both processors would
simultaneously attempt to make assignments into a(1:n). Now in general the values computed by each
processor for a(1:n) will differ, so that simultaneous assignment into a(1:n) will produce values
different from sequential execution of the loops.

In this example, values computed for a(1:n) don’t depend on j, so that simultaneous assignment by both
processors will not yield incorrect results. However, it is beyond the scope of the compilers’ dependence
analysis to determine that values computed in one iteration of a loop don’t differ from values computed
in another iteration. So the worst case is assumed, and different iterations of the outer loop are assumed
to compute different values for a(1:n). Is this assumption too pessimistic? If j doesn’t occur anywhere

Auto-Parallelization using -Mconcur

33

within a loop, the loop exists only to cause some delay, most probably to improve timing resolution. And,
it’s not usually valid to parallelize timing loops; to do so would distort the timing information for the
inner loops.

Scalars

Quite often, scalars will inhibit parallelization of non-innermost loops. There are two separate cases that
present problems. In the first case, scalars appear to be expandable, but appear in non-innermost loops,
as in the following example.

do 1 j = 1, n

 x = b(j)

 do 1 i = 1, n

 a(i,j) = x + c(i,j)

1 continue

There are a number of technical problems to be resolved in order to recognize expandable scalars in
non-innermost loops. Until this generalization occurs, scalars like x above will inhibit parallelization of
loops in which they are assigned. In the following example, scalar k is not expandable, and it is not an
accumulator for a reduction.

 k = 1

 do 3 i = 1, n

 do 1 j = 1, n

1 a(j,i) = b(k) * x

 k = i

2if (i .gt. n/2) k = n - (i - n/2)

3 continue

If the outer loop is parallelized, conflicting values will be stored into k by the various processors. The
variable k cannot be made local to each processor because the value of k must remain coherent among
the processors. It is possible the loop could be parallelized if all assignments to k are placed in critical
sections. However, it is not clear where critical sections should be introduced because in general the
value for k could depend on another scalar (or on k itself), and code to obtain the value of other scalars
must reside in the same critical section.

In the example above, the assignment to k within a conditional at label 2 prevents k from being
recognized as an induction variable. If the conditional statement at label 2 is removed, k would be an
induction variable whose value varies linearly with j, and the loop could be parallelized.

Optimization & Parallelization

34

Scalar Last Values

During parallelization, scalars within loops often need to be privatized; that is, each execution thread
will have its own independent copy of the scalar. Problems can arise if a privatized scalar is accessed
outside the loop. For example, consider the following loop:

for (i = 1; i<N; i++){

 if(f(x[i]) > 5.0) t = x[i];

}

v = t;

The value of t may not be computed on the last iteration of the loop. Normally, if a scalar is assigned
within a loop and used following the loop, the PGI compilers save the last value of the scalar. However, if
the loop is parallelized and the scalar is not assigned on every iteration, it may be difficult (without
resorting to costly critical sections) to determine on what iteration t is last assigned. Analysis allows the
compiler to determine that a scalar is assigned on each iteration and hence that the loop is safe to
parallelize if the scalar is used later.

For example:

for (i = 1; i < n;

i++){

 if (x[i] > 0.0) {

 t = 2.0;

 }

 else {

 t = 3.0;

 y[i] = ...t;

 }

}

v = t

where t is assigned on every iteration of the loop. However, there are cases where a scalar may be
privatizable, but if it is used after the loop, it is unsafe to parallelize. Examine this loop:

 for (i = 1; i < N;

i++){

 if(x[i] > 0.0){

 t = x[i];

...

...

Processor-Specific Optimization and the Unified Binary

35

y[i] = ...t;

 }

 }

 v = t;

where each use of t within the loop is reached by a definition from the same iteration. Here t is
privatizable, but the use of t outside the loop may yield incorrect results since the compiler may not be
able to detect on which iteration of the parallelized loop t is last assigned. The compiler detects the above
cases. Where a scalar is used after the loop but is not defined on every iteration of the loop,
parallelization will not occur.

When the programmer knows that the scalar is assigned on the last iteration of the loop, the
programmer may use a directive or pragma to let the compiler know the loop is safe to parallelize. The
Fortran directive which tells the compiler that for a given loop the last value computed for all scalars
make it safe to parallelize the loop is:

cpgi$l safe_lastval

In addition, a command-line option, –Msafe_lastval, provides this information for all loops within the
routines being compiled (essentially providing global scope).

Processor-Specific Optimization and the Unified Binary

Different processors have subtle and not-so-subtle differences in hardware features such as instruction
sets and cache size. The compilers make architecture-specific decisions about such things as instruction
selection, instruction scheduling, and vectorization. By default, the PGI compilers produce code
specifically targeted to the type of processor on which the compilation is performed. In particular, the
default is to use all supported instructions wherever possible when compiling on a given system. As a
result, executables created on a given system may not be useable on previous generation systems (for
example, executables created on a Pentium 4 may fail to execute on a Pentium III or Pentium II). The –
tp option can be used to control this behavior by specifying the processor or processors with which the
generated code is compatible. See “-tp <target> [,target...]” on page 111 for more information.

The 64-bit PGI compilers have the capability of generating unified binaries, which provide a low-
overhead means for generating a single executable that is compatibie with and gets good performance
on more than one hardware platform.

Executable size is automatically controlled via unified binary culling. Only those functions and
subroutines where the target affects the generated code will have unique binary images, resulting in a
code-size savings of 10-90% compared to generating full copies of code for each target.

Optimization & Parallelization

36

Programs can use PGI Unified Binary even if all of the object files and libraries are not compiled as
unified binaries. PGI Unified Binary object files can be use to create programs or libraries like any other
object file. No special start up code is needed; support is linked in from the PGI libraries.

The -Mpfi option disables generation of PGI Unified Binary. Instead, the default target auto-detect rules
for the host are used to select the target processor.

Inter-Procedural Analysis and Optimization using –Mipa

The PGI Fortran, C and C++ compilers use interprocedural analysis (IPA) that results in minimal
changes to makefiles and the standard edit-build-run application development cycle. Other than adding
–Mipa to the command line, no other changes are required. For reference and background, the process
of building a program without IPA is described below, followed by the minor modifications required to
use IPA with the PGI compilers. While the PGCC compiler is used here to show how IPA works, similar
capabilities apply to each of the PGI Fortran, C and C++ compilers. Note that the examples use Linux
file naming conventions. On Windows, ‘.o’ files would be ‘.obj’ files, and ‘a.out’ files would be ‘.exe’ files.

Building a Program Without IPA – Single Step

Using the PGCC command-level compiler driver, three (for example) source files can be compiled and
linked into a single executable with one command:

% pgcc -o a.out file1.c

file2.c file3.c

In actuality, the pgcc driver executes several steps to produce the assembly code and object files
corresponding to each source file, and subsequently to link the object files together into a single
executable file. Thus, the command above is roughly equivalent to the following commands performed
individually:

% pgcc -S -o file1.s file1.c

% as -o file1.o file1.s

% pgcc -S -o file2.s file2.c

% as -o file2.o file2.s

% pgcc -S -o file3.s file3.c

% as -o file3.o file3.s

% pgcc -o a.out file1.o file2.o file3.o

If any of the three source files is edited, the executable can be rebuilt with the same command line:

Inter-Procedural Analysis and Optimization using –Mipa

37

% pgcc -o a.out file1.c

file2.c file3.c

This always works as intended, but has the side-effect of recompiling all of the source files, even if only
one has changed. For applications with a large number of source files, this can be time-consuming and
inefficient.

Building a Program Without IPA - Several Steps

It is also possible to use individual pgcc commands to compile each source file into a corresponding
object file, and one to link the resulting object files into an executable:

% pgcc -c file1.c

% pgcc -c file2.c

% pgcc -c file3.c

% pgcc -o a.out file1.o file2.o file3.o

The pgcc driver invokes the compiler and assembler as required to process each source file, and invokes
the linker for the final link command. If you modify one of the source files, the executable can be rebuilt
by compiling just that file and then relinking:

% pgcc -c file1.c

% pgcc -o a.out file1.o file2.o file3.o

Building a Program Without IPA Using Make

The program compilation and linking process can be simplified greatly using the make utility on
systems where it is supported. Using a file makefile containing the following lines:

a.out: file1.o file2.o file3.o

 pgcc $(OPT) -o a.out file1.o file2.o file3.o

file1.o: file1.c

 pgcc $(OPT) -c file1.c

file2.o: file2.c

 pgcc $(OPT) -c file2.c

file3.o: file3.c

 pgcc $(OPT) -c file3.c

It is possible to type a single make command:

% make

Optimization & Parallelization

38

The make utility determines which object files are out of date with respect to their corresponding source
files, and invokes the compiler to recompile only those source files and to relink the executable. If you
subsequently edit one or more source files, the executable can be rebuilt with the minimum number of
recompilations using the same single make command.

Building a Program with IPA

Interprocedural analysis and optimization (IPA) by the PGI compilers is designed to alter the standard
and make utility command-level interfaces outlined above as little as possible. IPA occurs in three
phases:

• Collection: Create a summary of each function or procedure, collecting the useful information for
interprocedural optimizations. This is done during the compile step if the –Mipa switch is present
on the command line; summary information is collected and stored in the object file.

• Propagation: Processing all the object files to propagate the interprocedural summary
information across function and file boundaries. This is done during the link step, when all the
object files are combined, if the –Mipa switch is present on the link command line.

• Recompile/Optimization: Each of the object files is recompiled with the propagated
interprocedural information, producing a specialized object file. This is also done during the link
step when the –Mipa switch is present on the link command line.

When linking with –Mipa, the PGI compilers automatically regenerate IPA-optimized versions of each
object file, essentially recompiling each file. If there are IPA-optimized objects from a previous build, the
compilers will minimize the recompile time by reusing those objects if they are still valid. They will still
be valid if the IPA-optimized object is newer than the original object file, and the propagated IPA
information for that file has not changed since it was optimized.

After each object file has been recompiled, the regular linker is invoked to build the application with the
IPA-optimized object files. The IPA-optimized object files are saved in the same directory as the original
object files, for use in subsequent program builds.

Building a Program with IPA - Single Step

By adding the –Mipa command line switch, several source files can be compiled and linked with
interprocedural optimizations with one command:

% pgcc -Mipa=fast

-o a.out file1.c file2.c file3.c

Inter-Procedural Analysis and Optimization using –Mipa

39

Just like compiling without –Mipa, the driver executes several steps to produce the assembly and object
files, to create the executable:

% pgcc -Mipa=fast

-S -o file1.s file1.c

% as -o file1.o file1.s

% pgcc -Mipa=fast -S -o file2.s file2.c

% as -o file2.o file2.s

% pgcc -Mipa=fast -S -o file3.s file3.c

% as -o file3.o file3.s

% pgcc -Mipa=fast -o a.out file1.o file2.o file3.o

In the last step, an IPA linker is invoked to read all the IPA summary information and perform the
interprocedural propagation. The IPA linker reinvokes the compiler on each of the object files to
recompile them with interprocedural information. This creates three new objects with mangled names:

file1_ipa5_a.out.o,

file2_ipa5_a.out.o, file2_ipa5_a.out.o

The system linker is then invoked to link these IPA-optimized objects into the final executable. Later, if
one of the three source files is edited, the executable can be rebuilt with the same command line:

% pgcc -Mipa=fast

-o a.out file1.c file2.c file3.c

This will work, but again has the side-effect of compiling each source file, and recompiling each object
file at link time.

Building a Program with IPA - Several Steps

Just by adding the –Mipa command-line switch, it is possible to use individual pgcc commands to
compile each source file, followed by a command to link the resulting object files into an executable:

% pgcc -Mipa=fast

-c file1.c

% pgcc -Mipa=fast -c file2.c

% pgcc -Mipa=fast -c file3.c

% pgcc -Mipa=fast -o a.out file1.o file2.o file3.o

The pgcc driver invokes the compiler and assembler as required to process each source file, and invokes
the IPA linker for the final link command. If you modify one of the source files, the executable can be
rebuilt by compiling just that file and then relinking:

Optimization & Parallelization

40

% pgcc -c file1.c

% pgcc -o a.out file1.o file2.o file3.o

When the IPA linker is invoked, it will determine that the IPA-optimized object for file1.o
(file1_ipa5_a.out.o) is stale, since it is older than the object file1.o, and hence will need to be rebuilt,
and will reinvoke the compiler to generate it. In addition, depending on the nature of the changes to the
source file file1.c, the interprocedural optimizations previously performed for file2 and file3 may now be
inaccurate. For instance, IPA may have propagated a constant argument value in a call from a function
in file1.c to a function in file2.c; if the value of the argument has changed, any optimizations based on
that constant value are invalid. The IPA linker will determine which, if any, of any previously created
IPA-optimized objects need to be regenerated, and will reinvoke the compiler as appropriate to
regenerate them. Only those objects that are stale or which have new or different IPA information will be
regenerated, which saves on compile time.

Building a Program with IPA Using Make

As in the previous two sections, programs can be built with IPA using the make utility, just by adding the
–Mipa command-line switch:

OPT=-Mipa=fast

a.out: file1.o file2.o file3.o

 pgcc $(OPT) -o a.out file1.o file2.o file3.o

file1.o: file1.c

 pgcc $(OPT) -c file1.c

file2.o: file2.c

 pgcc $(OPT) -c file2.c

file3.o: file3.c

 pgcc $(OPT) -c file3.c

The single command:

% make

will invoke the compiler to generate any object files that are out-of-date, then invoke pgcc to link the
objects into the executable; at link time, pgcc will call the IPA linker to regenerate any stale or invalid
IPA-optimized objects.

Inter-Procedural Analysis and Optimization using –Mipa

41

Questions about IPA

Why is the object file so large?

An object file created with –Mipa contains several additional sections. One is the summary information
used to drive the interprocedural analysis. In addition, the object file contains the compiler internal
representation of the source file, so the file can be recompiled at link time with interprocedural
optimizations. There may be additional information when inlining is enabled. The total size of the
object file may be 5-10 times its original size. The extra sections are not added to the final executable.

What if I compile with –Mipa and link without –Mipa?

The PGI compilers generate a legal object file, even when the source file is compiled with –Mipa. If you
compile with –Mipa and link without –Mipa, the linker is invoked on the original object files. A legal
executable will be generated; while this will not have the benefit of interprocedural optimizations, any
other optimizations will apply.

What if I compile without –Mipa and link with –Mipa?

At link time, the IPA linker must have summary information about all the functions or routines used in
the program. This information is created only when a file is compiled with –Mipa. If you compile a file
without –Mipa and then try to get interprocedural optimizations by linking with –Mipa, the IPA linker
will issue a message that some routines have no IPA summary information, and will proceed to run the
system linker using the original object files. If some files were compiled with –Mipa and others were not,
it will determine the safest approximation of the IPA summary information for those files not compiled
with –Mipa, and use that to recompile the other files using interprocedural optimizations.

Can I build multiple applications in the same directory with –Mipa?

Yes. Suppose you have three source files: main1.c, main2.c, sub.c, where sub.c is shared between the two
applications. When you build the first application with –Mipa:

% pgcc

-o app1 main1.c sub.c

the IPA linker will create two IPA-optimized object files:

main1_ipa4_app1.oo sub_ipa4_app1.oo

and use them to build the first application. When you build the second application:

% pgcc -o app2 main2.c sub.c

Optimization & Parallelization

42

the IPA linker will create two more IPA-optimized object files:

main2_ipa4_app2.oo

sub_ipa4_app2.oo

Note there are now three object files for sub.c: the original sub.o, and two IPA-optimized objects, one for
each application in which it appears.

How is the mangled name for the IPA-optimized object files generated?

The mangled name has '_ipa' appended, followed by the decimal number of the length of the executable
file name, followed by an underscore and the executable file name itself. The suffix is changed to .oo (on
Linux) or .oobj (on Windows) so linking *.o or *.obj does not pull in the IPA-optimized objects. If the IPA
linker determines that the file would not benefit from any interprocedural optimizations, it does not
have to recompile the file at link time, and will use the original object.

Profile-Feedback Optimization using –Mpfi/–Mpfo

The PGI compilers support many common profile-feedback optimizations, including semi-invariant
value optimizations and block placement. These are performed under control of the –Mpfi/–Mpfo
command-line options.

When invoked with the –Mpfi option, the PGI compilers instrument the generated executable for
collection of profile and data feedback information. This information can be used in subsequent
compilations that include the –Mpfo optimization option. –Mpfi must be used at both compile-time and
link-time. Programs compiled with –Mpfi include extra code to collect run-time statistics and write
them out to a trace file. When the resulting program is executed, a profile feedback trace file pgfi.out is
generated in the current working directory.

Note

Programs compiled and linked with –Mpfi will execute more slowly due to the
instrumentation and data collection overhead. You should use executables compiled with –
Mpfi only for execution of training runs.

When invoked with the –Mpfo option, the PGI compilers use data from a pgfi.out profile feedback
tracefile to enable or enhance certain performance optimizations. Use of this option requires the
presence of a pgfi.out trace file in the current working directory.

Default Optimization Levels

43

Default Optimization Levels

The following table shows the interaction between the –O, –g and –M<opt> options. In the table, level
can be 0, 1, 2 or 3, and <opt> can be vect, unroll or ipa. The default optimization level is dependent
upon these command-line options.

Table 2-1: Optimization and –O, –g and –M<opt> Options

Unoptimized code compiled using the option –O0 can be significantly slower than code generated at
other optimization levels. The –M<opt> option, where <opt> is vect, concur, unroll or ipa, sets the
optimization level to level-2 if no –O options are supplied. The –fast and –fastsse options set the
optimization level to a target-dependent optimization level if no –O options are supplied.

Local Optimization Using Directives and Pragmas

Command-line options let you specify optimizations for an entire source file. Directives supplied within
a Fortran source file, and pragmas supplied within a C or C++ source file, provide information to the
compiler and alter the effects of certain command-line options or default behavior of the compiler
(many directives have a corresponding command-line option).

While a command line option affects the entire source file that is being compiled, directives and
pragmas let you do the following:

Optimize
Option

Debug
Option

–M<opt>
Option

Optimization
Level

none none none 1

none none –M<opt> 2

none –g none 0

–O none or –g none 2

–Olevel none or –g none level

–Olevel <= 2 none or –g –M<opt> 2

–O3 none or –g none 3

Optimization & Parallelization

44

• Apply, or disable, the effects of a particular command-line option to selected subprograms or to
selected loops in the source file (for example, an optimization).

• Globally override command-line options.

• Tune selected routines or loops based on your knowledge or on information obtained through
profiling.

Chapter 7, “Directives and Pragmas” provides details on how to add directives and pragmas to your
source files.

Execution Timing and Instruction Counting

As this chapter shows, once you have a program that compiles, executes and gives correct results, you
may optimize your code for execution efficiency. Selecting the correct optimization level requires some
thought and may require that you compare several optimization levels before arriving at the best
solution. To compare optimization levels, you need to measure the execution time for your program.
There are several approaches you can take for timing execution. You can use shell commands that
provide execution time statistics, you can include function calls in your code that provides timing
information, or you can profile sections of code. Timing functions available with the PGI compilers
include 3F timing routines, the SECNDS pre-declared function in PGF77 or PGF95, or the
SYSTEM_CLOCK or CPU_CLOCK intrinsics in PGF95 or PGHPF. In general, when timing a program one
should try to eliminate or reduce the amount of system level activities such as program loading, I/O and
task switching.

The following example shows a fragment that indicates how to use SYSTEM_CLOCK effectively within
either an HPF or F90/F95 program unit.

Example 2-4: Using SYSTEM_CLOCK

 . . .

 integer :: nprocs, hz, clock0, clock1

 real :: time

 integer, allocatable :: t(:)

!hpf$ distribute t(cyclic)

#if defined (HPF)

 allocate (t(number_of_processors()))

#elif defined (_OPENMP)

 allocate (t(OMP_GET_NUM_THREADS()))

#else

Portability of Multi-Threaded Programs on Linux

45

 allocate (t(1))

#endif

 call system_clock (count_rate=hz)

!

 call system_clock(count=clock0)

 < do work>

 call system_clock(count=clock1)

!

 t = (clock1 - clock0)

 time = real (sum(t)) / (real(hz) * size(t))

 . . .

Portability of Multi-Threaded Programs on Linux

PGI has created two libraries - libpgbind and libnuma - to handle the variations between various
implementations of Linux.

Some older versions of Linux are lacking certain features that support multi-processor and multi-core
systems, in particular, the system call 'sched_setaffinity' and the numa library libnuma. The PGI run-
time library uses these features to implement some -Mconcur and -mp operations.

These variations have led to the creation of two PGI libraries, libpgbind and libnuma. These libraries are
used on all 32-bit and 64-bit Linux systems. These libraries are not needed on Windows.

When a program is linked with the system libnuma library, the program depends on the libnuma library
in order to run. On systems without a system libnuma library, the PGI version of libnuma provides the
required stubs so that the program links and executes properly.

If the program is linked with libpgbind and libnuma, the differences between systems is masked by the
different versions of libpgbind and libnuma. In particular, PGI provides two versions of libpgbind - one
for systems with working support for sched_setaffinity and another for systems that do not.

When a program is deployed to the target system, the proper set of libraries, real or stub, should be
deployed with the program.

This facility requires that the program be dynamically linked with libpgbind and libnuma.

libpgbind

On some versions of Linux, the system call sched_setaffinity does not exist or does not work. The library
libpgbind is used to work around this problem.

Optimization & Parallelization

46

During installation, a small test program is compiled, linked, and executed. If the test program
compiles, links, and executes successfully, the installed version of libpgbind calls the system
sched_setaffinity, otherwise the stub version is installed.

libnuma

Not all systems have libnuma. Typically, only numa systems will have this library. PGI supplies a stub
version of libnuma which satisfies the calls from the PGI runtime to libnuma. Note that libnuma is a
shared library that is linked dynamically at runtime.

The reason to have a numa library on all systems is to allow multi-threaded programs (e.g. compiled
with –mp or –Mconcur) to be compiled, linked, and executed without regard to whether the host or
target systems has a numa library. When the numa library is not available, a multi-threaded program
still runs because the calls to the numa library are satisfied by the PGI stub library.

During installation, the installation procedure checks for the existence of a real libnuma amoung the
system libraries. If the real library is not found, the PGI stub version is substituted.

47

3 Command Line Options
This chapter describes the syntax and operation of each compiler option. The options are arranged in
alphabetical order. On a command-line, options need to be preceded by a hyphen (-). If the compiler
does not recognize an option, it passes the option to the linker.

This chapter uses the following notation:

[item] Square brackets indicate that the enclosed item is optional.

{item | item} Braces indicate that you must select one and only one of the enclosed
items. A vertical bar (|) separates the choices.

... Horizontal ellipses indicate that zero or more instances of the preceding
item are valid.

NOTE

Some options do not allow a space between the option and its argument or within an
argument. This fact is noted in the syntax section of the respective option.

Command Line Options

48

Table 3-1: Generic PGI Compiler Options

Option Description

-# Display invocation information.

-### Show but do not execute the driver commands (same as –
dryrun).

–-byteswapio (Fortran only) Swap bytes from big-endian to little-endian or vice
versa on input/output of unformatted data

-C Instrument the generated executable to perform array bounds
checking at runtime.

-c Stops after the assembly phase and saves the object code in file-
name.o.

-D<args> Defines a preprocessor macro.

-d<arg> Print additional information from the preprocessor.

-dryrun Show but do not execute driver commands.

-E Stops after the preprocessing phase and displays the preprocessed
file on the standard output.

-F Stops after the preprocessing phase and saves the preprocessed
file in filename.f (this option is only valid for the PGI Fortran
compilers).

-nfast Generally optimal set of flags for the target.

-fastsse Generally optimal set of flags for targets that include SSE/SSE2
capability.

---flagcheck Simply return zero status if flags are correct.

-flags Display valid driver options.

-fpic (Linux only) Generate position-independent code.

-fPIC (Linux only) Equivalent to -fpic.

49

-g Includes debugging information in the object module.

-g77libs (Linux only) Allow object files generated by g77 to be linked into
PGI main programs.

-gopt Includes debugging information in the object module, but forces
assembly code generation identical to that obtained when is not
present on the command line.

-help Display driver help message.

-I<dirname> Adds a directory to the search path for #include files.

-i2, -i4 and -i8 Treat INTEGER variables as 2 bytes.

-i2, -i4 and -i8 Treat INTEGER variables as 4 bytes.

-i2, -i4 and -i8 Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits
for INTEGER*8 operations.

-K<flag> Requests special compilation semantics with regard to conform-
ance to IEEE 754.

--keeplnk If the compiler generates a temporary indirect file for a long
linker command, preserves the temporary file instead of deleting
it.

-L<dirname> Specifies a library directory.

-I<libname> Loads a library.

-M<pgflag> Selects variations for code generation and optimization.

–m Displays a link map on the standard output.

-mcmodel=medium (-tp k8-64 and –tp p7-64 targets only) Generate code which sup-
ports the medium memory model in the linux86-64 environ-
ment.

-module <moduledir> (F90/F95/HPF only) Save/search for module files in directory
<moduledir>.

Option Description

Command Line Options

50

-mp[=align,[no]numa] Interpret and process user-inserted shared-memory parallel pro-
gramming directives (see Chapters 5 and 6).

-nfast Generally optimal set of flags for the target. Doesn’t use SSE.

-O<level> Specifies code optimization level where <level> is 0, 1, 2, 3, or 4.

-o Names the object file.

-pc <val> (–tp px/p5/p6/piii targets only) Set precision globablly for x87
floating-point calculations; must be used when compiling the
main program. <val> may be one of 32, 64 or 80.

-pg Instrument the generated executable to produce a gprof-style
gmon.out sample-based profiling trace file (-qp is also supported,
and is equivalent).

-pgf77libs Append PGF77 runtime libraries to the link line.

–pgf90libs Append PGF90/PGF95 runtime libraries to the link line.

-Q Selects variations for compiler steps.

-R<directory> (Linux only) Passed to the Linker. Hard code <directory> into the
search path for shared object files.

–r Creates a relocatable object file.

-r4 and -r8 Interpret DOUBLE PRECISION variables as REAL.

-r4 and -r8 Interpret REAL variables as DOUBLE PRECISION.

-rc file Specifies the name of the driver's startup file.

-S Stops after the compiling phase and saves the assembly–language
code in filename.s.

–s Strips the symbol-table information from the object file.

-shared (Linux only) Passed to the linker. Instructs the linker to generate
a shared object file. Implies –fpic.

Option Description

51

There are a large number of compiler options specific to the PGCC and PGC++ compilers, especially
PGC++. The next table lists several of these options, but is not exhaustive. For a complete list of
available options, including an exhaustive list of PGC++ options, use the –help command-line option.
For further detail on a given option, use –help and specify the option explicitly.

-show Display driver's configuration parameters after startup.

-soname Do not print warning messages.

-soname Pass the soname option and its argument to the linker.

-time Print execution times for the various compilation steps.

-tp <target> [,target...] Specify the type(s) of the target processor(s).

-U<symbol> Undefine a preprocessor macro.

–u<symbol> Initializes the symbol table with <symbol>, which is undefined
for the linker. An undefined symbol triggers loading of the first
member of an archive library.

-V[release_number] Displays the version messages and other information, or allows
invocation of a version of the compiler other than the default.

-v Displays the compiler, assembler, and linker phase invocations.

-W Passes arguments to a specific phase.

-w Do not print warning messages.

Option Description

Command Line Options

52

Table 3-2: C and C++ -specific Compiler Options

Option Description

-A (pgcpp only) Accept proposed ANSI C++.

--[no_]alternative_tokens (pgcpp only) Enable/disable recognition of alternative
tokens. These are tokens that make it possible to write
C++ without the use of the , , [,], #, &, and ^ and
characters. The alternative tokens include the operator
keywords (e.g., and, bitand, etc.) and digraphs. The
default is -–no_alternative_tokens.

-B Allow C++ comments (using //) in C source.

-b (pgcpp only) Compile with cfront 2.1 compatibility.
This accepts constructs and a version of C++ that is not
part of the language definition but is accepted by cfront.
EDG option.

-b3 (pgcpp only) Compile with cfront 3.0 compatibility. See
-b above.

--[no_]bool (pgcpp only) Enable or disable recognition of bool. The
default value is ––bool.

––[no]??? Do/don’t compile with math subroutine builtin support,
which causes selected math library routines to be
inlined. The default is ––builtin.

--cfront_2.1 (pgcpp only) Enable compilation of C++ with compati-
bility with cfront version 2.1.

--cfront_3.0 (pgcpp only) Enable compilation of C++ with compati-
bility with cfront version 3.0.

--create_pch filename (pgcpp only) Create a precompiled header file with the
name filename.

--dependencies (see -M) (pgcpp only) Print makefile dependencies to stdout.

53

--dependencies_to_file filename (pgcpp only) Print makefile dependencies to file file-
name.

--diag_error tag (pgcpp only) Override the normal error severity of the
specified diagnostic messages.

--diag_remark tag (pgcpp only) Override the normal error severity of the
specified diagnostic messages.

--diag_suppress tag (pgcpp only) Override the normal error severity of the
specified diagnostic messages.

--diag_warning tag (pgcpp only) Override the normal error severity of the
specified diagnostic messages.

--display_error_number (pgcpp only) Display the error message number in any
diagnostic messages that are generated.

–e<number> (pgcpp only) Set the C++ front-end error limit to the
specified <number>.

--[no_]exceptions (pgcpp only) Disable/enable exception handling sup-
port. The default is ––exceptions

––gnu_extensions (pgcpp only) Allow GNU extensions like “include next”
which are required to compile Linux system header
files.

--[no]llalign (pgcpp only) Do/don’t align long long integers on inte-
ger boundaries. The default is ––llalign.

-M Generate make dependence lists.

-MD Generate make dependence lists.

-MD,filename (pgcpp only) Generate make dependence lists and print
them to file filename.

--optk_allow_dollar_in_id_chars (pgcpp only) Accept dollar signs in identifiers.

Option Description

Command Line Options

54

--pch (pgcpp only) Automatically use and/or create a pre-
compiled header file.

--pch_dir directoryname (pgcpp only) The directory dirname in which to search
for and/or create a precompiled header file.

--[no_]pch_messages (pgcpp only) Enable/ disable the display of a message
indicating that a precompiled header file was created or
used.

+p (pgcpp only) Disallow all anachronistic constructs.
cfront option

-P Stops after the preprocessing phase and saves the pre-
processed file in filename.i.

--preinclude=<filename> (pgcpp only) Specify file to be included at the beginning
of compilation; to set system-dependent macros, types,
etc

-t Control instantiation of template functions. EDG option

--use_pch filename (pgcpp only) Use a precompiled header file of the speci-
fied name as part of the current compilation.

--[no_]using_std (pgcpp only) Enable/disable implicit use of the std
namespace when standard header files are included.

–X (pgcpp only) Generate cross-reference information and
place output in specified file. EDG option.

–Xm (pgcpp only) Allow $ in names.

–xh (pgcpp only) Enable exception handling. EDG option.

-suffix (see –P) (pgcpp only) Use with –E, –F, or –P to save intermedi-
ate file in a file with the specified suffix.

Option Description

Generic PGI Compiler Options

55

Generic PGI Compiler Options

-#

Use the –# option to display the invocations of the compiler, assembler and linker. These invocations
are command-lines created by the driver from your command-line input and the default values.

Default: The compiler does not display individual phase invocations.

Usage: The following command-line requests verbose invocation information.

$ pgf95 -# prog.f

Cross-reference: –Minfo, –V, –v.

-###

Use the –### option to display the invocations of the compiler, assembler and linker but do not
execute them. These invocations are command lines created by the compiler driver from the PGIRC
files and the command-line options.

Default: The compiler does not display individual phase invocations.

Usage: The following command-line requests verbose invocation information.

$ pgf95 -### myprog.f

Cross-reference: –Minfo, –V, –dryrun.

-byteswapio

Use the –byteswapio option to swap the byte-order of data in unformatted Fortran data files on input/
output. When this option is used, the order of bytes is swapped in both the data and record control
words (the latter occurs in unformatted sequential files). Specifically, this option can be used to
convert big-endian format data files produced by most RISC workstations and high-end servers to the
little-endian format used on x86 or x64 systems on the fly during file reads/writes. This option
assumes that the record layouts of unformatted sequential access and direct access files are the same
on the systems. Also, the assumption is that the IEEE representation is used for floating-point
numbers. In particular, the format of unformatted data files produced by PGI Fortran compilers is
identical to the format used on Sun and SGI workstations, that allows you to read and write
unformatted Fortran data files produced on those platforms from a program compiled for an x86 or
x64 platform using the –byteswapio option.

Command Line Options

56

Default: The compiler does not byte-swap data on input/output.

Usage: The following command-line requests byte-swapping are performed on input/output.

$ pgf95 -byteswapio myprog.f

-C

 Enables array bounds checking. If an array is an assumed size array, the bounds checking only
applies to the lower bound. If an array bounds violation occurs during execution, an error message
describing the error is printed and the program terminates. The text of the error message includes the
name of the array, the location where the error occurred (the source file and the line number in the
source), and information about the out of bounds subscript (its value, its lower and upper bounds,
and its dimension).

Default: The compiler does not enable array bounds checking.

Usage: In this example, the compiler instruments the executable produced from myprog.f to perform
array bounds checking at runtime:

$ pgf95 -C myprog.f

Cross-reference: –Mbounds.

-c

Stops after the assembling phase. Use the –c option to halt the compilation process after the
assembling phase and write the object code to the file filename.o, where the input file is filename.f.

Default: The compiler produces an executable file (does not use the –c option).

Usage: In this example, the compiler produces the object file myprog.o in the current directory.

$ pgf95 -c myprog.f

Cross-reference: –E, –Mkeepasm, –o, and –S.

-d<arg>

Print additional information from the preprocessor.

Syntax:

-d[D|I|M|N]

Generic PGI Compiler Options

57

where D, I, M, and N are:

-dD Print macros and values from source files

-dI Print include file names

-dM Print macros and values, including predefined and command-line
macros

-dN Print macro names from source files

Cross-reference: –E, –D, –U.

-D

Defines a preprocessor macro. Use the –D option to create a macro with a given value. The value must
be either an integer or a character string. You can use the –D option more than once on a compiler
command line. The number of active macro definitions is limited only by available memory.

You can use macros with conditional compilation to select source text during preprocessing. A macro
defined in the compiler invocation remains in effect for each module on the command line, unless
you remove the macro with an #undef preprocessor directive or with the –U option. The compiler
processes all of the –U options in a command line after processing the –D options.

Syntax:

-Dname[=value]

Where name is the symbolic name and value is either an integer value or a character string.

Default: If you define a macro name without specifying a value the preprocessor assigns the string 1 to
the macro name.

Usage: In the following example, the macro PATHLENGTH has the value 256 until a subsequent
compilation. If the –D option is not used, PATHLENGTH’s value is set to 128.

$ pgf95 -DPATHLENGTH=256 myprog.F

Where the source text is:

#ifndef PATHLENGTH

#define PATHLENGTH 128

#endif

Command Line Options

58

SUBROUTINE SUB

CHARACTER*PATHLENGTH path

...

END

Cross-reference: –U

-dryrun

Use the –dryrun option to display the invocations of the compiler, assembler and linker but do not
execute them. These invocations are command lines created by the compiler driver from the PGIRC
file and the command-line supplied with –dryrun.

Default: The compiler does not display individual phase invocations.

Usage: The following command-line requests verbose invocation information.

$ pgf95 -dryrun myprog.f

Cross-reference: –Minfo, –V, –###

-E

Stops after the preprocessing phase. Use the –E option to halt the compilation process after the
preprocessing phase and display the preprocessed output on the standard output.

Default: The compiler produces an executable file.

Usage: In the following example the compiler displays the preprocessed myprog.f on the standard
output.

$ pgf95 -E myprog.f

Cross-reference: See the options –C, –c, –Mkeepasm, –o, –F, –S.

-F

Stops compilation after the preprocessing phase. Use the –F option to halt the compilation process
after preprocessing and write the preprocessed output to the file filename.f where the input file is
filename .F.

Default: The compiler produces an executable file.

Generic PGI Compiler Options

59

Usage: In the following example the compiler produces the preprocessed file myprog.f in the current
directory.

$ pgf95 -F myprog.F

Cross-reference: –c,–E, –Mkeepasm, –o, –S

-fast

A generally optimal set of options is chosen for targets that support SSE capability. In addition, the
appropriate –tp option is automatically included to enable generation of code optimized for the type
of system on which compilation is performed.

Note

Auto-selection of the appropriate –tp option means that programs built using the –fastsse
option on a given system are not necessarily backward-compatible with older systems.

Cross-reference: –O, –Munroll, –Mnoframe, –Mscalarsse, –Mvect, –Mcache_align, –tp

-fastsse

Synonymous with -fast.

--flagcheck

Causes the compiler to check that flags are correct then exit. If flags are all correct then the compiler
returns a zero status.

-flags

Displays driver options on the standard output. Use this option with –v to list options that are
recognized and ignored, as well as the valid options.

Cross-reference: –#, –###, –v

-fpic

 (Linux only) Generate position-independent code suitable for inclusion in shared object (dynamically
linked library) files.

Command Line Options

60

Cross-reference: –shared, –G, –R

-fPIC

 (Linux only) Equivalent to -fpic. Provided for compatibility with other compilers.

Cross-reference: –fpic, –shared, –G, –R

-G

 (Linux only) Passed to the linker. Instructs the linker to produce a shared object file.

Cross-reference: –fpic, –shared, –R

-g

The –g option instructs the compiler to include symbolic debugging information in the object module.
Debuggers, such as PGDBG, require symbolic debugging information in the object module to display
and manipulate program variables and source code. Note that including symbolic debugging
information increases the size of the object module.

If you specify the –g option on the command-line, the compiler sets the optimization level to –O0
(zero), unless you specify the –O option. For more information on the interaction between the –g and
–O options, see the –O entry. Symbolic debugging may give confusing results if an optimization level
other than zero is selected.

Default: The compiler does not put debugging information into the object module.

Usage: In the following example, the object file a.out contains symbolic debugging information.

$ pgf95 -g myprog.f

-gopt

Use of –g alters how optimized code is generated in ways that are intended to enable or improve
debugging of optimized code. The –gopt option instructs the compiler to include symbolic debugging
information in the object file, and to generate optimized code identical to that generated when –g is
not specified.

Default: The compiler does not put debugging information into the object module.

Usage: In the following example, the object file a.out contains symbolic debugging information.

Generic PGI Compiler Options

61

$ pgf95 -gopt myprog.f

-g77libs

(Linux only) Use the –g77libs option on the link line if you are linking g77-compiled program units
into a pgf95-compiled main program using the pgf95 driver. When this option is present, the pgf95
driver will search the necessary g77 support libraries to resolve references specific to g77 compiled
program units. The g77 compiler must be installed on the system on which linking occurs in order for
this option to function correctly.

Default: The compiler does not search g77 support libraries to resolve references at link time.

Usage: The following command-line requests that g77 support libraries be searched at link time:

$ pgf95 -g77libs myprog.f g77_object.o

-help

Used with no other options, –help displays options recognized by the driver on the standard output.
When used in combination with one or more additional options, usage information for those options
is displayed to standard output.

Usage: In the following example, usage information for –Minline is printed to standard output.

$ pgcc -help -Minline

-Minline[=lib:<inlib>|<func>|except:<func>|

 name:<func>|size:<n>|levels:<n>]

 Enable function inlining

 lib:<extlib> Use extracted functions from extlib

 <func> Inline function func

 except:<func> Do not inline function func

 name:<func> Inline function func

 size:<n> Inline only functions smaller than n

 levels:<n> Inline n levels of functions

 -Minline Inline all functions that were extracted

In the following example, usage information for –help shows how groups of options can be listed or
examined according to function

$ pgcc -help -help

-help[=groups|asm|debug|language|linker|opt|other|

 overall|phase|prepro|suffix|switch|target|variable]

 Show compiler switches

Command Line Options

62

Cross-reference: –#, –###, –show, –V, –flags

-I

Adds a directory to the search path for files that are included using the INCLUDE statement or the
preprocessor directive #include. Use the –I option to add a directory to the list of where to search for
the included files. The compiler searches the directory specified by the –I option before the default
directories.stdinc

Syntax:

-Idirectory

Where directory is the name of the directory added to the standard search path for include files.

Usage: The Fortran INCLUDE statement directs the compiler to begin reading from another file. The
compiler uses two rules to locate the file:

1. If the file name specified in the INCLUDE statement includes a path name, the compiler begins
reading from the file it specifies.

2. If no path name is provided in the INCLUDE statement, the compiler searches (in order):

• any directories specified using the –I option (in the order specified.)

• the directory containing the source file

• the current directory

For example, the compiler applies rule (1) to the following statements:

INCLUDE '/bob/include/file1'

(absolute path name)

INCLUDE '../../file1' (relative path name)

and rule (2) to this statement:

INCLUDE 'file1'

Cross-reference: –Mnostdinc

Generic PGI Compiler Options

63

-i2, -i4 and -i8

Treat INTEGER and LOGICAL variables as either two, four, or eight bytes. INTEGER*8 values not only
occupy 8 bytes of storage, but operations use 64 bits, instead of 32 bits.

-K<flag>

Requests that the compiler provide special compilation semantics.

Syntax:

–K<flag>

Where flag is one of the following:

ieee Perform floating-point operations in strict conformance with the IEEE
754 standard. Some optimizations are disabled, and on some systems a
more accurate math library is linked if –Kieee is used during the link
step.

noieee Use the fastest available means to perform floating-point operations,
link in faster non-IEEE libraries if available, and disable underflow
traps.

PIC (Linux only) Generate position-independent code. Equivalent to –fpic.
Provided for compatibility with other compilers.

pic (Linux only) Generate position-independent code. Equivalent to –fpic.
Provided for compatibility with other compilers.

trap=option[,option]... Controls the behavior of the processor when floating-point exceptions
occur. Possible options include:

• fp

• align (ignored)

• inv

• denorm

• divz

• ovf

Command Line Options

64

• unf

• inexact

–Ktrap is only processed by the compilers when compiling main
functions/programs. The options inv, denorm, divz, ovf, unf, and inexact
correspond to the processor’s exception mask bits invalid operation,
denormalized operand, divide-by-zero, overflow, underflow, and
precision, respectively. Normally, the processor’s exception mask bits are
on (floating-point exceptions are masked—the processor recovers from
the exceptions and continues). If a floating-point exception occurs and
its corresponding mask bit is off (or “unmasked”), execution terminates
with an arithmetic exception (C's SIGFPE signal). -Ktrap=fp is
equivalent to -Ktrap=inv,divz,ovf.

Default: The default is -Knoieee.

--keeplnk

If the compiler generates a temporary indirect file for a long linker command, preserve the temporary
file instead of deleting it. (Windows only.)

-L

Specifies a directory to search for libraries. Use –L to add directories to the search path for library files.
Multiple –L options are valid. However, the position of multiple –L options is important relative to –l
options supplied.

Syntax:

-Ldirectory

Where directory is the name of the library directory.

Default: Search the standard library directory.

Usage: In the following example, the library directory is /lib and the linker links in the standard
libraries required by PGF95 from /lib.

$ pgf95 -L/lib myprog.f

Generic PGI Compiler Options

65

In the following example, the library directory /lib is searched for the library file libx.a and both the
directories /lib and /libz are searched for liby.a.

$ pgf95 -L/lib -lx -L/libz

-ly

myprog.f

-l<library>

Loads a library. The linker searches <library> in addition to the standard libraries. Libraries specified
with –l are searched in order of appearance and before the standard libraries.

Syntax:

-llibrary

Where library is the name of the library to search. The compiler prepends the characters lib to the
library name and adds the .a extension following the library name.

Usage: In the following example, if the standard library directory is /lib the linker loads the library /
lib/libmylib.a, in addition to the standard libraries.

$ pgf95 myprog.f -lmylib

-M<pgflag>

Selects options for code generation. The options are divided into the following categories:

Code generation

Environment

Inlining

Fortran Language Controls

C/C++ Language Controls

Optimization

Miscellaneous

The following table lists and briefly describes the options alphabetically and includes a field showing
the category.

Command Line Options

66

Table 3-3: –M Options Summary

pgflag Description Category

allocatable=95|03 controls whether to use Fortran 95 or Fortran
2003 semantics in allocatable array assign-
ments.

Fortran Lan-
guage

anno annotate the assembly code with source code. Miscellaneous

[no]autoinline C/C++ when a function is declared with the
inline keyword, inline it at -O2 and above.

Inlining

[no]asmkeyword specifies whether the compiler allows the asm
keyword in C/C++ source files (pgcc and
pgcpp only).

C/C++ Lan-
guage

[no]backslash determines how the backslash character is
treated in quoted strings (pgf77, pgf95, and
pghpf only).

Fortran Lan-
guage

[no]bounds specifies whether array bounds checking is
enabled or disabled.

Miscellaneous

[no]builtin Do/don’t compile with math subroutine buil-
tin support, which causes selected math library
routines to be inlined (pgcc and pgcpp only).

Optimization

byteswapio Swap byte-order (big-endian to little-endian or
vice versa) during I/O of Fortran unformatted
data.

Miscellaneous

cache_align where possible, align data objects of size
greater than or equal to 16 bytes on cache-line
boundaries.

Optimization

chkfpstk check for internal consistency of the x87 FP
stack in the prologue of a function and after
returning from a function or subroutine call
(–tp px/p5/p6/piii targets only).

Miscellaneous

Generic PGI Compiler Options

67

chkptr check for NULL pointers (pgf95 and pghpf
only).

Miscellaneous

chkstk check the stack for available space upon entry
to and before the start of a parallel region.
Useful when many private variables are
declared.

Miscellaneous

concur enable auto-concurrentization of loops. Multi-
ple processors or cores will be used to execute
parallelizable loops.

Optimization

cpp run the PGI cpp-like pre-processor without
performing subsequent compilation steps.

Miscellaneous

cray Force Cray Fortran (CF77) compatibility
(pgf77, pgf95, and pghpf only).

Optimization

[no]daz Do/don’t treat denormalized numbers as zero. Code Generation

[no]dclchk determines whether all program variables
must be declared (pgf77, pgf95, and pghpf
only).

Fortran Lan-
guage

[no]defaultunit determines how the asterisk character ("*") is
treated in relation to standard input and stan-
dard output (regardless of the status of I/O
units 5 and 6, pgf77, pgf95, and pghpf only).

Fortran Lan-
guage

[no]depchk checks for potential data dependencies. Optimization

[no]dse enables [disables] dead store elimination
phase for programs making extensive use of
function inlining.

Optimization

[no]dlines determines whether the compiler treats lines
containing the letter "D" in column one as
executable statements (pgf77, pgf95, and
pghpf only).

Fortran Lan-
guage

pgflag Description Category

Command Line Options

68

dll Link with the DLL version of the runtime
libraries (Windows only).

Miscellaneous

dollar,char specifies the character to which the compiler
maps the dollar sign code (pgf77, pgf95, and
pghpf only).

Fortran Lan-
guage

dwarf1 when used with –g, generate DWARF1 format
debug information.

Code Generation

dwarf2 when used with –g, generate DWARF2 format
debug information.

Code Generation

dwarf3 when used with –g, generate DWARF3 format
debug information.

Code Generation

extend the compiler accepts 132-column source code;
otherwise it accepts 72-column code (pgf77,
pgf95, and pghpf only).

Fortran Lan-
guage

extract invokes the function extractor. Inlining

fcon instructs the compiler to treat floating-point
constants as float data types (pgcc and pgcpp
only).

C/C++ Lan-
guage

fixed the compiler assumes F77-style fixed format
source code (pgf95 and pghpf only).

Fortran Lan-
guage

[no]flushz do/don’t set SSE flush-to-zero mode Code Generation

[no]fprelaxed[=option] Perform certain floating point intrinsic func-
tions using relaxed precision.

Optimization

free the compiler assumes F90-style free format
source code (pgf95 and pghpf only).

Fortran Lan-
guage

func32 the compiler aligns all functions to 32-byte
boundaries.

Code Generation

pgflag Description Category

Generic PGI Compiler Options

69

gccbug[s] match behavior of certain gcc bugs Miscellaneous

noi4 determines how the compiler treats INTEGER
variables (pgf77, pgf95, and pghpf only).

Optimization

info prints informational messages regarding opti-
mization and code generation to standard out-
put as compilation proceeds.

Miscellaneous

inform specifies the minimum level of error severity
that the compiler displays.

Miscellaneous

inline invokes the function inliner. Inlining

[no]ipa invokes inter-procedural analysis and optimi-
zation.

Optimization

[no]iomutex determines whether critical sections are gener-
ated around Fortran I/O calls (pgf77, pgf95,
and pghpf only).

Fortran Lan-
guage

[no]large_arrays enable support for 64-bit indexing and single
static data objects of size larger than 2GB.

Code Generation

lfs link in libraries that allow file I/O to files of
size larger than 2GB on 32-bit systems (32-bit
Linux only).

Environment

[no]lre Disable/enable loop-carried redundancy elimi-
nation.

Optimization

keepasm instructs the compiler to keep the assembly
file.

Miscellaneous

nolist specifies whether the compiler creates a listing
file.

Miscellaneous

makedll Generate a dynamic link library (DLL) (Win-
dows only).

Miscellaneous

pgflag Description Category

Command Line Options

70

[no]movnt (disable) force generation of non-temporal
moves and prefetching.

Code Generation

neginfo instructs the compiler to produce information
on why certain optimizations are not per-
formed.

Miscellaneous

noframe eliminates operations that set up a true stack
frame pointer for functions.

Optimization

nomain when the link step is called, don’t include the
object file that calls the Fortran main program
(pgf77, pgf95, and pghpf only).

Code Generation

noopenmp when used in combination with the -mp
option, causes the compiler to ignore OpenMP
parallelization directives or pragmas, but still
process SGI-style parallelization directives or
pragmas.

Miscellaneous

nopgdllmain do not link the module containing the default
DllMain() into the DLL (Windows only).

Miscellaneous

norpath On Linux, do not add -rpath paths to the link
line.

Miscellaneous

nosgimp when used in combination with the -mp
option, causes the compiler to ignore SGI-style
parallelization directives or pragmas, but still
process OpenMP directives or pragmas.

Miscellaneous

nostartup do not link in the standard startup routine
(pgf77, pgf95, and pghpf only).

Environment

nostddef instructs the compiler to not recognize the
standard preprocessor macros.

Environment

nostdinc instructs the compiler to not search the stan-
dard location for include files.

Environment

pgflag Description Category

Generic PGI Compiler Options

71

nostdlib instructs the linker to not link in the standard
libraries.

Environment

noonetrip determines whether each DO loop executes at
least once (pgf77, pgf95, and pghpf only).

Language

novintr disable idiom recognition and generation of
calls to optimized vector functions.

Optimization

pfi instrument the generated code and link in
libraries for dynamic collection of profile and
data information at runtime.

Optimization

pfo read a pgfi.out trace file and use the informa-
tion to enable or guide optimizations.

Optimization

[no]prefetch (disable) enable generation of prefetch
instructions.

Optimization

preprocess perform cpp-like preprocessing on assembly
language and Fortran input source files.

Miscellaneous

prof set profile options; function-level and line-
level profiling are supported.

Code Generation

nor8 determines whether the compiler promotes
REAL variables and constants to DOUBLE PRE-
CISION (pgf77, pgf95, and pghpf only).

Optimization

nor8intrinsics determines how the compiler treats the intrin-
sics CMPLX and REAL (pgf77, pgf95, and pghpf
only).

 Optimization

[no]recursive allocate (do not allocate) local variables on
the stack, this allows recursion. SAVEd, data-
initialized, or namelist members are always
allocated statically, regardless of the setting of
this switch (pgf77, pgf95, and pghpf only).

Code Generation

pgflag Description Category

Command Line Options

72

[no]reentrant specifies whether the compiler avoids optimi-
zations that can prevent code from being reen-
trant.

Code Generation

[no]ref_externals do/don’t force references to names appearing
in EXTERNAL statements (pgf77, pgf95, and
pghpf only).

Code Generation

safeptr instructs the compiler to override data depen-
dencies between pointers and arrays (pgcc and
pgcpp only).

Optimization

safe_lastval In the case where a scalar is used after a loop,
but is not defined on every iteration of the
loop, the compiler does not by default parallel-
ize the loop. However, this option tells the com-
piler it safe to parallelize the loop. For a given
loop, the last value computed for all scalars
make it safe to parallelize the loop.

Code Generation

[no]nosave determines whether the compiler assumes that
all local variables are subject to the SAVE state-
ment (pgf77, pgf95, and pghpf only).

Fortran Lan-
guage

[no]scalarsse do/don’t use SSE/SSE2 instructions to perform
scalar floating-point arithmetic.

Optimization

schar specifies signed char for characters (pgcc and
pgcpp only - also see uchar).

C/C++ Lan-
guage

[no]second_underscore do/don’t add the second underscore to the
name of a Fortran global if its name already
contains an underscore (pgf77, pgf95, and
pghpf only).

Code Generation

[no]signextend do/don’t extend the sign bit, if it is set. Code Generation

pgflag Description Category

Generic PGI Compiler Options

73

nosingle do/don’t convert float parameters to double
parameter characters (pgcc and pgcpp only).

C/C++ Lan-
guage

[no]smart do/don’t enable optional post-pass assembly
optimizer.

Optimization

[no]smartalloc add a call to the routine mallopt in the main
routine. To be effective, this switch must be
specified when compiling the file containing
the Fortran, C, or C++ main program.

Environment

standard causes the compiler to flag source code that
does not conform to the ANSI standard (pgf77,
pgf95, and pghpf only).

Fortran Lan-
guage

nostride0 the compiler generates (does not generate)
alternate code for a loop that contains an
induction variable whose increment may be
zero (pgf77, pgf95, and pghpf only).

Code Generation

uchar specifies unsigned char for characters (pgcc
and pgcpp only - also see schar).

C/C++ Lan-
guage

unix uses UNIX calling and naming conventions for
Fortran subprograms (pgf77, pgf95, and pghpf
for Win32 only).

CodeGeneration

[no]nounixlogical determines whether logical .TRUE. and .FALSE.
are determined by non-zero (TRUE) and zero
(FALSE) values for unixlogical. With nounix-
logical, the default, -1 values are TRUE and 0
values are FALSE (pgf77, pgf95, and pghpf
only).

Fortran Lan-
guage

[no]unroll controls loop unrolling. Optimization

pgflag Description Category

Command Line Options

74

Following are detailed descriptions of several, but not all, of the –M<pgflag> options outlined in the
table above. These options are grouped according the category that appears in column 3 of the table
above, and are listed with exact syntax, defaults, and notes concerning similar or related options. For
the latest information and description of a given option, or to see all available options, use the –help
command-line option to any of the PGI compilers.

-M<pgflag> Code Generation Controls

Syntax:

-Mdaz Set IEEE denormalized input values to zero; there is a performance
benefit but misleading results can occur, such as when dividing a small
normalized number by a denormalized number. This option must be set
for the main program to take effect.

-Mnodaz Do not treat denormalized numbers as zero. This option must be set for
the main program to take effect.

-Mdwarf1 Generate DWARF1 format debug information; must be used in
combination with –g.

-Mdwarf2 Generate DWARF2 format debug information; must be used in
combination with –g.

-Mdwarf3 Generate DWARF3 format debug information; must be used in
combination with –g.

noupcase determines whether the compiler allows
uppercase letters in identifiers (pgf77, pgf95,
and pghpf only).

Fortran Lan-
guage

varargs force Fortran program units to assume calls
are to C functions with a varargs type interface
(pgf77 and pgf95 only).

Code Generation

[no]vect do/don’t invoke the code vectorizer. Optimization

pgflag Description Category

Generic PGI Compiler Options

75

-Mflushz Set SSE flush-to-zero mode; if a floating-point underflow occurs, the
value is set to zero. This option must be set for the main program to take
effect.

-Mnoflushz Do not set SSE flush-to-zero mode; generate underflows. This option
must be set for the main program to take effect.

-Mfunc32 Align functions on 32-byte boundaries.

-Mlarge_arrays Enable support for 64-bit indexing and single static data objects larger
than 2GB in size. This option is default in the presence of –
mcmodel=medium. Can be used separately together with the default
small memory model for certain 64-bit applications that manage their
own memory space. See “Programming Considerations for 64-Bit
Environments” on page 229 for more information

-Mnolarge_arrays
Disable support for 64-bit indexing and single static data objects larger
than 2GB in size. When placed after –mcmodel=medium on the
command line, disables use of 64-bit indexing for applications that have
no single data object larger than 2GB.

-Mnomain instructs the compiler not to include the object file that calls the Fortran
main program as part of the link step. This option is useful for linking
programs in which the main program is written in C/C++ and one or
more subroutines are written in Fortran (pgf77, pgf95, and pghpf only).

-M[no]movnt instructs the compiler to generate nontemporal move and prefetch
instructions even in cases where the compiler cannot determine
statically at compile-time that these instructions will be beneficial.

-Mprof[=option[,option,...]]
Set profile options. option can be any of the following:

dwarf generate limited DWARF information to
enable source correlation by 3rd-party
profiling tools. (all platforms)

func perform PGI-style function-level profiling
(all platforms)

Command Line Options

76

hwcts Use PAPI-based profiling with hardware
counters (linux86-64 platforms only).

lines perform PGI-style line-level profiling. (all
platforms)

mpi perform MPI profiling (available only in
PGI CDK Cluster Development Kit
configurations on Linux platforms).

time Sample-based instruction-level profiling.
(Linux only)

-Mrecursive instructs the compiler to allow Fortran subprograms to be called
recursively.

-Mnorecursive Fortran subprograms may not be called recursively.

-Mref_externals force references to names appearing in EXTERNAL statements (pgf77,
pgf95, and pghpf only).

-Mnoref_externals
do not force references to names appearing in EXTERNAL statements
(pgf77, pgf95, and pghpf only).

-Mreentrant instructs the compiler to avoid optimizations that can prevent code from
being reentrant.

-Mnoreentrant instructs the compiler not to avoid optimizations that can prevent code
from being reentrant.

-Msecond_underscore
instructs the compiler to add a second underscore to the name of a
Fortran global symbol if its name already contains an underscore. This
option is useful for maintaining compatibility with object code compiled
using g77, which uses this convention by default (pgf77, pgf95, and
pghpf only).

-Mnosecond_underscore
instructs the compiler not to add a second underscore to the name of a
Fortran global symbol if its name already contains an underscore
(pgf77, pgf95, and pghpf only).

Generic PGI Compiler Options

77

-Msignextend instructs the compiler to extend the sign bit that is set as a result of
converting an object of one data type to an object of a larger signed data
type.

-Mnosignextend instructs the compiler not to extend the sign bit that is set as the result
of converting an object of one data type to an object of a larger data
type.

-Msafe_lastval In the case where a scalar is used after a loop, but is not defined on every
iteration of the loop, the compiler does not by default parallelize the
loop. However, this option tells the compiler it’s safe to parallelize the
loop. For a given loop the last value computed for all scalars make it safe
to parallelize the loop.

-Mstride0 instructs the compiler to inhibit certain optimizations and to allow for
stride 0 array references. This option may degrade performance and
should only be used if zero-stride induction variables are possible.

-Mnostride0 instructs the compiler to perform certain optimizations and to disallow
for stride 0 array references.

-Munix use UNIX symbol and parameter passing conventions for Fortran
subprograms (pgf77, pgf95, and pghpf for Win32 only).

-Mvarargs force Fortran program units to assume procedure calls are to C
functions with a varargs-type interface (pgf77 and pgf95 only).

Default: For arguments that you do not specify, the default code generation controls are as follows:

-M<pgflag> Environment Controls

Syntax:

nodaz noflushz

norecursive nostride0

noreentrant noref_externals

signextend nosecond_underscore

Command Line Options

78

-Mlfs (32-bit Linux only) link in libraries that enable file I/O to files larger
than 2GB (Large File Support).

-Mnostartup instructs the linker not to link in the standard startup routine that
contains the entry point (_start) for the program.

Note

If you use the –Mnostartup option and do not supply an entry point, the linker issues the
following error message: Warning: cannot find entry symbol _start

-Mnostddef instructs the compiler not to predefine any macros to the preprocessor
when compiling a C program.

-Mnostdlib instructs the linker not to link in the standard libraries libpgftnrtl.a,
libm.a, libc.a and libpgc.a in the library directory lib within the
standard directory. You can link in your own library with the –l option
or specify a library directory with the –L option.

Default: For arguments that you do not specify, the default environment option depends on your
configuration.

Cross-reference: –D, –I, –L, –l, –U

-M<pgflag> Inlining Controls

This section describes the –M<pgflag> options that control function inlining.

Syntax:

-Mextract[=option[,option,...]]

Extracts functions from the file indicated on the command line and
creates or appends to the specified extract directory where option can be
any of:

name:func instructs the extractor to extract function
func from the file.

size:number instructs the extractor to extract functions
with number or fewer, statements from the
file.

Generic PGI Compiler Options

79

lib:filename.ext Use directory filename.ext as the extract
directory (required in order to save and
re-use inline libraries).

If you specify both name and size, the compiler extracts functions that
match func, or that have number or fewer statements. For examples of
extracting functions, see Function Inlining.

-Minline[=option[,option,...]]
This passes options to the function inliner where option can be any of:

except:func instructs the inliner to inline all eligible
functions except func, a function in the
source text. Multiple functions can be
listed, comma-separated.

[name:]func instructs the inliner to inline the function
func. The func name should be a non-
numeric string that does not contain a
period. You can also use a name: prefix
followed by the function name. If name: is
specified, what follows is always the name
of a function.

[lib:]filename.ext instructs the inliner to inline the functions
within the library file filename.ext. The
compiler assumes that a filename.ext
option containing a period is a library file.
Create the library file using the –Mextract
option. You can also use a lib: prefix
followed by the library name. If lib: is
specified, no period is necessary in the
library name. Functions from the specified
library are inlined. If no library is
specified, functions are extracted from a
temporary library created during an
extract prepass.

Command Line Options

80

[size:]number instructs the inliner to inline functions
with number or fewer statements. You can
also use a size: prefix followed by a
number. If size: is specified, what follows is
always taken as a number.

levels:number instructs the inliner to perform number
levels of inlining. The default number is 1.

If you specify both func and number, the compiler inlines functions that
match the function name or have number or fewer statements. For
examples of inlining functions, see Function Inlining.

Usage: In the following example, the compiler extracts functions that have 500 or fewer statements
from the source file myprog.f and saves them in the file extract.il.

$ pgf95 -Mextract=500 -oextract.il

myprog.f

In the following example, the compiler inlines functions with fewer than approximately 100
statements in the source file myprog.f and writes the executable code in the default output file a.out.

$ pgf95 -Minline=size:100

myprog.f

Cross-reference: –o, -Mextract

-M<pgflag> Fortran Language Controls

This section describes the –M<pgflag> options that affect Fortran language interpretations by the PGI
Fortran compilers. These options are only valid to the pgf77, pgf95, and pghpf compiler drivers.

Syntax:

-Mallocatable=95|03 controls whether Fortran 95 or Fortran 2003 semantics are used
in allocatable array assignments.

-Mbackslash the compiler treats the backslash as a normal character, and not as an
escape character in quoted strings.

-Mnobackslash the compiler recognizes a backslash as an escape character in quoted
strings (in accordance with standard C usage).

Generic PGI Compiler Options

81

-Mdclchk the compiler requires that all program variables be declared.

-Mnodclchk the compiler does not require that all program variables be declared.

-Mdefaultunit the compiler treats "*" as a synonym for standard input for reading and
standard output for writing.

-Mnodefaultunit the compiler treats "*" as a synonym for unit 5 on input and unit 6 on
output.

-Mdlines the compiler treats lines containing "D" in column 1 as executable
statements (ignoring the "D").

-Mnodlines the compiler does not treat lines containing "D" in column 1 as
executable statements (does not ignore the "D").

-Mdollar,char char specifies the character to which the compiler maps the dollar sign.
The compiler allows the dollar sign in names.

-Mextend with –Mextend, the compiler accepts 132-column source code;
otherwise it accepts 72-column code.

-Mfixed with –Mfixed, the compiler assumes input source files are in FORTRAN
77-style fixed form format.

-Mfree with –Mfree, the compiler assumes the input source files are in Fortran
90/95 freeform format.

-Miomutex the compiler generates critical section calls around Fortran I/O
statements.

-Mnoiomutex the compiler does not generate critical section calls around Fortran I/O
statements.

-Monetrip the compiler forces each DO loop to execute at least once.

-Mnoonetrip the compiler does not force each DO loop to execute at least once. This
option is useful for programs written for earlier versions of Fortran.

-Msave the compiler assumes that all local variables are subject to the SAVE
statement. Note that this may allow older Fortran programs to run, but
it can greatly reduce performance.

Command Line Options

82

-Mnosave the compiler does not assume that all local variables are subject to the
SAVE statement.

-Mstandard the compiler flags non-ANSI–conforming source code.

-Munixlogical directs the compiler to treat logical values as true if the value is non-
zero and false if the value is zero (UNIX F77 convention.) When –
Munixlogical is enabled, a logical value or test that is non-zero is
.TRUE., and a value or test that is zero is .FALSE.. In addition, the value
of a logical expression is guaranteed to be one (1) when the result is
.TRUE..

-Mnounixlogical ldirects the compiler to use the VMS convention for logical values for
true and false. Even values are true and odd values are false.

-Mupcase the compiler allows uppercase letters in identifiers. With –Mupcase, the
identifiers "X" and "x" are different, and keywords must be in lower case.
This selection affects the linking process: if you compile and link the
same source code using –Mupcase on one occasion and –Mnoupcase on
another, you may get two different executables (depending on whether
the source contains uppercase letters). The standard libraries are
compiled using the default –Mnoupcase.

-Mnoupcase the compiler converts all identifiers to lower case. This selection affects
the linking process: If you compile and link the same source code using
–Mupcase on one occasion and –Mnoupcase on another, you may get
two different executables (depending on whether the source contains
uppercase letters). The standard libraries are compiled using –
Mnoupcase.

Default: For arguments that you do not specify, the defaults are as follows:

nobackslash noiomutex

nodclchk noonetrip

nodefaultunit nosave

nodlines nounixlogical

Generic PGI Compiler Options

83

-M<pgflag> C/C++ Language Controls

This section describes the –M<pgflag> options that affect C/C++ language interpretations by the PGI
C and C++ compilers. These options are only valid to the pgcc and pgcpp compiler drivers.

Syntax:

-Masmkeyword instructs the compiler to allow the asm keyword in C source files. The
syntax of the asm statement is as follows:

asm("statement");

Where statement is a legal assembly-language statement. The quote
marks are required.

-Mnoasmkeyword instructs the compiler not to allow the asm keyword in C source files. If
you use this option and your program includes the asm keyword,
unresolved references will be generated

-Mdollar,char char specifies the character to which the compiler maps the dollar sign
($). The PGCC compiler allows the dollar sign in names; ANSI C does not
allow the dollar sign in names.

-Mfcon instructs the compiler to treat floating-point constants as float data
types, instead of double data types. This option can improve the
performance of single-precision code.

-Mschar specifies signed char characters. The compiler treats "plain" char
declarations as signed char.

-Msingle do not to convert float parameters to double parameters in non-
prototyped functions. This option can result in faster code if your
program uses only float parameters. However, since ANSI C specifies that
routines must convert float parameters to double parameters in non-
prototyped functions, this option results in non-ANSI conformant code.

-Mnosingle instructs the compiler to convert float parameters to double parameters
in non-prototyped functions.

dollar,_ noupcase

Command Line Options

84

-Muchar instructs the compiler to treat "plain" char declarations as unsigned
char.

Default: For arguments that you do not specify, the defaults are as follows:

Usage:

In this example, the compiler allows the asm keyword in the source file.

$ pgcc -Masmkeyword myprog.c

In the following example, the compiler maps the dollar sign to the dot character.

$ pgcc -Mdollar,. myprog.c

In the following example, the compiler treats floating-point constants as float values.

$ pgcc -Mfcon myprog.c

In the following example, the compiler does not convert float parameters to double parameters.

$ pgcc -Msingle myprog.c

Without –Muchar or with –Mschar, the variable ch is a signed character:

char ch;

signed char sch;

If –Muchar is specified on the command line:

$ pgcc -Muchar myprog.c

char ch above is equivalent to:

 unsigned char ch;

-M<pgflag> Optimization Controls

Syntax:

noasmkeyword nosingle

dollar,_ schar

Generic PGI Compiler Options

85

-Mcache_align Align unconstrained objects of length greater than or equal to 16 bytes
on cache-line boundaries. An unconstrained object is a data object that
is not a member of an aggregate structure or common block. This
option does not affect the alignment of allocatable or automatic arrays.
cache_align

Note: To effect cache-line alignment of stack-based local variables, the
main program or function must be compiled with –Mcache_align.

-Mconcur[=option [,option,...]]
Instructs the compiler to enable auto-concurrentization of loops. If -
Mconcur is specified, multiple processors will be used to execute loops
that the compiler determines to be parallelizable. Where option is one of
the following:

[no]altcode:n Instructs the parallelizer to generate
alternate serial code for parallelized loops.
If altcode is specified without arguments,
the parallelizer determines an appropriate
cutoff length and generates serial code to
be executed whenever the loop count is
less than or equal to that length. If
altcode:n is specified, the serial altcode is
executed whenever the loop count is less
than or equal to n. If noaltcode is
specified, the parallelized version of the
loop is always executed regardless of the
loop count.

cncall Calls in parallel loops are safe to
parallelize. Loops containing calls are
candidates for parallelization. Also, no
minimum loop count threshold must be
satisfied before parallelization will occur,
and last values of scalars are assumed to
be safe.

Command Line Options

86

dist:block Parallelize with block distribution (this is
the default). Contiguous blocks of
iterations of a parallelizable loop are
assigned to the available processors.

dist:cyclic Parallelize with cyclic distribution. The
outermost parallelizable loop in any loop
nest is parallelized. If a parallelized loop is
innermost, its iterations are allocated to
processors cyclically. For example, if there
are 3 processors executing a loop,
processor 0 performs iterations 0, 3, 6,
etc.; processor 1 performs iterations 1, 4,
7, etc.; and processor 2 performs iterations
2, 5, 8, etc.

[no]innermost Enable parallelization of innermost loops.
The default is to not parallelize innermost
loops, since it is usually not profitable on
dual-core processors.

noassoc Disables parallelization of loops with
reductions.

When linking, the -Mconcur switch must be specified or unresolved
references will result. The NCPUS environment variable controls how
many processors or cores are used to execute parallelized loops.

Note

This option applies only on shared-memory multi-processor (SMP) or multi-core processor-
based systems.

-Mcray[=option[,option,...]]
(pgf77 and pgf95 only) Force Cray Fortran (CF77) compatibility with
respect to the listed options. Possible values of option include:

pointer for purposes of optimization, it is assumed
that pointer-based variables do not overlay
the storage of any other variable.

Generic PGI Compiler Options

87

-Mdepchk instructs the compiler to assume unresolved data dependencies actually
conflict.

-Mnodepchk instructs the compiler to assume potential data dependencies do not
conflict. However, if data dependencies exist, this option can produce
incorrect code.

-Mdse Enables a dead store elimination phase that is useful for programs that
rely on extensive use of inline function calls for performance. This is
disabled by default.

-Mnodse (default) Disables the dead store elimination phase.

-Mfprelaxed[=option]
instructs the compiler to use relaxed precision in the calculation of
some intrinsic functions. Can result in improved performance at the
expense of numerical accuracy.

The possible values for option are:

div Perform divide using relaxed precision.

sqrt Perform square root with relaxed precision.

rsqrt Perform reciprocal square root (1/sqrt) using relaxed
precision.

With no options, -Mfprelaxed will choose generate relaxed precision
code for those operations that generate a significant performance
improvement, depending on the target processor.

-Mnofprelaxed (default) instructs the compiler not to use relaxed precision in the
calculation of intrinsic functions.

-Mi4 (pgf77 and pgf95 only) the compiler treats INTEGER variables as
INTEGER*4.

-Mipa=<option>[,<option>[,…]]
Pass options to the interprocedural analyzer. Note: –Mipa implies –O2,
and the minimum optimization level that can be specified in
combination with –Mipa is –O2. For example, if you specify –Mipa –O1
on the command line, the optimization level will automatically be
elevated to –O2 by the compiler driver. It is typical and recommended to

Command Line Options

88

use –Mipa=fast. Many of the following sub-options can be prefaced with
no, which reverses or disables the effect of the sub-option if it’s included
in an aggregate sub-option like –Mipa=fast. The choices of option are:

[no]align recognize when targets of a pointer
dummy are aligned; default is noalign.

[no]arg remove arguments replaced by const, ptr;
default is noarg.

[no]cg generate call graph information for
viewing using the pgicg command-line
utility; default is nocg.

[no]const perform interprocedural constant
propagation; default is const.

except:<func> used with inline to specify functions which
should not be inlined; default is to inline
all eligible functions according to
internally defined heuristics.

[[no]f90ptr F90/F95 pointer disambiguation across
calls; default is nof90ptr

fast choose IPA options generally optimal for
the target. Use –help to see the settings for
–Mipa=fast on a given target.

force force all objects to re-compile regardless of
whether IPA information has changed.

[no]globals optimize references to global variables;
default is noglobals.

inline[:n] perform automatic function inlining. If
the optional :n is provided, limit inlining
to at most n levels. IPA-based function
inlining is performed from leaf routines
upward.

Generic PGI Compiler Options

89

ipofile save IPA information in a .ipo file rather
than incorporating it into the object file.

[no]keepobj keep the optimized object files, using file
name mangling, to reduce re-compile
time in subsequent builds default is
keepobj.

[no]libc optimize calls to certain standard C library
routines.; default is nolibc.

[no]libinline allow inlining of routines from libraries;
implies –Mipa=inline; default is
nolibinline.

[no]libopt allow recompiling and optimization of
routines from libraries using IPA
information; default is nolibopt.

[no]localarg equivalent to arg plus externalization of
local pointer targets; default is nolocalarg.

main:<func> specify a function to appear as a global
entry point; may appear multiple times;
disables linking.

[no]ptr enable pointer disambiguation across
procedure calls; default is noptr.

[no]pure pure function detection; default is nopure.

required return an error condition if IPA is
inhibited for any reason, rather than the
default behavior of linking without IPA
optimization.

safe:[<function>|<library>] declares that the named function, or
all functions in the named library, are
safe; a safe procedure does not call back
into the known procedures and does not

Command Line Options

90

change any known global variables.
Without –Mipa=safe, any unknown
procedures will cause IPA to fail.

[no]safeall declares that all unknown procedures are
safe; see –Mipa=safe; default is nosafeall.

[no]shape perform Fortran 90 array shape
propagation; default is noshape.

summary only collect IPA summary information
when compiling; this prevents IPA
optimization of this file, but allows
optimization for other files linked with
this file.

[no]vestigial remove uncalled (vestigial) functions;
default is novestigial.

-Mlre[=array | assoc | noassoc]
Enables loop-carried redundancy elimination, an optimization that can
reduce the number of arithmetic operations and memory references in
loops.

array treat individual array element references
as candidates for possible loop-carried
redundancy elimination. The default is to
eliminate only redundant expressions
involving two or more operands.

assoc allow expression re-association; specifying
this sub-option can increase opportunities
for loop-carried redundancy elimination
but may alter numerical results.

noassoc disallow expression re-association.

-Mnolre Disables loop-carried redundancy elimination.

-Mnoframe Eliminates operations that set up a true stack frame pointer for every
function. With this option enabled, you cannot perform a traceback on
the generated code and you cannot access local variables.

Generic PGI Compiler Options

91

-Mnoi4 (pgf77 and pgf95 only) the compiler treats INTEGER variables as
INTEGER*2.

-Mpfi generate profile-feedback instrumentation; this includes extra code to
collect run-time statistics and dump them to a trace file for use in a
subsequent compilation. –Mpfi must also appear when the program is
linked. When the resulting program is executed, a profile feedback trace
file pgfi.out is generated in the current working directory; see –Mpfo.

Note

compiling and linking with –Mpfi adds significant runtime overhead to almost any
executable; you should use executables compiled with –Mpfi only for execution of training
runs.

-Mpfo enable profile-feedback optimizations; requires the presence of a
pgfi.out profile-feedback trace file in the current working directory. See
–Mpfi.

-Mprefetch[=option [,option...]]
enables generation of prefetch instructions on processors where they are
supported. Possible values for option include:

d:m set the fetch-ahead distance for prefetch
instructions to m cache lines.

n:p set the maximum number of prefetch
instructions to generate for a given loop to
p.

nta use the prefetchnta instruction.

plain use the prefetch instruction (default).

t0 use the prefetcht0 instruction.

w use the AMD-specific prefetchw
instruction.

-Mnoprefetch Disables generation of prefetch instructions.

Command Line Options

92

-Mr8 (pgf77, pgf95 and pghpf only) the compiler promotes REAL variables
and constants to DOUBLE PRECISION variables and constants,
respectively. DOUBLE PRECISION elements are 8 bytes in length.

-Mnor8 (pgf77, pgf95 and pghpf only) the compiler does not promote REAL
variables and constants to DOUBLE PRECISION. REAL variables will be
single precision (4 bytes in length).

-Mr8intrinsics (pgf77, and pgf95 only) the compiler treats the intrinsics CMPLX and
REAL as DCMPLX and DBLE, respectively.

-Mnor8intrinsics (pgf77, and pgf95 only) the compiler does not promote the intrinsics
CMPLX and REAL to DCMPLX and DBLE, respectively.

-Msafeptr[=option[,option,...]]
(pgcc and pgcpp only) instructs the C/C++ compiler to override data
dependencies between pointers of a given storage class. Possible values
of option include:

all assume all pointers and arrays are
independent and safe for aggressive
optimizations, and in particular that no
pointers or arrays overlap or conflict with
each other.

arg instructs the compiler that arrays and
pointers are treated with the same copyin
and copyout semantics as Fortran dummy
arguments.

global instructs the compiler that global or
external pointers and arrays do not
overlap or conflict with each other and are
independent.

local/auto instructs the compiler that local pointers
and arrays do not overlap or conflict with
each other and are independent.

Generic PGI Compiler Options

93

static instructs the compiler that static pointers
and arrays do not overlap or conflict with
each other and are independent.

-Mscalarsse Use SSE/SSE2 instructions to perform scalar floating-point arithmetic
(this option is valid only on –tp {p7 | k8-32 | k8-64} targets).

-Mnoscalarsse Do not use SSE/SSE2 instructions to perform scalar floating-point
arithmetic; use x87 instructions instead (this option is not valid in
combination with the –tp k8-64 option).

-Msmart instructs the compiler driver to invoke a post-pass assembly
optimization utility.

-Mnosmart instructs the compiler not to invoke an AMD64-specific post-pass
assembly optimization utility.

-Munroll[=option [,option...]]
invokes the loop unroller. This also sets the optimization level to 2 if the
level is set to less than 2. The option is one of the following:

c:m instructs the compiler to completely unroll loops with a
constant loop count less than or equal to m, a supplied
constant. If this value is not supplied, the m count is set to 4.

n:u instructs the compiler to unroll u times, a loop that is not
completely unrolled, or has a non-constant loop count. If u
is not supplied, the unroller computes the number of times a
candidate loop is unrolled.

-Mnounroll instructs the compiler not to unroll loops.

-M[no]vect[=option [,option,...]]
(disable) enable the code vectorizer, where option is one of the
following:

altcode Instructs the vectorizer to generate
alternate code (altcode) for vectorized
loops when appropriate. For each
vectorized loop the compiler decides
whether to generate altcode and what type
or types to generate, which may be any or

Command Line Options

94

all of: altcode without iteration peeling,
altcode with non-temporal stores and
other data cache optimizations, and
altcode based on array alignments
calculated dynamically at runtime. The
compiler also determines suitable loop
count and array alignment conditions for
executing the alcode. This option is
enabled by default.

noaltcode This disables alternate code generation for
vectorized loops.

assoc Instructs the vectorizer to enable certain
associativity conversions that can change
the results of a computation due to
roundoff error. A typical optimization is to
change an arithmetic operation to an
arithmetic operation that is
mathematically correct, but can be
computationally different, due to round-
off error

noassoc Instructs the vectorizer to disable
associativity conversions.

cachesize:n Instructs the vectorizer, when performing
cache tiling optimizations, to assume a
cache size of n. The default is set using
per-processor type, either using the -tp
switch or auto-detected from the host
computer.

[no]sizelimit Generate vector code for all loops where
possible regardless of the number of
statements in the loop. This overrides a
heuristic in the vectorizer that ordinarily
prevents vectorization of loops with a

Generic PGI Compiler Options

95

number of statements that exceeds a
certain threshold. The default is
nosizelimit.

smallvect[:n] Instructs the vectorizer to assume that the
maximum vector length is less than or
equal to n. The vectorizer uses this
information to eliminate generation of the
stripmine loop for vectorized loops
wherever possible. If the size n is omitted,
the default is 100.

Note: No space is allowed on either side of
the colon (:).

sse Instructs the vectorizer to search for
vectorizable loops and, where possible,
make use of SSE, SSE2 and prefetch
instructions.

-Mnovect instructs the compiler not to perform vectorization; can be used to
override a previous instance of –Mvect on the command-line, in
particular for cases where –Mvect is included in an aggregate option
such as –fastsse.

-Mnovintr instructs the compiler not to perform idiom recognition or introduce
calls to hand-optimized vector functions.

Default: For arguments that you do not specify, the default optimization control options are as follows:

depchk noprefetch

i4 nounroll

nofprelaxed novect

noipa nor8

nolre nor8intrinsics

Command Line Options

96

If you do not supply an option to –Mvect, the compiler uses defaults that are dependent upon the
target system.

Usage: In this example, the compiler invokes the vectorizer with use of packed SSE instructions
enabled.

$ pgf95 -Mvect=sse -Mcache_align

myprog.f

Cross-reference: –g, –O

-M<pgflag> Miscellaneous Controls

Syntax:

-Manno annotate the generated assembly code with source code when either the
–S or –Mkeepasm options are used.

-Mbounds enables array bounds checking. If an array is an assumed size array, the
bounds checking only applies to the lower bound. If an array bounds
violation occurs during execution, an error message describing the error
is printed and the program terminates. The text of the error message
includes the name of the array, the location where the error occurred
(the source file and the line number in the source), and information
about the out of bounds subscript (its value, its lower and upper bounds,
and its dimension). For example: PGFTN-F-Subscript out of range for
array a (a.f: 2) subscript=3, lower bound=1, upper bound=2,
dimension=2

-Mnobounds disables array bounds checking.

-Mbyteswapio swap byte-order from big-endian to little-endian or vice versa upon
input/output of Fortran unformatted data files.

-Mchkfpstk instructs the compiler to check for internal consistency of the x87
floating-point stack in the prologue of a function and after returning
from a function or subroutine call. Floating-point stack corruption may
occur in many ways, one of which is Fortran code calling floating-point
functions as subroutines (i.e., with the CALL statement). If the
PGI_CONTINUE environment variable is set upon execution of a
program compiled with –Mchkfpstk, the stack will be automatically
cleaned up and execution will continue. There is a performance penalty

Generic PGI Compiler Options

97

associated with the stack cleanup. If PGI_CONTINUE is set to verbose,
the stack will be automatically cleaned up and execution will continue
after printing of a warning message.

-Mchkptr instructs the compiler to check for pointers that are de-referenced while
initialized to NULL (pgf95 and pghpf only).

-Mchkstk instructs the compiler to check the stack for available space in the
prologue of a function and before the start of a parallel region. Prints a
warning message and aborts the program gracefully if stack space is
insufficient. Useful when many local and private variables are declared
in an OpenMP program.

–Mcpp[=option [,option,...]]
run the PGI cpp-like pre-processor without execution of any subsequent
compilation steps. This option is useful for generating dependence
information to be included in makefiles. option is one or more of the
following (Note: only one of the m, md, mm or mmd options can be
present; if multiple of these options are listed, the last one listed is
accepted and the others are ignored):

m print makefile dependencies to stdout.

md print makefile dependencies to filename.d,
where filename is the root name of the
input file being processed.

mm print makefile dependencies to stdout,
ignoring system include files.

mmd print makefile dependencies to filename.d,
where filename is the root name of the
input file being processed, ignoring system
include files.

[no]comment (don’t) retain comments in ed output.

[suffix:]<suff> use <suff> as the suffix of the output file
containing makefile dependencies.

Command Line Options

98

-Mdll (Windows only) link with the DLL versions of the runtime libraries. This
flag is required when linking with any DLL built by any of The Portland
Group compilers. This option implies -D_DLL, which defines the
preprocessor symbol _DLL.

-Mgccbug[s] match the behavior of certain gcc bugs.

-Minfo[=option [,option,...]]
instructs the compiler to produce information on standard error, where
option is one of the following:

all instructs the compiler to produce all
available -Minfo information.

inline instructs the compiler to display
information about extracted or inlined
functions. This option is not useful
without either the –Mextract or –Minline
option.

ipa instructs the compiler to display
information about interprocedural
optimizations.

loop instructs the compiler to display
information about loops, such as
information on vectorization.

opt instructs the compiler to display
information about optimization.

mp instructs the compiler to display
information about parallelization.

time instructs the compiler to display
compilation statistics.

unroll instructs the compiler to display
information about loop unrolling.

Generic PGI Compiler Options

99

-Mneginfo[=option [,option,...]] neginfo
instructs the compiler to produce information on standard error, where
option is one of the following:

all instructs the compiler to produce all
available information on why various
optimizations are not performed.

concur instructs the compiler to produce all
available information on why loops are
not automatically parallelized. In
particular, if a loop is not parallelized due
to potential data dependence, the
variable(s) that cause the potential
dependence will be listed in the -Mneginfo
messages.

loop instructs the compiler to produce
information on why memory hierarchy
optimizations on loops are not performed.

-Minform,level instructs the compiler to display error messages at the specified and
higher levels, where level is one of the following:inform

fatal instructs the compiler to display fatal
error messages.

severe instructs the compiler to display severe
and fatal error messages.

warn instructs the compiler to display warning,
severe and fatal error messages.

inform informinstructs the compiler to display all
error messages (inform, warn, severe and
fatal).

-Mkeepasm instructs the compiler to keep the assembly file as compilation
continues. Normally, the assembler deletes this file when it is finished.
The assembly file has the same filename as the source file, but with a .s
extension.

Command Line Options

100

-Mlist instructs the compiler to create a listing file. The listing file is
filename.lst, where the name of the source file is filename.f.

-Mnolist the compiler does not create a listing file. This is the default.

-Mmakedll (Windows only) generate a dynamic link library (DLL).

-Mnoopenmp when used in combination with the -mp option, causes the compiler to
ignore OpenMP parallelization directives or pragmas, but still process
SGI-style parallelization directives or pragmas.

-Mnosgimp when used in combination with the -mp option, causes the compiler to
ignore SGI-style parallelization directives or pragmas, but still process
OpenMP parallelization directives or pragmas.

-Mnopgdllmain (Windows only) do not link the module containing the default
DllMain() into the DLL. This flag applies to building DLLs with the
PGF95 and PGHPF compilers. If you want to replace the default
DllMain() routine with a custom DllMain(), use this flag and add the
object containing the custom DllMain() to the link line. The latest
version of the default DllMain() used by PGF95 and PGHPF is included
in the Release Notes for each release; the PGF95- and PGHPF-specific
code in this routine must be incorporated into the custom version of
DllMain() to ensure the appropriate function of your DLL.

-Mpreprocess perform cpp-like pre-processing on assembly and Fortran input source
files.

Default: For arguments that you do not specify, the default miscellaneous options are as follows:

Usage: In the following example, the compiler includes Fortran source code with the assembly code.

$ pgf95 -Manno -S myprog.f

In the following example, the compiler displays information about inlined functions with fewer than
approximately 20 source lines in the source file myprog.f.

inform warn

nolist nobounds

Generic PGI Compiler Options

101

$ pgf95 -Minfo=inline -Minline=20

myprog.f

In the following example, the assembler does not delete the assembly file myprog.s after the assembly
pass.

$ pgf95 -Mkeepasm myprog.f

In the following example, the compiler creates the listing file myprog.lst.

$ pgf95 -Mlist myprog.f

In the following example, array bounds checking is enabled.

$ pgf95 -Mbounds myprog.f

Cross-reference: –m, –S, –V, –v

-mcmodel=medium

(For use only on 64-bit Linux targets) Generate code for the medium memory model in the linux86-64
execution environment. Implies –Mlarge_arrays.

The default small memory model of the linux86-64 environment limits the combined area for a user’s
object or executable to 1GB, with the Linux kernel managing usage of the second 1GB of address for
system routines, shared libraries, stacks, etc. Programs are started at a fixed address, and the program
can use a single instruction to make most memory references.

The medium memory model allows for larger than 2GB data areas, or .bss sections. Program units
compiled using either –mcmodel=medium or –fpic require additional instructions to reference
memory. The effect on performance is a function of the data-use of the application. The –
mcmodel=medium switch must be used at both compile time and link time to create 64-bit
executables. Program units compiled for the default small memory model can be linked into medium
memory model executables as long as they are compiled –fpic, or position-independent.

The linux86-64 environment provides static libxxx.a archive libraries that are built with and without
–fpic, and dynamic libxxx.so shared object libraries that are compiled –fpic. The –mcmodel=medium
linkswitch implies the –fpic switch and will utilize the shared libraries by default. Similarly, the $PGI/
linux86-64/<rel>/lib directory contains the libraries for building small memory model codes, and the
$PGI/linux86-64/<rel>/libso directory contains shared libraries for building –mcmodel=medium

Command Line Options

102

and –fpic executables. Note: It appears from the GNU tools and documentation that creation of
medium memory model shared libraries is not supported. However, you can create static archive
libraries (.a) that are –fpic.

Default: The compiler generates code for the small memory model.

Usage: The following command line requests position independent code be generated, and the –
mcmodel=medium option be passed to the assembler and linker:

$ pgf95 -mcmodel=medium myprog.f

-module <moduledir>

Use the -module option to specify a particular directory in which generated intermediate .mod files
should be placed. If the -module <moduledir> option is present, and USE statements are present in a
compiled program unit, <moduledir> will search for .mod intermediate files prior to the search in the
default (local) directory.

Default: The compiler places .mod files in the current working directory, and searches only in the
current working directory for pre-compiled intermediate .mod files.

Usage: The following command line requests that any intermediate module file produced during
compilation of myprog.f be placed in the directory mymods (in particular, the file ./mymods/
myprog.mod will be used):

$ pgf95 -module mymods myprog.f

-mp[=align,[no]numa]

Use the -mp option to instruct the compiler to interpret user-inserted OpenMP shared-memory
parallel programming directives and generate an executable file which will utilize multiple processors
in a shared-memory parallel system. See OpenMP Directives for Fortranand OpenMP Pragmas for C
and C++, for a detailed description of this programming model and the associated directives and
pragmas. The align sub-option forces loop iterations to be allocated to OpenMP processes using an
algorithm that maximizes alignment of vector sub-sections in loops that are both parallelized and
vectorized for SSE. This can improve performance in program units that include many such loops. It
can result in load-balancing problems that significantly decrease performance in program units with
relatively short loops that contain a large amount of work in each iteration. The numa suboption uses
libnuma on systems where it is available.

Generic PGI Compiler Options

103

Default: The compiler ignores user-inserted shared-memory parallel programming directives and
pragmas.

Usage: The following command line requests processing of any shared-memory directives present in
myprog.f:

$ pgf95 -mp myprog.f

Cross-reference: –Mconcur and –Mvect

-nfast

A generally optimal set of options is chosen depending on the target system. In addition, the
appropriate –tp option is automatically included to enable generation of code optimized for the type
of system on which compilation is performed.

Note

Auto-selection of the appropriate –tp option means that programs built using the –fast
option on a given system are not necessarily backward-compatible with older systems.

Cross-reference: –O, –Munroll, –Mnoframe, –Mvect, –tp, –Mscalarsse

-O<level>

Invokes code optimization at the specified level.

Syntax:

–O [level]

Where level is one of the following:

0 creates a basic block for each statement. Neither scheduling nor global
optimization is done. To specify this level, supply a 0 (zero) argument to
the –O option.

1 schedules within basic blocks and performs some register allocations,
but does no global optimization.

2 performs all level-1 optimizations, and also performs global scalar
optimizations such as induction variable elimination and loop invariant
movement.

Command Line Options

104

3 level-three specifies aggressive global optimization. This level performs
all level-one and level-two optimizations and enables more aggressive
hoisting and scalar replacement optimizations that may or may not be
profitable.

4 level-four performs all level-one, level-two, and level-three
optimizations and enables hoisting of guarded invariant floating point
expressions.

Default: This table shows the interaction between the –O option, –g option, –Mvect, and –Mconcur
options.

Table 3-4: Optimization and –O, –g, –Mvect, and –Mconcur Options

Unoptimized code compiled using the option –O0 can be significantly slower than code generated at
other optimization levels. Like the –Mvect option, the –Munroll option sets the optimization level to
level-2 if no –O or –g options are supplied. The -gopt option is recommended for generation of debug
information with optimized code. For more information on optimization, see Optimization &
Parallelization.

Usage: In the following example, since no optimization level is specified and a –O option is specified,
the compiler sets the optimization to level-2.

Optimize
Option

Debug
Option –M Option Optimization

Level

none none none 1

none none –Mvect 2

none none –Mconcur 2

none –g none 0

–O none or –g none 2

–Olevel none or –g none level

–Olevel < 2 none or –g –Mvect 2

–Olevel < 2 none or –g –Mconcur 2

Generic PGI Compiler Options

105

$ pgf95 -O myprog.f

Cross-reference: –g, –M<pgflag>, –gopt

-o

Names the executable file. Use the –o option to specify the filename of the compiler object file. The
final output is the result of linking.

Syntax:

–o filename

Where filename is the name of the file for the compilation output. The filename must not have a .f
extension.

Default: The compiler creates executable filenames as needed. If you do not specify the –o option, the
default filename is the linker output file a.out.

Usage: In the following example, the executable file is myprog instead of the default a.out.

$ pgf95 myprog.f -o myprog

Cross-reference: –c ,–E, –F, –S

-pc

(–tp px/p5/p6/piii targets only) The –pc option can be used to control the precision of operations
performed using the x87 floating point unit, and their representation on the x87 floating point stack.

Syntax:

–pc { 32 | 64 | 80 }

The x87 architecture implements a floating-point stack using 8 80-bit registers. Each register uses bits
0-63 as the significand, bits 64-78 for the exponent, and bit 79 is the sign bit. This 80-bit real format is
the default format (called the extended format). When values are loaded into the floating point stack
they are automatically converted into extended real format. The precision of the floating point stack
can be controlled, however, by setting the precision control bits (bits 8 and 9) of the floating control
word appropriately. In this way, you can explicitly set the precision to standard IEEE double-precision

using 64 bits, or to single precision using 32 bits.1 The default precision is system dependent. To alter

Command Line Options

106

the precision in a given program unit, the main program must be compiled with the same -pc option.
The command line option –pc val lets the programmer set the compiler’s precision preference. Valid
values for val are:

• 32 single precision

• 64 double precision

• 80 extended precision

Extended Precision Option – Operations performed exclusively on the floating-point stack using
extended precision, without storing into or loading from memory, can cause problems with
accumulated values within the extra 16 bits of extended precision values. This can lead to answers,
when rounded, that do not match expected results.

For example, if the argument to sin is the result of previous calculations performed on the floating-
point stack, then an 80-bit value used instead of a 64-bit value can result in slight discrepancies.
Results can even change sign due to the sin curve being too close to an x-intercept value when
evaluated. To maintain consistency in this case, you can assure that the compiler generates code that
calls a function. According to the x86 ABI, a function call must push its arguments on the stack (in
this way memory is guaranteed to be accessed, even if the argument is an actual constant.) Thus, even
if the called function simply performs the inline expansion, using the function call as a wrapper to sin
has the effect of trimming the argument precision down to the expected size. Using the -Mnobuiltin
option on the command line for C accomplishes this task by resolving all math routines in the library
libm, performing a function call of necessity. The other method of generating a function call for math
routines, but one that may still produce the inline instructions, is by using the -Kieee switch.

A second example illustrates the precision control problem using a section of code to determine
machine precision:

 program find_precision

 w = 1.0

100 w=w+w

 y=w+1

 z=y-w

 if (z .gt. 0) goto 100

1. According to Intel documentation, this only affects the x87 operations of add, subtract, multiply, divide, and square

root. In particular, it does not appear to affect the x87 transcendental instructions.

Generic PGI Compiler Options

107

C now w is just big enough that |((w+1)-w)-1| >= 1

...

 print*,w

 end

In this case, where the variables are implicitly real*4, operations are performed on the floating-point
stack where optimization removed unnecessary loads and stores from memory. The general case of
copy propagation being performed follows this pattern:

 a = x

 y = 2.0 + a

Instead of storing x into a, then loading a to perform the addition, the value of x can be left on the
floating-point stack and added to 2.0. Thus, memory accesses in some cases can be avoided, leaving
answers in the extended real format. If copy propagation is disabled, stores of all left-hand sides will be
performed automatically and reloaded when needed. This will have the effect of rounding any results
to their declared sizes.

For the above program, w has a value of 1.8446744E+19 when executed using default (extended)
precision. If, however, -Kieee is set, the value becomes 1.6777216E+07 (single precision.) This
difference is due to the fact that -Kieee disables copy propagation, so all intermediate results are stored
into memory, then reloaded when needed. Copy propagation is only disabled for floating-point
operations, not integer. With this particular example, setting the -pc switch will also adjust the result.

The switch -Kieee also has the effect of making function calls to perform all transcendental
operations. Although the function still produces the x86 machine instruction for computation (unless
in C the -Mnobuiltin switch is set), arguments are passed on the stack, which results in a memory
store and load.

Finally, -Kieee also disables reciprocal division for constant divisors. That is, for a/b with unknown a
and constant b, the expression is usually converted at compile time to a*(1/b), thus turning an
expensive divide into a relatively fast scalar multiplication. However, numerical discrepancies can
occur when this optimization is used.

Understanding and correctly using the -pc, -Mnobuiltin, and -Kieee switches should enable you to
produce the desired and expected precision for calculations which utilize floating-point operations.

Usage:

$ pgf95 -pc 64 myprog.c

Command Line Options

108

-pg

(Linux only) Instructs the compiler to instrument the generated executable for gprof-style sample-
based profiling. Must be used at both the compile and link steps. A gmon.out style trace is generated
when the resulting program is executed, and and can be analyzed using gprof or pgprof.

Syntax:

–pg

Default: The compiler does not instrument the generated executable for gprof-style profiling.

-Q

Selects variations for compilation. There are four uses for the –Q option.

Syntax:

-Qdirdirectory

The first variety, using the dir keyword, lets you supply a directory parameter that indicates the
directory where the compiler driver is located.

-Qoptionprog,opt

The second variety, using the option keyword, lets you supply the option opt to the program prog. The
prog parameter can be one of pgftn, as, or ld.

-Qpathpathname

The third –Q variety, using the path keyword, lets you supply an additional pathname to the search
path for the compiler’s required .o files.

-Qproducesourcetype

The fourth –Q variety, using the produce keyword, lets you choose a stop-after location for the
compilation based on the supplied sourcetype parameter. Valid sourcetypes are: .i, .c, .s and .o. These
indicate respectively, stop-after preprocessing, compiling, assembling, or linking.

Usage: The following examples show the different –Q options.

Generic PGI Compiler Options

109

$ pgf95 -Qproduce .s hello.f

$ pgf95 -Qoption ld,-s hello.f

$ pgf95 -Qpath /home/test hello.f

$ pgf95 -Qdir /home/comp/new

hello.f

Cross-reference: –p

-R<directory>

Valid only on Linux and is passed to the linker. Instructs the linker to hard-code the pathname
<directory> into the search path for generated shared object (dynamically linked library) files. Note
that there cannot be a space between R and <directory>.

Cross-reference: –fpic, –shared, –G

-r4 and -r8

Interpret DOUBLE PRECISION variables as REAL (–r4) or REAL variables as DOUBLE PRECISION (–
r8).

Usage:

$ pgf95 -r4 myprog.f

Cross-reference: –i2, –i4, -i8, -nor8

-rc

Specifies the name of the driver startup configuration file. If the file or pathname supplied is not a full
pathname, the path for the configuration file loaded is relative to the $DRIVER path (the path of the
currently executing driver). If a full pathname is supplied, that file is used for the driver configuration
file.

Syntax:

–rc [path] filename

Where path is either a relative pathname, relative to the value of $DRIVER, or a full pathname
beginning with "/". Filename is the driver configuration file.

Default: The driver uses the configuration file .pgirc.

Command Line Options

110

Usage: In the following example, the file .pgf95rctest, relative to /usr/pgi/linux86/bin, the value of
$DRIVER, is the driver configuration file.

$ pgf95 -rc .pgf95rctest myprog.f

Cross-reference: –show

-S

Stops compilation after the compiling phase and writes the assembly-language output to the file
filename.s, where the input file is filename.f.

Default: The compiler produces an executable file.

Usage: In this example, pgf95 produces the file myprog.s in the current directory.

$ pgf95 -S myprog.f

Cross-reference: –c, –E, –F, –Mkeepasm, –o

-shared

Valid only on Linux and is passed to the linker. Instructs the linker to produce a shared object
(dynamically linked library) file.

Cross-reference: –fpic, –G, –R

-show

Produce driver help information describing the current driver configuration.

Usage: In the following example, the driver displays configuration information to the standard output
after processing the driver configuration file.

$ pgf95 -show myprog.f

Cross-reference: –V , –v, –###, –help, –rc

-silent

Do not print warning messages.

Usage: In the following example, the driver does not display warning messages.

$ pgf95 -silent myprog.f

Generic PGI Compiler Options

111

Cross-reference: -v, -V, -w

-soname

(Linux only.) The compiler recognizes the -soname option and passes it through to the linker.

Usage: In the following example, the driver passes the soname option and its argument through to the
linker.

$ pgf95 -soname library.so myprog.f

-time

Print execution times for various compilation steps.

Usage: In the following example, pgf95 prints the execution times for the various compilation steps.

$ pgf95 -time myprog.f

Cross-reference: –#

-tp <target> [,target...]

Set the target architecture. By default, the PGI compilers produce code specifically targeted to the type
of processor on which the compilation is performed. In particular, the default is to use all supported
instructions wherever possible when compiling on a given system. As a result, executables created on a
given system may not be useable on previous generation systems (for example, executables created on
a Pentium 4 may fail to execute on a Pentium III or Pentium II).

Processor-specific optimizations can be specified or limited explicitly by using the -tp option. In this
way, it is possible to create executables that are usable on previous generation systems. With the
exception of k8-64, k8-64e, p7-64, and x64, any of these sub-options are valid on any x86 or x64
processor-based system. The k8-64, k8-64e, p7-64 and x64 options are valid only on x64 processor-
based systems.

The –tp x64 option is used to generate unified binary object and executable files. The –tp k8-64 and –
tp k8-64e options result in generation of code supported on and optimized for AMD x64 processors,
while the –tp p7-64 option results in generation of code that is supported on and optimized for Intel
x64 processors. Performance of k8-64 or k8-64e code executed on Intel x64 processors, or of p7-64
code executed on AMD x64 processors, can often be significantly less than that obtained with a native
binary. The –tp x64 option results in generation of unified binary object and executable files which
are supported on and include optimized code sequences for both AMD and Intel x64 processors.

Command Line Options

112

Following is a list of possible sub-options to –tp and the processors they are intended to target:

k8-32 generate 32-bit code for AMD Athlon64, AMD Opteron and compatible
processors.

k8-64 generate 64-bit code for AMD Athlon64, AMD Opteron and compatible
processors.

k8-64e generate 64-bit code for AMD Opteron Revision E, AMD Turion, and
compatible processors.

p6 generate 32-bit code for Pentium Pro/II/III and AthlonXP compatible
processors.

p7 generate 32-bit code for Pentium 4 and compatible processors.

p7-64 generate 64-bit code for Intel P4/Xeon EM64T and compatible
processors.

core2 generate 32-bit code for Intel Core 2 Duo and compatible processors.

core2-64 generate 64-bit code for Intel Core 2 Duo EM64T and compatible
processors.

piii generate 32-bit code for Pentium III and compatible processors,
including support for single-precision vector code using SSE
instructions.

px generate 32-bit code that is useable on any x86 processor-based system.

x64 generate 64-bit unified binary code including full optimizations and
support for both AMD and Intel x64 processors.

See Table 2 , “Processor Options” for a concise list of the features of these processors that distinguish
them as separate targets when using the PGI compilers and tools.

Syntax for 64-bit targets:

-tp {k8-64 | k8-64e | p7-64 | core2-64 | x64}

Syntax for 32-bit targets:

-tp {k8-32 | p6 | p7 | core2 | piii | px}

Generic PGI Compiler Options

113

Usage: In the following example, pgf95 sets the target architecture to EM64T:

$ pgf95 -tp p7-64 myprog.f

Default: The default style of code generation is auto-selected depending on the type of processor on
which compilation is performed. The –tp x64 style of unified binary code generation is only enabled
by an explicit –tp x64 option.

Using -tp to Generate a Unified Binary

All 64-bit PGI compilers can produce PGI Unified Binary programs containing code streams fully
optimized and supported for both AMD64 and Intel EM64T processors using the -tp target option. The
compilers generate and combine into one executable multiple binary code streams each optimized for
a specific platform. At runtime, this one executable senses the environment and dynamically selects
the appropriate code stream.

Different processors have subtle and not-so-subtle differences in hardware features such as instruction
sets and cache size. The compilers make architecture-specific decisions about such things as
instruction selection, instruction scheduling, and vectorization, all of which can have significant
effects on performance and compatibility. PGI unified binaries provide a low-overhead means for a
single program to run well on a number of hardware platforms.

The target processor switch, -tp, accepts a comma-separated list of 64-bit targets and will generate
code optimized for each listed target. For example,

-tp k8-64,p7-64,core2-64

generates optimized code for three targets. A special target switch, -tp x64, is the same as -tp k8-64,p7-
64. See “Processor-Specific Optimization and the Unified Binary” on page 35 for more information on
unified binaries.

-U

Undefines a preprocessor macro. Use the –U option or the #undef preprocessor directive to undefine
macros.

Syntax:

-Usymbol

Where symbol is a symbolic name.

Command Line Options

114

Usage: The following examples undefine the macro test.

$ pgf95 -Utest myprog.F

$ pgf95 -Dtest -Utest myprog.F

Cross-reference: –D,–Mnostddef.

-V[release_number]

Displays additional information, including version messages. If a release_number is appended, the
compiler driver will attempt to compile using the specified release instead of the default release. There
can be no space between –V and release_number. The specified release must be co-installed with the
default release, and must have a release number greater than or equal to 4.1 (the first release for
which this functionality is supported).

Usage: The following command-line shows the output using the -V option.

% pgf95 -V myprog.f

The following command-line causes PGF95 to compile using the 5.2 release instead of the default:

% pgcc -V5.2 myprog.c

Cross-reference: –Minfo, –v

-v

Use the –v option to display the invocations of the compiler, assembler, and linker. These invocations
are command lines created by the compiler driver from the files and the –W options you specify on the
compiler command-line.

Default: The compiler does not display individual phase invocations.

Cross-reference: –Minfo, –V

-W

Passes arguments to a specific phase. Use the –W option to specify options for the assembler, compiler
or linker. Note: A given PGI compiler command invokes the compiler driver, which parses the
command-line and generates the appropriate commands for the compiler, assembler and linker.

Syntax:

–W {0 | a | l },option[,option...]

C and C++ -specific Compiler Options

115

Where:

0 (the number zero) specifies the compiler.

a specifies the assembler.

l (lowercase letter l) specifies the linker.

option is a string that is passed to and interpreted by the compiler, assembler or
linker. Options separated by commas are passed as separate command
line arguments.

Note

You cannot have a space between the –W and the single-letter pass identifier, between the
identifier and the comma, or between the comma and the option.

Usage: In the following example the linker loads the text segment at address 0xffc00000 and the data
segment at address 0xffe00000.

$ pgf95 -Wl,-k,-t,0xffc00000,-d,0xffe00000 myprog.f

-w

Do not print warning messages.

C and C++ -specific Compiler Options

The following options are specific to PGCC C and/or C++.

-A

(pgcpp only) Using this option, the PGC++ compiler accepts code conforming to the proposed ANSI
C++ standard. It issues errors for non-conforming code.

Default: By default, the compiler accepts code conforming to the standard C++ Annotated Reference
Manual.

Usage: The following command-line requests ANSI conforming C++.

$ pgcpp -A hello.cc

Cross-references: –b and +p.

Command Line Options

116

--[no_]alternative_tokens

(pgcpp only) Enable or disable recognition of alternative tokens. These are tokens that make it
possible to write C++ without the use of the , , [,], #, &, , ^, and characters. The alternative tokens
include the operator keywords (e.g., and, bitand, etc.) and digraphs. The default behavior is --
no_alternative_tokens.

-B

(pgcc and pgcpp only) Enable use of C++ style comments starting with // in C program units.

Default: The PGCC ANSI and K&R C compiler does not allow C++ style comments.

Usage: In the following example the compiler accepts C++ style comments.

$ pgcc -B myprog.cc

-b

(pgcpp only) Enable compilation of C++ with cfront 2.1 compatibility. This causes the compiler to
accept language constructs that, while not part of the C++ language definition, are accepted by the
AT&T C++ Language System (cfront release 2.1). This option also enables acceptance of
anachronisms.

Default: The compiler does not accept cfront language constructs that are not part of the C++
language definition.

Usage: In the following example the compiler accepts cfront constructs.

$ pgcpp -b myprog.cc

Cross-references: ––cfront2.1, –b3 , ––cfront3.0, +p, –A

-b3

(pgcpp only) Enable compilation of C++ with cfront 3.0 compatibility. This causes the compiler to
accept language constructs that, while not part of the C++ language definition, are accepted by the
AT&T C++ Language System (cfront release 3.0). This option also enables acceptance of
anachronisms.

C and C++ -specific Compiler Options

117

Default: The compiler does not accept cfront language constructs that are not part of the C++
language definition.

Usage: In the following example, the compiler accepts cfront constructs.

$ pgcpp -b3 myprog.cc

Cross-references: ––cfront2.1, –b , ––cfront3.0 , +p, –A

--[no_]bool

(pgcpp only) Enable or disable recognition of bool. The default value is --bool.

--cfront_2.1

(pgcpp only) Enable compilation of C++ with cfront 2.1 compatibility. This causes the compiler to
accept language constructs that, while not part of the C++ language definition, are accepted by the
AT&T C++ Language System (cfront release 2.1). This option also enables acceptance of
anachronisms.

Default: The compiler does not accept cfront language constructs that are not part of the C++
language definition.

Usage: In the following example, the compiler accepts cfront constructs.

$ pgcpp --cfront_2.1 myprog.cc

Cross-references: –b, –b3 , ––cfront3.0, +p, –A

--cfront_3.0

(pgcpp only) Enable compilation of C++ with cfront 3.0 compatibility. This causes the compiler to
accept language constructs that, while not part of the C++ language definition, are accepted by the
AT&T C++ Language System (cfront release 3.0). This option also enables acceptance of
anachronisms.

Default: The compiler does not accept cfront language constructs that are not part of the C++
language definition.

Usage: In the following example, the compiler accepts cfront constructs.

$ pgcpp --cfront_3.0

myprog.cc

Command Line Options

118

Cross-references: ––cfront2.1, –b , –b3 , +p, –A

--create_pch filename

(pgcpp only) If other conditions are satisfied, create a precompiled header file with the specified
name. If --pch (automatic PCH mode) appears on the command line following this option, its effect is
erased.

--diag_suppress tag

(pgcpp only) Override the normal error severity of the specified diagnostic messages. The message(s)
may be specified using a mnemonic error tag or using an error number.

--diag_remark tag

(pgcpp only) Override the normal error severity of the specified diagnostic messages. The message(s)
may be specified using a mnemonic error tag or using an error number.

--diag_warning tag

(pgcpp only) Override the normal error severity of the specified diagnostic messages. The message(s)
may be specified using a mnemonic error tag or using an error number.

--diag_error tag

(pgcpp only) Override the normal error severity of the specified diagnostic messages. The message(s)
may be specified using a mnemonic error tag or using an error number.

--display_error_number

(pgcpp only) Display the error message number in any diagnostic messages that are generated. The
option may be used to determine the error number to be used when overriding the severity of a
diagnostic message.

--[no_]exceptions

(pgcpp only) Enable/disable exception handling support. The default is --exceptions.

--[no]llalign

(pgcpp only) Do/don’t align long long integers on long long boundaries. The default is --llalign.

C and C++ -specific Compiler Options

119

-M

Generate a list of make dependencies and print them to stdout. Compilation stops after the pre-
processing phase.

-MD

Generate a list of make dependencies and print them to the file <file>.d, where <file> is the name of
the file under compilation. dependencies_file<file>

--optk_allow_dollar_in_id_chars

(pgcpp only) Accept dollar signs ($) in identifiers.

-P

Stops compilation after the preprocessing phase. Use the –P option to halt the compilation process
after preprocessing and write the preprocessed output to the file filename.i, where the input file is
filename.c or filename.cc.

Use the -suffix option with this option to save the intermediate file in a file with the specified
suffix.

Default: The compiler produces an executable file.

Usage: In the following example, the compiler produces the preprocessed file myprog.i in the current
directory.

$ pgcpp -P myprog.cc

Cross-references: –C,–c,–E, –Mkeepasm, –o, –S

--pch

(pgcpp only) Automatically use and/or create a precompiled header file. If --use_pch or --create_pch
(manual PCH mode) appears on the command line following this option, its effect is erased.

--pch_dir directoryname

(pgcpp only) The directory in which to search for and/or create a precompiled header file. This option
may be used with automatic PCH mode (--pch) or manual PCH mode (--create_pch or --use_pch).

Command Line Options

120

--[no_]pch_messages

(pgcpp only) Enable or disable the display of a message indicating that a precompiled header file was
created or used in the current compilation.

--preinclude=<filename>

(pgcpp only) Specifies the name of a file to be included at the beginning of the compilation. This
option can be used to set system-dependent macros and types, for example.

--use_pch filename

(pgcpp only) Use a precompiled header file of the specified name as part of the current compilation. If
--pch (automatic PCH mode) appears on the command line following this option, its effect is erased.

--[no_]using_std

(pgcpp only) Enable or disable implicit use of the std namespace when standard header files are
included.

Default: The default is --using_std.

Usage: The following command-line disables implicit use of the std namespace:

$ pgcpp --no_using_std

hello.cc

-t

(pgcpp only) Control instantiation of template functions.

Syntax:

–t [arg]

where arg is one of the following:

all Instantiates all functions whether or not they are used.

local Instantiates only the functions that are used in this compilation, and
forces those functions to be local to this compilation.

Note: This may cause multiple copies of local static variables. If this
occurs, the program may not execute correctly.

C and C++ -specific Compiler Options

121

none Instantiates no functions. (this is the default)

used Instantiates only the functions that are used in this compilation.

Usage: In the following example, all templates are instantiated.

$ pgcpp

-tall myprog.cc

Command Line Options

122

Invoking Function Inlining

123

4 Function Inlining
Function inlining replaces a call to a function or a subroutine with the body of the function or
subroutine. This can speed up execution by eliminating parameter passing and function/subroutine call
and return overhead. It also allows the compiler to optimize the function with the rest of the code. Note
that using function inlining indiscriminately can result in much larger code size and no increase in
execution speed.

The PGI compilers provide two categories of inlining:

• Automatic inlining - During the compilation process, a hidden pass precedes the compilation pass.
This hidden pass extracts functions that are candidates for inlining. The inlining of functions
occurs as the source files are compiled.

• Inline libraries - You create inline libraries, for example using the pgf95 command and the –
Mextract and –o options. There is no hidden extract pass but you must ensure that any files that
depend on the inline library use the latest version of the inline library.

There are important restrictions on inlining. Inlining only applies to certain types of functions. Refer to
“Restrictions on Inlining” on page 128, at the end of this chapter for more details on function inlining
limitations.

Invoking Function Inlining

To invoke the function inliner, use the –Minline option. If you do not specify an inline library, the
compiler performs a special prepass on all source files named on the compiler command line before it
compiles any of them. This pass extracts functions that meet the requirements for inlining and puts
them in a temporary inline library for use by the compilation pass.

Several –Minline options let you determine the selection criteria for functions to be inlined. These
selection criteria include:

except:func Inline all eligible functions except func, a function in the source text.
Multiple functions can be listed, comma-separated.

[name:]func A function name, which is a string matching func, a function in the source
text.

Function Inlining

124

[size:]n A size, which instructs the compiler to select functions with a statement
count less than or equal to n, the specified size.

Note: the size n may not exactly equal the number of statements in a
selected function (the size parameter is used as a rough gauge).

levels:n A level number, which represents the number of function calling levels to
be inlined. The default number is one (1). Using a level greater than one
indicates that function calls within inlined functions may be replaced with
inlined code. This allows the function inliner to automatically perform a
sequence of inline and extract processes.

[lib:]file.ext A library file name. This instructs the inliner to inline the functions within
the library file file.ext. Create the library file using the –Mextract option. If
no inline library is specified, functions are extracted from a temporary
library created during an extract prepass.

If you specify both a function name and a size n, the compiler inlines functions that match the function
name or have n or fewer statements.

If a keyword name:, lib: or size: is omitted, then a name with a period is assumed to be an inline library,
a number is assumed to be a size, and a name without a period is assumed to be a function name.

In the following example, the compiler inlines functions with fewer than approximately 100 statements
in the source file myprog.f and writes the executable code in the default output file a.out.

$ pgf95 -Minline=size:100 myprog.f

Refer to 3, “Command Line Options” for more information on the –Minline options.

Using an Inline Library

If you specify one or more inline libraries on the command line with the –Minline option, the compiler
does not perform an initial extract pass. The compiler selects functions to inline from the specified inline
library. If you also specify a size or function name, all functions in the inline library meeting the
selection criteria are selected for inline expansion at points in the source text where they are called.

If you do not specify a function name or a size limitation for the –Minline option, the compiler inlines
every function in the inline library that matches a function in the source text.

Creating an Inline Library

125

In the following example, the compiler inlines the function proc from the inline library lib.il and writes
the executable code in the default output file a.out.

$ pgf95 -Minline=name:proc,lib:lib.il

myprog.f

The following command line is equivalent to the line above, the only difference in this example is that
the name: and lib: inline keywords are not used. The keywords are provided so you can avoid name
conflicts if you use an inline library name that does not contain a period. Otherwise, without the
keywords, a period lets the compiler know that the file on the command line is an inline library.

$ pgf95 -Minline=proc,lib.il myprog.f

Creating an Inline Library

You can create or update an inline library using the –Mextract command-line option. If you do not
specify a selection criteria along with the –Mextract option, the compiler attempts to extract all
subprograms.

When you use the –Mextract option, only the extract phase is performed; the compile and link phases
are not performed. The output of an extract pass is a library of functions available for inlining. It is
placed in the inline library file specified on the command line with the –o filename specification. If the
library file exists, new information is appended to it. If the file does not exist, it is created.

You can use the –Minline option with the –Mextract option. In this case, the extracted library of
functions can have other functions inlined into the library. Using both options enables you to obtain
more than one level of inlining. In this situation, if you do not specify a library with the –Minline
option, the inline process consists of two extract passes. The first pass is a hidden pass implied by the –
Minline option, during which the compiler extracts functions and places them into a temporary library.
The second pass uses the results of the first pass but puts its results into the library that you specify with
the –o option.

Working with Inline Libraries

An inline library is implemented as a directory with each inline function in the library stored as a file
using an encoded form of the inlinable function.

Function Inlining

126

A special file named TOC in the inline library directory serves as a table of contents for the inline library.
This is a printable, ASCII file which can be examined to find out information about the library contents,
such as names and sizes of functions, the source file from which they were extracted, the version number
of the extractor which created the entry, etc.

Libraries and their elements can be manipulated using ordinary system commands.

• Inline libraries can be copied or renamed.

• Elements of libraries can be deleted or copied from one library to another.

• The ls command can be used to determine the last-change date of a library entry.

Dependencies in Makefiles–When a library is created or updated using one of the PGI compilers, the
last-change date of the library directory is updated. This allows a library to be listed as a dependence in
a makefile (and ensures that the necessary compilations will be performed when a library is changed).

Updating Inline Libraries - Makefiles

If you use inline libraries you need to be certain that they remain up to date with the source files into
which they are inlined. One way to assure inline libraries are updated is to include them in a makefile.
The makefile fragment in the following example assumes the file utils.f contains a number of small
functions used in the files parser.f and alloc.f. The makefile also maintains the inline library utils.il. The
makefile updates the library whenever you change utils.f or one of the include files it uses. In turn, the
makefile compiles parser.f and alloc.f whenever you update the library.

Example 4-1: Sample Makefile

SRC = mydir

FC = pgf95

FFLAGS = -O2

main.o: $(SRC)/main.f $(SRC)/global.h

 $(FC) $(FFLAGS) -c $(SRC)/main.f

utils.o: $(SRC)/utils.f $(SRC)/global.h $(SRC)/utils.h

 $(FC) $(FFLAGS) -c $(SRC)/utils.f

utils.il: $(SRC)/utils.f $(SRC)global.h $(SRC)/utils.h

 $(FC) $(FFLAGS) -Mextract=15

-o utils.il

parser.o: $(SRC)/parser.f $(SRC)/global.h

utils.il

 $(FC) $(FFLAGS) -Minline=utils.il

-c

Error Detection during Inlining

127

 $(SRC)/parser.f

alloc.o: $(SRC)/alloc.f $(SRC)/global.h

utils.il

 $(FC) $(FFLAGS) -Minline=utils.il

-c

 $(SRC)/alloc.f

myprog: main.o utils.o parser.o alloc.o

 $(FC) -o myprog main.o utils.o parser.o alloc.o

Error Detection during Inlining

To request inlining information from the compiler when you invoke the inliner, specify the –
Minfo=inline option. For example:

$ pgf95 -Minline=mylib.il -Minfo=inline

myext.f

Examples

Assume the program dhry consists of a single source file dhry.f. The following command line builds an
executable file for dhry in which proc7 is inlined wherever it is called:

$ pgf95 dhry.f -Minline=proc7

The following command lines build an executable file for dhry in which proc7 plus any functions of
approximately 10 or fewer statements are inlined (one level only). Note that the specified functions are
inlined only if they are previously placed in the inline library, temp.il, during the extract phase.

$ pgf95 dhry.f -Mextract -o temp.il

$ pgf95 dhry.f -Minline=10,Proc7,temp.il

Assume the program fibo.f contains a single function fibo that calls itself recursively. The following
command line creates the file fibo.o in which fibo is inlined into itself:

$ pgf95 fibo.f -c -Mrecursive -Minline=fibo

Because this version of fibo recurses only half as deeply, it executes noticeably faster.

Using the same source file dhry.f, the following example builds an executable for dhry in which all
functions of roughly ten or fewer statements are inlined. Two levels of inlining are performed. This
means that if function A calls function B, and B calls C, and both B and C are inlinable, then the version
of B which is inlined into A will have had C inlined into it.

Function Inlining

128

$ pgf95 dhry.f -Minline=size:10,levels:2

Restrictions on Inlining

The following Fortran subprograms cannot be extracted:

• Main or BLOCK DATA programs.

• Subprograms containing alternate return, assigned GO TO, DATA, SAVE, or EQUIVALENCE
statements.

• Subprograms containing FORMAT statements.

• Subprograms containing multiple entries.

A Fortran subprogram is not inlined if any of the following applies:

• It is referenced in a statement function.

• A common block mismatch exists; i.e., the caller must contain all common blocks specified in the
callee, and elements of the common blocks must agree in name, order, and type (except that the
caller's common block can have additional members appended to the end of the common block).

• An argument mismatch exists; i.e., the number and type (size) of actual and formal parameters
must be equal.

• A name clash exists; e.g., a call to subroutine xyz in the extracted subprogram and a variable
named xyz in the caller.

The following types of C and C++ functions cannot be inlined:

• Functions whose return type is a struct data type, or functions which have a struct argument. This
limitation applies only to x86 targets.

• Functions containing switch statements

• Functions which reference a static variable whose definition is nested within the function

• Function which accept a variable number of arguments

Certain C/C++ functions can only be inlined into the file that contains their definition:

• Static functions

Restrictions on Inlining

129

• Functions which call a static function

• Functions which reference a static variable

Function Inlining

130

Parallelization Directives

131

5 OpenMP Directives for
Fortran
The PGF77 and PGF95 Fortran compilers support the OpenMP Fortran Application Program Interface.
The OpenMP shared-memory parallel programming model is defined by a collection of compiler
directives, library routines, and environment variables that can be used to specify shared-memory
parallelism in Fortran, C and C++ programs. The directives include a parallel region construct for
writing coarse grain SPMD programs, work-sharing constructs which specify that DO loop iterations
should be split among the available threads of execution, and synchronization constructs. The data
environment is controlled using clauses on the directives or with additional directives. Run-time library
routines are provided to query the parallel runtime environment, for example to determine how many
threads are participating in execution of a parallel region. Finally, environment variables are provided
to control the execution behavior of parallel programs. For more information on OpenMP, see http://
www.openmp.org.

For an introduction to how to execute programs that use multiple processors along with some pointers
to example code, see “Parallel Programming Using the PGI Compilers” on page 8.

Parallelization Directives

Parallelization directives are comments in a program that are interpreted by the PGI Fortran compilers
when the option -mp is specified on the command line. The form of a parallelization directive is:

sentinel directive_name[clauses]

With the exception of the SGI-compatible DOACROSS directive, the sentinel must be !OMP, COMP, or
*$OMP, must start in column 1 (one), and must appear as a single word without embedded white space.
The sentinel marking a DOACROSS directive is C$. Standard Fortran syntax restrictions (line length,
case insensitivity, etc.) apply to the directive line. Initial directive lines must have a space or zero in
column six and continuation directive lines must have a character other than space or zero in column
six. Continuation lines for C$DOACROSS directives are specified using the C$& sentinel.

OpenMP Directives for Fortran

132

The order in which clauses appear in the parallelization directives is not significant. Commas separate
clauses within the directives, but commas are not allowed between the directive name and the first
clause. Clauses on directives may be repeated as needed subject to the restrictions listed in the
description of each clause.

The compiler option -mp enables recognition of the parallelization directives. The use of this option also
implies:

-Mreentrant local variables are placed on the stack and optimizations that may result
in non-reentrant code are disabled (e.g., -Mnoframe);

-Miomutex critical sections are generated around Fortran I/O statements.

Many of the directives are presented in pairs and must be used in pairs. In the examples given with each
section, the routines omp_get_num_threads() and omp_get_thread_num() are used, refer to “Run-
time Library Routines” on page 148 for more information. They return the number of threads currently
in the team executing the parallel region and the thread number within the team, respectively.

PARALLEL ... END PARALLEL

The OpenMP PARALLEL END PARALLEL directive is supported using the following syntax.

Syntax:

!$OMP PARALLEL [Clauses]

< Fortran code executed in body of parallel region >

!$OMP END PARALLEL

Clauses:

PRIVATE(list)

SHARED(list)

DEFAULT(PRIVATE | SHARED | NONE)

FIRSTPRIVATE(list)

REDUCTION([{operator | intrinsic}:] list)

COPYIN(list)

IF(scalar_logical_expression)

NUM_THREADS(scalar_integer_expression)

This directive pair declares a region of parallel execution. It directs the compiler to create an executable
in which the statements between PARALLEL and END PARALLEL are executed by multiple lightweight
threads. The code that lies between PARALLEL and END PARALLEL is called a parallel region.

PARALLEL ... END PARALLEL

133

The OpenMP parallelization directives support a fork/join execution model in which a single thread
executes all statements until a parallel region is encountered. At the entrance to the parallel region, a
system-dependent number of symmetric parallel threads begin executing all statements in the parallel
region redundantly. These threads share work by means of work-sharing constructs such as parallel DO
loops (see below). The number of threads in the team is controlled by the OMP_NUM_THREADS
environment variable. If OMP_NUM_THREADS is not defined, the program will execute parallel regions
using only one processor. Branching into or out of a parallel region is not supported.

All other shared-memory parallelization directives must occur within the scope of a parallel region.
Nested PARALLEL ... END PARALLEL directive pairs are not supported and are ignored. The END
PARALLEL directive denotes the end of the parallel region, and is an implicit barrier. When all threads
have completed execution of the parallel region, a single thread resumes execution of the statements
that follow.

NOTE

By default, there is no work distribution in a parallel region. Each active thread executes the
entire region redundantly until it encounters a directive that specifies work distribution. For
work distribution, see the DO, PARALLEL DO, or DOACROSS directives.

PROGRAM WHICH_PROCESSOR_AM_I

INTEGER A(0:1)

INTEGER omp_get_thread_num

A(0) = -1

A(1) = -1

!$OMP PARALLEL

A(omp_get_thread_num()) = omp_get_thread_num()

!$OMP END PARALLEL

PRINT *, "A(0)=",A(0),

" A(1)=",A(1)

END

The variables specified in a PRIVATE list are private to each thread in a team. In effect, the compiler
creates a separate copy of each of these variables for each thread in the team. When an assignment to a
private variable occurs, each thread assigns to its local copy of the variable. When operations involving a
private variable occur, each thread performs the operations using its local copy of the variable.

Important points about private variables are:

OpenMP Directives for Fortran

134

• Variables declared private in a parallel region are undefined upon entry to the parallel region. If
the first use of a private variable within the parallel region is in a right-hand-side expression, the
results of the expression will be undefined (i.e., this is probably a coding error).

• Likewise, variables declared private in a parallel region are undefined when serial execution
resumes at the end of the parallel region.

The variables specified in a SHARED list are shared between all threads in a team, meaning that all
threads access the same storage area for SHARED data.

The DEFAULT clause lets you specify the default attribute for variables in the lexical extent of the parallel
region. Individual clauses specifying PRIVATE, SHARED, etc. status override the declared DEFAULT.
Specifying DEFAULT(NONE) declares that there is no implicit default, and in this case, each variable in
the parallel region must be explicitly listed with an attribute of PRIVATE, SHARED, FIRSTPRIVATE,
LASTPRIVATE, or REDUCTION.

Variables that appear in the list of a FIRSTPRIVATE clause are subject to the same semantics as PRIVATE
variables, but in addition, are initialized from the original object existing prior to entering the parallel
region. Variables that appear in the list of a REDUCTION clause must be SHARED. A private copy of each
variable in list is created for each thread as if the PRIVATE clause had been specified. Each private copy is
initialized according to the operator as specified in the following table:

PARALLEL ... END PARALLEL

135

Table 5-1: Initialization of REDUCTION Variables

At the end of the parallel region, a reduction is performed on the instances of variables appearing in list
using operator or intrinsic as specified in the REDUCTION clause. The initial value of each REDUCTION
variable is included in the reduction operation. If the {operator | intrinsic}: portion of the REDUCTION
clause is omitted, the default reduction operator is “+” (addition).

The COPYIN clause applies only to THREADPRIVATE common blocks. In the presence of the COPYIN
clause, data from the master thread’s copy of the common block is copied to the threadprivate copies
upon entry to the parallel region.

In the presence of an IF clause, the parallel region will be executed in parallel only if the corresponding
scalar_logical_expression evaluates to .TRUE.. Otherwise, the code within the region will be executed by
a single processor regardless of the value of the environment variable OMP_NUM_THREADS.

Operator /
Intrinsic Initialization

+ 0

* 1

- 0

.AND. .TRUE.

.OR. .FALSE.

.EQV. .TRUE.

.NEQV. .FALSE.

MAX Smallest Representable Num-
ber

MIN Largest Representable Number

IAND All bits on

IOR 0

IEOR 0

OpenMP Directives for Fortran

136

If the NUM_THREADS clause is present, the corresponding scalar_integer_expression must evaluate to a
positive integer value. This value sets the maximum number of threads used during execution of the
parallel region. A NUM_THREADS clause overrides either a previous call to the library routine
omp_set_num_threads() or the setting of the OMP_NUM_THREADS environment variable.

CRITICAL ... END CRITICAL

The OpenMP END CRITICAL directive uses the following syntax.

!$OMP CRITICAL [(name)]

< Fortran code executed in body of critical section >

!$OMP END CRITICAL [(name)]

Within a parallel region, you may have code that will not execute properly when multiple threads act
upon the same sub-region of code. This is often due to a shared variable that is written and then read
again.

The CRITICAL ... END CRITICAL directive pair defines a subsection of code within a parallel region,
referred to as a critical section, which will be executed one thread at a time. The optional name
argument identifies the critical section. The first thread to arrive at a critical section will be the first to
execute the code within the section. The second thread to arrive will not begin execution of statements in
the critical section until the first thread has exited the critical section. Likewise each of the remaining
threads will wait its turn to execute the statements in the critical section.

Critical sections cannot be nested, and any such specifications are ignored. Branching into or out of a
critical section is illegal. If a name argument appears on a CRITICAL directive, the same name must
appear on the END CRITICAL directive.

PROGRAM

CRITICAL_USE

REAL A(100,100),

MX, LMX

INTEGER I, J

 MX = -1.0

 LMX = -1.0

 CALL RANDOM_SEED()

 CALL RANDOM_NUMBER(A)

!$OMP PARALLEL PRIVATE(I), FIRSTPRIVATE(LMX)

!$OMP DO

DO J=1,100

 DO

MASTER ... END MASTER

137

I=1,100

LMX = MAX(A(I,J),

LMX)

 ENDDO

 ENDDO

!$OMP CRITICAL

MX = MAX(MX,

LMX)

!$OMP END CRITICAL

!$OMP END PARALLEL

 PRINT *,

"MAX VALUE OF A IS ", MX

 END

Note that this program could also be implemented without the critical region by declaring MX as a
reduction variable and performing the MAX calculation in the loop using MX directly rather than using
LMX. See “PARALLEL ... END PARALLEL” on page 132 and “DO ... END DO” on page 139 for more
information on how to use the REDUCTION clause on a parallel DO loop.

MASTER ... END MASTER

The OpenMP END MASTER directive uses the following syntax.

!$OMP MASTER

< Fortran code in body of MASTER section >

!$OMP END MASTER

In a parallel region of code, there may be a sub-region of code that should execute only on the master
thread. Instead of ending the parallel region before this subregion and then starting it up again after
this subregion, the MASTER ... END MASTER directive pair let you conveniently designate code that
executes on the master thread and is skipped by the other threads. There is no implied barrier on entry to
or exit from a MASTER ... END MASTER section of code. Nested master sections are ignored. Branching
into or out of a master section is not supported.

PROGRAM MASTER_USE

 INTEGER A(0:1)

 INTEGER omp_get_thread_num

 A=-1

!$OMP PARALLEL

 A(omp_get_thread_num()) = omp_get_thread_num()

!$OMP MASTER

 PRINT *, "YOU SHOULD ONLY

OpenMP Directives for Fortran

138

SEE THIS ONCE"

!$OMP END MASTER

!$OMP END PARALLEL

 PRINT *, "A(0)=",

A(0), " A(1)=", A(1)

 END

SINGLE ... END SINGLE

The OpenMP SINGLE END SINGLE directive uses the following syntax.

!$OMP SINGLE [Clauses]

< Fortran code in body of SINGLE processor section >

!$OMP END SINGLE [NOWAIT]

Clauses:

PRIVATE(list)

FIRSTPRIVATE(list)

COPYPRIVATE(list)

In a parallel region of code, there may be a sub-region of code that will only execute correctly on a single
thread. Instead of ending the parallel region before this subregion and then starting it up again after
this subregion, the SINGLE ... END SINGLE directive pair lets you conveniently designate code that
executes on a single thread and is skipped by the other threads. There is an implied barrier on exit from
a SINGLE ... END SINGLE section of code unless the optional NOWAIT clause is specified.

Nested single process sections are ignored. Branching into or out of a single process section is not
supported.

PROGRAM SINGLE_USE

 INTEGER A(0:1)

 INTEGER omp_get_thread_num()

!$OMP PARALLEL

 A(omp_get_thread_num()) = omp_get_thread_num()

!$OMP SINGLE

 PRINT *, "YOU SHOULD ONLY

SEE THIS ONCE"

!$OMP END SINGLE

!$OMP END PARALLEL

 PRINT *, "A(0)=",

A(0), " A(1)=", A(1)

 END

DO ... END DO

139

The PRIVATE and FIRSTPRIVATE clauses are as described in “PARALLEL ... END PARALLEL” on page 132.

The COPYPRIVATE clause causes the variables in list to be copied from the private copies in the single
thread that executes the SINGLE region to the other copies in all other threads of the team at the end of
the SINGLE region. The COPYPRIVATE clause must not be used with NOWAIT.

DO ... END DO

The OpenMP DO END DO directive uses the following syntax.

Syntax:

!$OMP DO [Clauses]

< Fortran DO loop to be executed in parallel >

!$OMP END DO [NOWAIT]

Clauses:

PRIVATE(list)

FIRSTPRIVATE(list)

LASTPRIVATE(list)

REDUCTION({operator | intrinsic } : list)

SCHEDULE (type [, chunk])

ORDERED

The real purpose of supporting parallel execution is the distribution of work across the available
threads. You can explicitly manage work distribution with constructs such as:

IF (omp_get_thread_num() .EQ.

0) THEN

...

ELSE IF (omp_get_thread_num() .EQ. 1)

THEN

...

ENDIF

However, these constructs are not in the form of directives. The DO ... END DO directive pair provides a
convenient mechanism for the distribution of loop iterations across the available threads in a parallel
region. Items to note about clauses are:

OpenMP Directives for Fortran

140

Variables declared in a PRIVATE list are treated as private to each processor participating in parallel
execution of the loop, meaning that a separate copy of the variable exists on each processor. Variables
declared in a FIRSTPRIVATE list are PRIVATE, and in addition are initialized from the original object
existing before the construct. Variables declared in a LASTPRIVATE list are PRIVATE, and in addition the
thread that executes the sequentially last iteration updates the version of the object that existed before
the construct. The REDUCTION clause is as described in “PARALLEL ... END PARALLEL” on page 132.The
SCHEDULE clause is explained in the following section. If ORDERED code blocks are contained in the
dynamic extent of the DO directive, the ORDERED clause must be present. For more information on
ORDERED code blocks, see “ORDERED” on page 146

The DO ... END DO directive pair directs the compiler to distribute the iterative DO loop immediately
following the !$OMP DO directive across the threads available to the program. The DO loop is executed
in parallel by the team that was started by an enclosing parallel region. If the !$OMP END DO directive is
not specified, the !$OMP DO is assumed to end with the enclosed DO loop. DO ... END DO directive pairs
may not be nested. Branching into or out of a !$OMP DO loop is not supported.

By default, there is an implicit barrier after the end of the parallel loop; the first thread to complete its
portion of the work will wait until the other threads have finished their portion of work. If NOWAIT is
specified, the threads will not synchronize at the end of the parallel loop.

Other items to note about !$OMP DO loops:

• The DO loop index variable is always private.

• !$OMP DO loops must be executed by all threads participating in the parallel region or none at all.

• The END DO directive is optional, but if it is present it must appear immediately after the end of
the enclosed DO loop.

PROGRAM DO_USE

 REAL A(1000), B(1000)

 DO I=1,1000

 B(I) = FLOAT(I)

 ENDDO

!$OMP PARALLEL

!$OMP DO

 DO I=1,1000

 A(I) = SQRT(B(I));

 ENDDO

WORKSHARE ... END WORKSHARE

141

 ...

!$OMP END PARALLEL

 ...

 END

The SCHEDULE clause specifies how iterations of the DO loop are divided up between processors. Given a
SCHEDULE (type [, chunk]) clause, type can be STATIC, DYNAMIC, GUIDED, or RUNTIME.

These are defined as follows:

• When SCHEDULE (STATIC, chunk) is specified, iterations are allocated in contiguous blocks of size
chunk. The blocks of iterations are statically assigned to threads in a round-robin fashion in order
of the thread ID numbers. The chunk must be a scalar integer expression. If chunk is not specified,
a default chunk size is chosen equal to:

(number_of_iterations + omp_num_threads()

- 1) / omp_num_threads()

• When SCHEDULE (DYNAMIC, chunk) is specified, iterations are allocated in contiguous blocks of
size chunk. As each thread finishes a piece of the iteration space, it dynamically obtains the next
set of iterations. The chunk must be a scalar integer expression. If no chunk is specified, a default
chunk size is chosen equal to 1.

• When SCHEDULE (GUIDED, chunk) is specified, the chunk size is reduced in an exponentially
decreasing manner with each dispatched piece of the iteration space. Chunk specifies the
minimum number of iterations to dispatch each time, except when there are less than chunk
iterations remaining to be processed, at which point all remaining iterations are assigned. If no
chunk is specified, a default chunk size is chosen equal to 1.

• When SCHEDULE (RUNTIME) is specified, the decision regarding iteration scheduling is deferred
until runtime. The schedule type and chunk size can be chosen at runtime by setting the
OMP_SCHEDULE environment variable. If this environment variable is not set, the resulting
schedule is equivalent to SCHEDULE(STATIC).

WORKSHARE ... END WORKSHARE

The OpenMP WORKSHARE … END WORKSHARE directive pair uses the following syntax.

Syntax:

OpenMP Directives for Fortran

142

!$OMP WORKSHARE

< Fortran structured block to be executed in parallel >

!$OMP END WORKSHARE [NOWAIT]

The Fortran structured block enclosed by the WORKSHARE … END WORKSHARE directive pair can
consist only of the following types of statements and constructs:

• Array assignments

• Scalar assignments

• FORALL statements or constructs

• WHERE statements or constructs

• OpenMP ATOMIC , CRITICAL or PARALLEL constructs

The work implied by the above statements and constructs is split up between the threads executing the
WORKSHARE construct in a way that is guaranteed to maintain standard Fortran semantics. The goal of
the WORKSHARE construct is to effect parallel execution of non-iterative but implicitly data parallel
array assignments, FORALL, and WHERE statements and constructs intrinsic to the Fortran language
beginning with Fortran 90. The Fortran structured block contained within a WORKSHARE construct
must not contain any user-defined function calls unless the function is ELEMENTAL.

BARRIER

The OpenMP BARRIER directive uses the following syntax.

!$OMP BARRIER

There may be occasions in a parallel region, when it is necessary that all threads complete work to that
point before any thread is allowed to continue. The BARRIER directive synchronizes all threads at such a
point in a program. Multiple barrier points are allowed within a parallel region. The BARRIER directive
must either be executed by all threads executing the parallel region or by none of them.

DOACROSS

The C$DOACROSS directive is not part of the OpenMP standard, but is supported for compatibility with
programs parallelized using legacy SGI-style directives.

Syntax:

PARALLEL DO

143

C$DOACROSS [Clauses]

< Fortran DO loop to be executed in parallel >

Clauses:

[{PRIVATE | LOCAL} (list)]

[{SHARED | SHARE} (list)]

[MP_SCHEDTYPE={SIMPLE | INTERLEAVE}]

[CHUNK=<integer_expression>]

[IF (logical_expression)]

The C$DOACROSS directive has the effect of a combined parallel region and parallel DO loop applied to
the loop immediately following the directive. It is very similar to the OpenMP PARALLEL DO directive,
but provides for backward compatibility with codes parallelized for SGI systems prior to the OpenMP
standardization effort. The C$DOACROSS directive must not appear within a parallel region. It is a
shorthand notation that tells the compiler to parallelize the loop to which it applies, even though that
loop is not contained within a parallel region. While this syntax is more convenient, it should be noted
that if multiple successive DO loops are to be parallelized it is more efficient to define a single enclosing
parallel region and parallelize each loop using the OpenMP DO directive.

A variable declared PRIVATE or LOCAL to a C$DOACROSS loop is treated the same as a private variable in
a parallel region or DO (see above). A variable declared SHARED or SHARE to a C$DOACROSS loop is
shared among the threads, meaning that only 1 copy of the variable exists to be used and/or modified by
all of the threads. This is equivalent to the default status of a variable that is not listed as PRIVATE in a
parallel region or DO (this same default status is used in C$DOACROSS loops as well).

PARALLEL DO

The OpenMP PARALLEL DO directive uses the following syntax.

Syntax:

!$OMP PARALLEL DO [CLAUSES]

< Fortran DO loop to be executed in parallel >

[!$OMP END PARALLEL DO]

Clauses:

PRIVATE(list)

SHARED(list)

DEFAULT(PRIVATE | SHARED | NONE)

FIRSTPRIVATE(list)

OpenMP Directives for Fortran

144

LASTPRIVATE(list)

REDUCTION({operator | intrinsic} : list)

COPYIN (list)

IF(scalar_logical_expression)

NUM_THREADS(scalar_integer_expression)

SCHEDULE (type [, chunk])

ORDERED

The semantics of the PARALLEL DO directive are identical to those of a parallel region containing only a
single parallel DO loop and directive. Note that the END PARALLEL DO directive is optional. The
available clauses are as defined in “PARALLEL ... END PARALLEL” on page 132 and “DO ... END DO” on
page 139.

PARALLEL WORKSHARE

The OpenMP PARALLEL WORKSHARE directive uses the following syntax.

Syntax:

!$OMP PARALLEL WORKSHARE [CLAUSES]

< Fortran structured block to be executed in parallel >

[!$OMP END PARALLEL WORKSHARE]

Clauses:

PRIVATE(list)

SHARED(list)

DEFAULT(PRIVATE | SHARED | NONE)

FIRSTPRIVATE(list)

LASTPRIVATE(list)

REDUCTION({operator | intrinsic} : list)

COPYIN (list)

IF(scalar_logical_expression)

NUM_THREADS(scalar_integer_expression)

SCHEDULE (type [, chunk])

ORDERED

The semantics of the PARALLEL WORKSHARE directive are identical to those of a parallel region
containing a single WORKSHARE construct. Note that the END PARALLEL WORKSHARE directive is
optional, and that NOWAIT may not be specified on an END PARALLEL WORKSHARE directive. The
available clauses are as defined in “PARALLEL ... END PARALLEL” on page 132.

SECTIONS … END SECTIONS

145

SECTIONS … END SECTIONS

The OpenMP SECTIONS / END SECTIONS directive pair uses the following syntax:

Syntax:

!$OMP SECTIONS [Clauses]

[!$OMP SECTION]

< Fortran code block executed by processor i >

[!$OMP SECTION]

< Fortran code block executed by processor j >

 ...

!$OMP END SECTIONS [NOWAIT]

Clauses:

PRIVATE (list)

FIRSTPRIVATE (list)

LASTPRIVATE (list)

REDUCTION({operator | intrinsic} : list)

The SECTIONS / END SECTIONS directives define a non-iterative work-sharing construct within a
parallel region. Each section is executed by a single processor. If there are more processors than sections,
some processors will have no work and will jump to the implied barrier at the end of the construct. If
there are more sections than processors, one or more processors will execute more than one section.

A SECTION directive may only appear within the lexical extent of the enclosing SECTIONS / END
SECTIONS directives. In addition, the code within the SECTIONS / END SECTIONS directives must be a
structured block, and the code in each SECTION must be a structured block.

The available clauses are as defined in “PARALLEL ... END PARALLEL” on page 132 and “DO ... END DO”
on page 139.

PARALLEL SECTIONS

The OpenMP PARALLEL SECTIONS / END SECTIONS directive pair uses the following syntax:

Syntax:

OpenMP Directives for Fortran

146

!$OMP PARALLEL SECTIONS [CLAUSES]

[!$OMP SECTION]

< Fortran code block executed by processor i >

[!$OMP SECTION]

< Fortran code block executed by processor j >

 ...

!$OMP END SECTIONS [NOWAIT]

Clauses:

PRIVATE(list)

SHARED(list)

DEFAULT(PRIVATE | SHARED | NONE)

FIRSTPRIVATE(list)

LASTPRIVATE(list)

REDUCTION({operator | intrinsic} : list)

COPYIN (list)

IF(scalar_logical_expression)

NUM_THREADS(scalar_integer_expression)

The PARALLEL SECTIONS / END SECTIONS directives define a non-iterative work-sharing construct
without the need to define an enclosing parallel region. Each section is executed by a single processor. If
there are more processors than sections, some processors will have no work and will jump to the implied
barrier at the end of the construct. If there are more sections than processors, one or more processors
will execute more than one section.

A SECTION directive may only appear within the lexical extent of the enclosing PARALLEL SECTIONS /
END SECTIONS directives. In addition, the code within the PARALLEL SECTIONS / END SECTIONS
directives must be a structured block, and the code in each SECTION must be a structured block.

The available clauses are as defined in “PARALLEL ... END PARALLEL” on page 132 and “DO ... END DO”
on page 139.

ORDERED

The OpenMP ORDERED directive is supported using the following syntax:

!$OMP ORDERED

< Fortran code block executed by processor >

!$OMP END ORDERED

ATOMIC

147

The ORDERED directive can appear only in the dynamic extent of a DO or PARALLEL DO directive that
includes the ORDERED clause. The code block between the ORDERED / END ORDERED directives is
executed by only one thread at a time, and in the order of the loop iterations. This sequentializes the
ordered code block while allowing parallel execution of statements outside the code block. The following
additional restrictions apply to the ORDERED directive:

• The ORDERED code block must be a structured block. It is illegal to branch into or out of the
block.

• A given iteration of a loop with a DO directive cannot execute the same ORDERED directive more
than once, and cannot execute more than one ORDERED directive.

ATOMIC

The OpenMP ATOMIC directive uses following syntax:

!$OMP ATOMIC

The ATOMIC directive is semantically equivalent to enclosing the following single statement in a
CRITICAL / END CRITICAL directive pair. The statement must be of one of the following forms:

x = x operator expr

x = expr operator x

x = intrinsic (x, expr)

x = intrinsic (expr, x)

where x is a scalar variable of intrinsic type, expr is a scalar expression that does not reference x,
intrinsic is one of MAX, MIN, IAND, IOR, or IEOR, and operator is one of +, *, -, /, .AND., .OR., .EQV., or
.NEQV..

FLUSH

The OpenMP FLUSH directive uses the following syntax:

!$OMP FLUSH [(list)]

The FLUSH directive ensures that all processor-visible data items, or only those specified in list when it’s
present, are written back to memory at the point at which the directive appears.

OpenMP Directives for Fortran

148

THREADPRIVATE

The OpenMP THREADPRIVATE directive uses the following syntax:

!$OMP THREADPRIVATE (list)

Where list is a comma-separated list of named variables to be made private to each thread or named
common blocks to be made private to each thread but global within the thread . Common block names
must appear between slashes (i.e. /common_blockn/). This directive must appear in the declarations
section of a program unit after the declaration of any common blocks or variables listed. On entry to a
parallel region, data in a THREADPRIVATE common block or variable is undefined unless COPYIN is
specified on the PARALLEL directive. When a common block or variable that is initialized using DATA
statements appears in a THREADPRIVATE directive, each thread’s copy is initialized once prior to its first
use.

The following restrictions apply to the THREADPRIVATE directive:

• The THREADPRIVATE directive must appear after every declaration of a thread private common
block.

• Only named common blocks can be made thread private

• It is illegal for a THREADPRIVATE common block or its constituent variables to appear in any
clause other than a COPYIN clause.

• A variable can appear in a THREADRIVATE directive only in the scope in which it is declared. It
must not be an element of a common block or be declared in an EQUIVALENCE statement.

• A variable that appears in a THREADPRIVATE directive and is not declared in the scope of a module
must have the SAVE attribute.

Run-time Library Routines

User-callable functions are available to the Fortran programmer to query and alter the parallel
execution environment.

integer omp_get_num_threads()

Run-time Library Routines

149

returns the number of threads in the team executing the parallel region from which it is called. When
called from a serial region, this function returns 1. A nested parallel region is the same as a single
parallel region. By default, the value returned by this function is equal to the value of the environment
variable OMP_NUM_THREADS or to the value set by the last previous call to the
omp_set_num_threads() subroutine defined below.

subroutine omp_set_num_threads(scalar_integer_exp)

sets the number of threads to use for the next parallel region. This subroutine can only be called from a
serial region of code. If it is called from within a parallel region, or within a subroutine or function that
is called from within a parallel region, the results are undefined. This subroutine has precedence over
the OMP_NUM_THREADS environment variable.

integer omp_get_thread_num()

returns the thread number within the team. The thread number lies between 0 and
omp_get_num_threads()-1. When called from a serial region, this function returns 0. A nested parallel
region is the same as a single parallel region.

integer function omp_get_max_threads()

returns the maximum value that can be returned by calls to omp_get_num_threads(). If
omp_set_num_threads() is used to change the number of processors, subsequent calls to
omp_get_max_threads() will return the new value. This function returns the maximum value whether
executing from a parallel or serial region of code.

integer function omp_get_num_procs()

returns the number of processors that are available to the program.

!omp_get_stack_size

interface

 function omp_get_stack_size ()

 use omp_lib_kinds

 integer (kind=OMP_STACK_SIZE_KIND

) :: omp_get_stack_size

 end function omp_get_stack_size

 end interface

Returns the value of the OpenMP internal control variable that specifies the size that will be used to
create a stack for a newly created thread. Note that this value may not be the size of the stack of the
current thread.

OpenMP Directives for Fortran

150

subroutine omp_set_stack_size(integer(KIND=OMP_STACK_SIZE_KIND))

Changes the value of the OpenMP internal control variable that specifies the size that will be used to
create a stack for a newly created thread. The argument is the stack size in kilobytes. The size of the stack
of the current thread cannot be changed. In the PGI implementation, all OpenMP or auto-
parallelization threads are created just prior to the first parallel region, therefore, only calls to
omp_set_stack_size prior to the first region have an effect.

logical function omp_in_parallel()

returns .TRUE. if called from within a parallel region and .FALSE. if called outside of a parallel region.
When called from within a parallel region that is serialized, for example in the presence of an IF clause
evaluating .FALSE., the function will return .FALSE..

subroutine omp_set_dynamic(scalar_logical_exp)

is designed to allow automatic dynamic adjustment of the number of threads used for execution of
parallel regions. This function is recognized, but currently has no effect.

logical function omp_get_dynamic()

is designed to allow the user to query whether automatic dynamic adjustment of the number of threads
used for execution of parallel regions is enabled. This function is recognized, but currently always
returns .FALSE..

subroutine omp_set_nested(scalar_logical_exp)

is designed to allow enabling/disabling of nested parallel regions. This function is recognized, but
currently has no effect.

logical function omp_get_nested()

is designed to allow the user to query whether dynamic adjustment of the number of threads available
for execution of parallel regions is enabled. This function is recognized, but currently always returns
.FALSE.

double precision function omp_get_wtime()

returns the elapsed wall clock time in seconds as a DOUBLE PRECISION value. Times returned are per-
thread times, and are not necessarily globally consistent across all threads.

double precision function omp_get_wtick()

Environment Variables

151

returns the resolution of omp_get_wtime(), in seconds, as a DOUBLE PRECISION value.

subroutine omp_init_lock(integer_var)

initializes a lock associated with the variable integer_var for use in subsequent calls to lock routines.
This initial state of integer_var is unlocked. It is illegal to make a call to this routine if integer_var is
already associated with a lock.

subroutine omp_destroy_lock(integer_var)

disassociates a lock associated with the variable integer_var.

subroutine omp_set_lock(integer_var)

causes the calling thread to wait until the specified lock is available. The thread gains ownership of the
lock when it is available. It is illegal to make a call to this routine if integer_var has not been associated
with a lock.

subroutine omp_unset_lock(integer_var)

causes the calling thread to release ownership of the lock associated with integer_var. It is illegal to
make a call to this routine if integer_var has not been associated with a lock.

logical function omp_test_lock(integer_var)

causes the calling thread to try to gain ownership of the lock associated with integer_var. The function
returns .TRUE. if the thread gains ownership of the lock, and .FALSE. otherwise. It is illegal to make a
call to this routine if integer_var has not been associated with a lock.

Environment Variables

OMP_NUM_THREADS - specifies the number of threads to use during execution of parallel regions. The
default value for this variable is 1. For historical reasons, the environment variable NCPUS is supported
with the same functionality. In the event that both OMP_NUM_THREADS and NCPUS are defined, the
value of OMP_NUM_THREADS takes precedence.

NOTE

OMP_NUM_THREADS threads will be used to execute the program regardless of the number
of physical processors available in the system. As a result, you can run programs using more
threads than physical processors and they will execute correctly. However, performance of
programs executed in this manner can be unpredictable, and oftentimes will be inefficient

OpenMP Directives for Fortran

152

OMP_SCHEDULE - specifies the type of iteration scheduling to use for DO and PARALLEL DO loops which
include the SCHEDULE(RUNTIME) clause. The default value for this variable is “STATIC”. If the optional
chunk size is not set, a chunk size of 1 is assumed except in the case of a STATIC schedule. For a STATIC
schedule, the default is as defined in “DO ... END DO” on page 139. Examples of the use of
OMP_SCHEDULE are as follows:

$ setenv OMP_SCHEDULE "STATIC, 5"

$ setenv OMP_SCHEDULE "GUIDED, 8"

$ setenv OMP_SCHEDULE "DYNAMIC"

OMP_DYNAMIC - currently has no effect.

OMP_NESTED - currently has no effect.

MPSTKZ - increase the size of the stacks used by threads executing in parallel regions. It is for use with
programs that utilize large amounts of thread-local storage in the form of private variables or local
variables in functions or subroutines called within parallel regions. The value should be an integer <n>
concatenated with M or m to specify stack sizes of n megabytes. For example:

$ setenv MPSTKZ 8M

OMP_WAIT_POLICY (Proposed OpenMP 3.0 Feature) - The OpenMP environment variable
OMP_WAIT_POLICY sets the behavior of idle threads. The values are ACTIVE and PASSIVE. This behavior
is also shared by threads created by auto-parallelization. Threads are considered idle when waiting at a
barrier, when waiting to enter a critical region, or unemployed between parallel regions. Threads
waiting for critical sections always busy wait.

Barriers always busy wait with calls to sched_yield determined by MP_SPIN. Unemployed threads during
a serial region can either busy wait using the barrier (ACTIVE) or politely wait using a mutex (PASSIVE).
The choice is set by OMP_WAIT_POLICY. The default is ACTIVE.

When ACTIVE is set, idle threads consume 100% of their CPU allotment spinning in a busy loop waiting
to restart in a parallel region. This mechanism allows for very quick entry into parallel regions which is
good for programs that enter and leave parallel regions frequently.

When PASSIVE is set, idle threads wait on a mutex (in the operating system) and consume no CPU time
until being restarted. Passive idle is best when a program has long periods of serial activity or when the
program runs on a multi-user machine or otherwise shares CPU resources.

Environment Variables

153

OMP_STACK_SIZE (Proposed OpenMP 3.0 Feature) - The OpenMP environment variable
OMP_STACK_SIZE overrides the default stack size for a newly created thread. The value is an decimal
integer followed by an optional letter B, K, M, or G, to specify bytes, kilobytes, megabytes, and gigabytes,
respectively. If no letter is used, the default is kilobytes. There is no space between the value and the
letter; for example, one megabyte is specified 1M.

The environment variable OMP_STACK_SIZE is read on program start-up; if the program changes its
own environment, the variable is not re-checked. This environment variable takes precedence over
MPSTKSZ (see above). Once a thread is created, its stack size cannot be changed. In the PGI
implementation, threads are created prior to the first parallel region and persist for the life of the
program. The stack size of the main program is not affected by OMP_STACK_SIZE. Its size is set at
program start up. For more information on controlling the program stack size in Linux, see “Running
Parallel Programs on Linux” on page 10.

OpenMP Directives for Fortran

154

Parallelization Pragmas

155

6 OpenMP Pragmas for C and
C++
The PGCC ANSI C and C++ compilers support the OpenMP C/C++ Application Program Interface. The
OpenMP shared-memory parallel programming model is defined by a collection of compiler directives
or pragmas, library routines, and environment variables that can be used to specify shared-memory
parallelism in Fortran, C and C++ programs. The OpenMP C/C++ pragmas include a parallel region
construct for writing coarse grain SPMD programs, work-sharing constructs which specify that C/C++
for loop iterations should be split among the available threads of execution, and synchronization
constructs. The data environment is controlled using clauses on the pragmas or with additional
pragmas. Run-time library functions are provided to query the parallel runtime environment, for
example to determine how many threads are participating in execution of a parallel region. Finally,
environment variables are provided to control the execution behavior of parallel programs. For more
information on OpenMP, and a complete copy of the OpenMP C/C++ API specification, see http://
www.openmp.org

Parallelization Pragmas

Parallelization pragmas are #pragma statements in a C or C++ program that are interpreted by the
PGCC C and C++ compilers when the option -mp is specified on the command line. The form of a
parallelization pragma is:

#pragma omppragma_name[clauses]

The pragmas follow the conventions of the C and C++ standards. Whitespace can appear before and
after the #. Preprocessing tokens following the #pragma omp are subject to macro replacement. The
order in which clauses appear in the parallelization pragmas is not significant. Spaces separate clauses
within the pragmas. Clauses on pragmas may be repeated as needed subject to the restrictions listed in
the description of each clause.

For the purposes of the OpenMP pragmas, a C/C++ structured block is defined to be a statement or
compound statement (a sequence of statements beginning with { and ending with }) that has a single
entry and a single exit. No statement or compound statement is a C/C++ structured block if there is a
jump into or out of that statement.

OpenMP Pragmas for C and C++

156

The compiler option -mp enables recognition of the parallelization pragmas. The use of this option also
implies:

-Mreentrant local variables are placed on the stack and optimizations that may result
in non-reentrant code are disabled (e.g., -Mnoframe)

Also, note that calls to I/O library functions are system-dependent and are not necessarily guaranteed to
be thread-safe. I/O library calls within parallel regions should be protected by critical regions (see
below) to ensure they function correctly on all systems.

In the examples given with each section, the functions omp_get_num_threads() and
omp_get_thread_num() are used (refer to “Run-time Library Routines” on page 169.) They return the
number of threads currently in the team executing the parallel region and the thread number within the
team, respectively.

omp parallel

The OpenMP omp parallel pragma uses the following syntax:

Syntax:

#pragma omp parallel [clauses]

< C/C++ structured block >

Clauses:

private(list)

shared(list)

default(shared | none)

firstprivate(list)

reduction(operator: list)

copyin (list)

if (scalar_expression)

num_threads(scalar_integer_expression)

This pragma declares a region of parallel execution. It directs the compiler to create an executable in
which the statements within the following C/C++ structured block are executed by multiple lightweight
threads. The code that lies within the structured block is called a parallel region.

The OpenMP parallelization pragmas support a fork/join execution model in which a single thread
executes all statements until a parallel region is encountered. At the entrance to the parallel region, a
system-dependent number of symmetric parallel threads begin executing all statements in the parallel

omp parallel

157

region redundantly. These threads share work by means of work-sharing constructs such as parallel for
loops (see the next example). The number of threads in the team is controlled by the
OMP_NUM_THREADS environment variable. If OMP_NUM_THREADS is not defined, the program will
execute parallel regions using only one processor. Branching into or out of a parallel region is not
supported.

All other shared-memory parallelization pragmas must occur within the scope of a parallel region.
Nested omp parallel pragmas are not supported and are ignored. There is an implicit barrier at the end
of a parallel region. When all threads have completed execution of the parallel region, a single thread
resumes execution of the statements that follow.

It should be emphasized that by default there is no work distribution in a parallel region. Each active
thread executes the entire region redundantly until it encounters a directive that specifies work
distribution. For work distribution, see the omp for pragma.

#include <stdio.h>

#include <omp.h>

main(){

 int a[2]={-1,-1};

#pragma omp parallel

 {

 a[omp_get_thread_num()] = omp_get_thread_num();

 }

 printf("a[0] = %d,

a[1] = %d",a[0],a[1]);

}

The variables specified in a private list are private to each thread in a team. In effect, the compiler
creates a separate copy of each of these variables for each thread in the team. When an assignment to a
private variable occurs, each thread assigns to its local copy of the variable. When operations involving a
private variable occur, each thread performs the operations using its local copy of the variable. Other
important points to note about private variables are the following:

• Variables declared private in a parallel region are undefined upon entry to the parallel region. If
the first use of a private variable within the parallel region is in a right-hand-side expression, the
results of the expression will be undefined (i.e., this is probably a coding error).

• Likewise, variables declared private in a parallel region are undefined when serial execution
resumes at the end of the parallel region.

OpenMP Pragmas for C and C++

158

The variables specified in a shared list are shared between all threads in a team, meaning that all
threads access the same storage area for shared data.

The default clause allows the user to specify the default attribute for variables in the lexical extent of the
parallel region. Individual clauses specifying private, shared, etc status override the declared default.
Specifying default(none) declares that there is no implicit default, and in this case each variable in the
parallel region must be explicitly listed with an attribute of private, shared, firstprivate, or reduction.

Variables that appear in the list of a firstprivate clause are subject to the same semantics as private
variables, but in addition are initialized from the original object existing prior to entering the parallel
region. Variables that appear in the list of a reduction clause must be shared. A private copy of each
variable in list is created for each thread as if the private clause had been specified. Each private copy is
initialized according to the operator as specified in the following table:

Table 6-1: Initialization of Reduction Variables

• At the end of the parallel region, a reduction is performed on the instances of variables appearing
in list using operator as specified in the reduction clause. The initial value of each reduction
variable is included in the reduction operation. If the operator: portion of the reduction clause is
omitted, the default reduction operator is “+” (addition).

Operator Initialization

+ 0

* 1

- 0

& ~0

| 0

^ 0

&& 1

|| 0

omp critical

159

• The copyin clause applies only to threadprivate variables. In the presence of the copyin clause,
data from the master thread’s copy of the threadprivate variable is copied to the thread private
copies upon entry to the parallel region.

• In the presence of an if clause, the parallel region will be executed in parallel only if the
corresponding scalar_expression evaluates to a non-zero value. Otherwise, the code within the
region will be executed by a single processor regardless of the value of the environment variable
OMP_NUM_THREADS.

• If the num_threads clause is present, the corresponding scalar_integer_expression must evaluate
to a positive integer value. This value sets the maximum number of threads used during execution
of the parallel region. A num_threads clause overrides either a previous call to the library routine
omp_set_num_threads() or the setting of the OMP_NUM_THREADS environment variable.

omp critical

The OpenMP omp critical pragma uses the following syntax:

#pragma omp critical [(name)]

< C/C++ structured block >

Within a parallel region, there may exist subregions of code that will not execute properly when executed
by multiple threads simultaneously. This is often due to a shared variable that is written and then read
again.

The omp critical pragma defines a subsection of code within a parallel region, referred to as a critical
section, which will be executed one thread at a time. The first thread to arrive at a critical section will be
the first to execute the code within the section. The second thread to arrive will not begin execution of
statements in the critical section until the first thread has exited the critical section. Likewise, each of the
remaining threads will wait its turn to execute the statements in the critical section.

An optional name may be used to identify the critical region. Names used to identify critical regions have
external linkage and are in a name space separate from the name spaces used by labels, tags, members,
and ordinary identifiers.

Critical sections cannot be nested, and any such specifications are ignored. Branching into or out of a
critical section is illegal.

OpenMP Pragmas for C and C++

160

#include <stdlib.h>

main(){

int a[100][100], mx=-1,

lmx=-1, i, j;

 for (j=0; j<100; j++)

 for (i=0; i<100; i++)

 a[i][j]=1+(int)(10.0*rand()/(RAND_MAX+1.0));

#pragma omp parallel private(i) firstprivate(lmx)

 {

#pragma omp for

 for (j=0; j<100; j++)

 for (i=0; i<100; i++)

 lmx = (lmx > a[i][j])

? lmx : a[i][j];

#pragma omp critical

 mx = (mx > lmx) ? mx : lmx;

 }

 printf ("max value of a is %d\n",mx);

}

omp master

The OpenMP omp master pragma uses the following syntax:

#pragma omp master

< C/C++ structured block >

In a parallel region of code, there may be a sub-region of code that should execute only on the master
thread. Instead of ending the parallel region before this subregion, and then starting it up again after
this subregion, the omp master pragma allows the user to conveniently designate code that executes on
the master thread and is skipped by the other threads. There is no implied barrier on entry to or exit
from a master section. Nested master sections are ignored. Branching into or out of a master section is
not supported.

#include <stdio.h>

#include <omp.h>

main(){

int a[2]={-1,-1};

#pragma omp parallel

 {

 a[omp_get_thread_num()] = omp_get_thread_num();

#pragma omp master

omp single

161

 printf("YOU SHOULD ONLY SEE THIS ONCE\n");

 }

 printf("a[0]=%d, a[1]=%d\n",a[0],a[1]);

}

omp single

The OpenMP omp single pragma uses the following syntax:

#pragma omp single [Clauses]

< C/C++ structured block >

Clauses:

private(list)

firstprivate(list)

copyprivate(list)

nowait

In a parallel region of code, there may be a subregion of code that will only execute correctly on a single
thread. Instead of ending the parallel region before this subregion, and then starting it up again after
this subregion, the omp single pragma allows the user to conveniently designate code that executes on a
single thread and is skipped by the other threads. There is an implied barrier on exit from a single
process section unless the optional nowait clause is specified.

Nested single process sections are ignored. Branching into or out of a single process section is not
supported. The private and firstprivate clauses are as described in “omp parallel” on page 156.

The copyprivate clause causes the variables in list to be copied from the private copies in the single
thread that executes the single region to the other copies in all other threads of the team at the end of
the single region. The copyprivate clause must not be used with nowait.

omp for

The OpenMP omp for pragma uses the following syntax:

#pragma omp for [Clauses]

< C/C++ for loop to be executed in

parallel >

Clauses:

OpenMP Pragmas for C and C++

162

private(list)

firstprivate(list)

lastprivate(list)

reduction(operator: list)

schedule (kind[, chunk])

ordered

nowait

The real purpose of supporting parallel execution is the distribution of work across the available
threads. You can explicitly manage work distribution with constructs such as:

if (omp_get_thread_num() == 0) {

...

}

else if (omp_get_thread_num() == 1) {

...

}

However, these constructs are not in the form of pragmas. The omp for pragma provides a convenient
mechanism for the distribution of loop iterations across the available threads in a parallel region. The
following variables can be used:

• Variables declared in a private list are treated as private to each processor participating in parallel
execution of the loop, meaning that a separate copy of the variable exists on each processor.

• Variables declared in a firstprivate list are private, and in addition are initialized from the original
object existing before the construct.

• Variables declared in a lastprivate list are private, and in addition the thread that executes the
sequentially last iteration updates the version of the object that existed before the construct.

• The reduction clause is as described in “omp parallel” on page 156. The schedule clause is
explained below.

• If ordered code blocks are contained in the dynamic extent of the for directive, the ordered clause
must be present. See “omp ordered” on page 167 for more information on ordered code blocks.

The omp for pragma directs the compiler to distribute the iterative for loop immediately following across
the threads available to the program. The for loop is executed in parallel by the team that was started by
an enclosing parallel region. Branching into or out of an omp for loop is not supported, and omp for
pragmas may not be nested.

omp for

163

By default, there is an implicit barrier after the end of the parallel loop; the first thread to complete its
portion of the work will wait until the other threads have finished their portion of work. If nowait is
specified, the threads will not synchronize at the end of the parallel loop. Other items to note about omp
for loops:

• The for loop index variable is always private and must be a signed integer.

• omp for loops must be executed by all threads participating in the parallel region or none at all.

• The for loop must be a structured block and its execution must not be terminated by break.

• Values of the loop control expressions and the chunk expressions must be the same for all threads
executing the loop.

#include <stdio.h>

#include <math.h>

main(){

float a[1000], b[1000];

int i;

 for (i=0; i<1000; i++)

 b[i] = i;

#pragma omp parallel

 {

#pragma omp for

 for (i=0; i<1000; i++)

 a[i] = sqrt(b[i]);

 ...

 }

 ...

}

The schedule clause specifies how iterations of the for loop are divided up between processors. Given a
schedule (kind[, chunk]) clause, kind can be static, dynamic, guided, or runtime. These are defined as
follows:

• When schedule (static, chunk) is specified, iterations are allocated in contiguous blocks of size
chunk. The blocks of iterations are statically assigned to threads in a round-robin fashion in order
of the thread ID numbers. The chunk must be a scalar integer expression. If chunk is not specified,
a default chunk size is chosen equal to:

(number_of_iterations + omp_num_threads() - 1) / omp_num_threads()

OpenMP Pragmas for C and C++

164

• When schedule (dynamic, chunk) is specified, iterations are allocated in contiguous blocks of size
chunk. As each thread finishes a piece of the iteration space, it dynamically obtains the next set of
iterations. The chunk must be a scalar integer expression. If no chunk is specified, a default chunk
size is chosen equal to 1.

• When schedule (guided, chunk) is specified, the chunk size is reduced in an exponentially
decreasing manner with each dispatched piece of the iteration space. Chunk specifies the
minimum number of iterations to dispatch each time, except when there are less than chunk
iterations remaining to be processed, at which point all remaining iterations are assigned. If no
chunk is specified, a default chunk size is chosen equal to 1.

• When schedule (runtime) is specified, the decision regarding iteration scheduling is deferred until
runtime. The schedule type and chunk size can be chosen at runtime by setting the
OMP_SCHEDULE environment variable. If this environment variable is not set, the resulting
schedule is equivalent to schedule(static).

omp barrier

The OpenMP omp barrier pragma uses the following syntax:

#pragma omp barrier

There may be occasions in a parallel region when it is necessary that all threads complete work to that
point before any thread is allowed to continue. The omp barrier pragma synchronizes all threads at such
a point in a program. Multiple barrier points are allowed within a parallel region. The omp barrier
pragma must either be executed by all threads executing the parallel region or by none of them.

omp parallel for

The omp parallel for pragma uses the following syntax.

#pragma omp parallel for [clauses]

< C/C++ for loop to be executed in

parallel >

Clauses:

omp sections

165

private(list)

shared(list)

default(shared | none)

firstprivate(list)

lastprivate(list)

reduction(operator: list)

copyin (list)

if (scalar_expression)

ordered

schedule (kind[, chunk])

num_threads(scalar_integer_expression)

The semantics of the omp parallel for pragma are identical to those of a parallel region containing only
a single parallel for loop and pragma. The available clauses are as defined in “omp parallel” on page
156 and “omp for” on page 161.

omp sections

The omp sections pragma uses the following syntax:

#pragma omp sections [Clauses]

{

 [#pragma omp section]

 < C/C++ structured block executed

by processor i >

 [#pragma omp section]

 < C/C++ structured block executed

by processor j >

 ...

}

Clauses:

private (list)

firstprivate (list)

lastprivate (list)

reduction(operator: list)

nowait

OpenMP Pragmas for C and C++

166

The omp sections pragma defines a non-iterative work-sharing construct within a parallel region. Each
section is executed by a single thread. If there are more threads than sections, some threads will have no
work and will jump to the implied barrier at the end of the construct. If there are more sections than
threads, one or more threads will execute more than one section.

An omp section pragma may only appear within the lexical extent of the enclosing omp sections
pragma. In addition, the code within the omp sections pragma must be a structured block, and the code
in each omp section must be a structured block.

The available clauses are as defined in “omp parallel” on page 156 and “omp for” on page 161.

omp parallel sections

The omp parallel sections pragma uses the following syntax:

#pragma omp parallel sections [clauses]

{

 [#pragma omp section]

 < C/C++ structured block executed

by processor i >

 [#pragma omp section]

 < C/C++ structured block executed

by processor j >

 ...

}

Clauses:

private(list)

shared(list)

default(shared | none)

firstprivate(list)

lastprivate (list)

reduction({operator: list)

copyin (list)

if (scalar_expression)

num_threads(scalar_integer_expression)

nowait

omp ordered

167

The omp parallel sections pragma defines a non-iterative work-sharing construct without the need to
define an enclosing parallel region. Semantics are identical to a parallel region containing only an omp
sections pragma and the associated structured block.

omp ordered

The OpenMP ordered pragma uses the following syntax:

#pragma omp ordered

< C/C++ structured block >

The ordered pragma can appear only in the dynamic extent of a for or parallel for pragma that includes
the ordered clause. The structured code block appearing after the ordered pragma is executed by only
one thread at a time, and in the order of the loop iterations. This sequentializes the ordered code block
while allowing parallel execution of statements outside the code block. The following additional
restrictions apply to the ordered pragma:

• The ordered code block must be a structured block. It is illegal to branch into or out of the block.

• A given iteration of a loop with a DO directive cannot execute the same ORDERED directive more
than once, and cannot execute more than one ORDERED directive.

omp atomic

The omp atomic pragma uses the following syntax:

#pragma omp atomic

< C/C++ expression statement >

The omp atomic pragma is semantically equivalent to subjecting the following single C/C++ expression
statement to an omp critical pragma. The expression statement must be of one of the following forms:

x <binary_operator>= expr

x++

++x

x--

--x

OpenMP Pragmas for C and C++

168

where x is a scalar variable of intrinsic type, expr is a scalar expression that does not reference x,
<binary_operator> is not overloaded and is one of +, *, -, /, &, ^, |, << or >>.

omp flush

The omp flush pragma uses the following syntax:

#pragma omp flush [(list)]

The omp flush pragma ensures that all processor-visible data items, or only those specified in list when
it’s present, are written back to memory at the point at which the directive appears.

omp threadprivate

The omp threadprivate pragma uses the following syntax:

#pragma omp threadprivate (list)

Where list is a list of variables to be made private to each thread but global within the thread. This
pragma must appear in the declarations section of a program unit after the declaration of any variables
listed. On entry to a parallel region, data in a threadprivate variable is undefined unless copyin is
specified on the omp parallel pragma. When a variable appears in an omp threadprivate pragma, each
thread’s copy is initialized once at an unspecified point prior to its first use as the master copy would be
initialized in a serial execution of the program.

The following restrictions apply to the omp threadprivate pragma:

• The omp threadprivate pragma must appear after the declaration of every threadprivate variable
included in list.

• It is illegal for an omp threadprivate variable to appear in any clause other than a copyin,
schedule or if clause.

• If a variable is specified in an omp threadprivate pragma in one translation unit, it must be
specified in an omp threadprivate pragma in every translation unit in which it appears.

• The address of an omp threadprivate variable is not an address constant.

• An omp threadprivate variable must not have an incomplete type or a reference type.

Run-time Library Routines

169

Run-time Library Routines

User-callable functions are available to the OpenMP C/C++ programmer to query and alter the parallel
execution environment. Any program unit that invokes these functions should include the statement
#include <omp.h>. The omp.h include file contains definitions for each of the C/C++ library routines
and two required type definitions.

#include <omp.h>

int omp_get_num_threads(void);

returns the number of threads in the team executing the parallel region from which it is called. When
called from a serial region, this function returns 1. A nested parallel region is the same as a single
parallel region. By default, the value returned by this function is equal to the value of the environment
variable OMP_NUM_THREADS or to the value set by the last previous call to the
omp_set_num_threads() function defined below.

#include <omp.h>

void omp_set_num_threads(int num_threads);

sets the number of threads to use for the next parallel region. This function can only be called from a
serial region of code. If it is called from within a parallel region, or within a function that is called from
within a parallel region, the results are undefined. This function has precedence over the
OMP_NUM_THREADS environment variable.

#include <omp.h>

int omp_get_thread_num(void);

returns the thread number within the team. The thread number lies between 0 and
omp_get_num_threads()-1. When called from a serial region, this function returns 0. A nested parallel
region is the same as a single parallel region.

#include <omp.h>

int omp_get_max_threads(void);

returns the maximum value that can be returned by calls to omp_get_num_threads(). If
omp_set_num_threads() is used to change the number of processors, subsequent calls to
omp_get_max_threads() will return the new value. This function returns the maximum value whether
executing from a parallel or serial region of code.

#include <omp.h>

int omp_get_num_procs(void);

OpenMP Pragmas for C and C++

170

returns the number of processors that are available to the program.

#include <omp.h>

size_t omp_get_stack_size(void);

Returns the value of the OpenMP internal control variable that specifies the size that will be used to
create a stack for a newly created thread. Note that this value may not be the size of the stack of the
current thread.

#include <omp.h>

void omp_set_stack_size(size_t);

Changes the value of the OpenMP internal control variable that specifies the size that will be used to
create a stack for a newly created thread. The argument specifies the stack size in kilobytes. The size of
the stack of the current thread cannot be changed. In the PGI implementation, all OpenMP or auto-
parallelization threads are created just prior to the first parallel region, therefore, only calls to
omp_set_stack_size prior to the first region have an effect.

#include <omp.h>

int omp_in_parallel(void);

returns non-zero if called from within a parallel region and zero if called outside of a parallel region.
When called from within a parallel region that is serialized, for example in the presence of an if clause
evaluating to zero, the function will return zero.

#include <omp.h>

void omp_set_dynamic(int dynamic_threads);

is designed to allow automatic dynamic adjustment of the number of threads used for execution of
parallel regions. This function is recognized, but currently has no effect.

#include <omp.h>

int omp_get_dynamic(void);

is designed to allow the user to query whether automatic dynamic adjustment of the number of threads
used for execution of parallel regions is enabled. This function is recognized, but currently always
returns zero.

#include <omp.h>

void omp_set_nested(int nested);

is designed to allow enabling/disabling of nested parallel regions. This function is recognized, but
currently has no effect.

Run-time Library Routines

171

#include <omp.h>

int omp_get_nested(void);

is designed to allow the user to query whether dynamic adjustment of the number of threads available
for execution of parallel regions is enabled. This function is recognized, but currently always returns
zero.

#include <omp.h>

double omp_get_wtime()

returns the elapsed wall clock time in seconds as a floating-point double value. Times returned are per-
thread times, and are not necessarily globally consistent across all threads.

#include <omp.h>

double omp_get_wtick()

returns the resolution of omp_get_wtime(), in seconds, as a floating-point double value.

#include <omp.h>

void omp_init_lock(omp_lock_t *lock);

void omp_init_nest_lock(omp_nest_lock_t *lock);

initializes a lock associated with the variable lock for use in subsequent calls to lock routines. This initial
state of lock is unlocked. It is illegal to make a call to this routine if lock is already associated with a
lock.

#include <omp.h>

void omp_destroy_lock(omp_lock_t *lock);

void omp_destroy_nest_lock(omp_nest_lock_t *lock);

disassociates a lock associated with the variable lock.

#include <omp.h>

void omp_set_lock(omp_lock_t *lock);

void omp_set_nest_lock(omp_nest_lock_t *lock);

causes the calling thread to wait until the specified lock is available. The thread gains ownership of the
lock when it is available. It is illegal to make a call to this routine if lock has not been associated with a
lock.

OpenMP Pragmas for C and C++

172

#include <omp.h>

void omp_unset_lock(omp_lock_t *lock);

void omp_unset_nest_lock(omp_nest_lock_t *lock);

causes the calling thread to release ownership of the lock associated with lock. It is illegal to make a call
to this routine if lock has not been associated with a lock.

#include <omp.h>

int omp_test_lock(omp_lock_t *lock);

int omp_test_nest_lock(omp_nest_lock_t *lock);

causes the calling thread to try to gain ownership of the lock associated with lock. The function returns
non-zero if the thread gains ownership of the lock, and zero otherwise. It is illegal to make a call to this
routine if lock has not been associated with a lock.

Environment Variables

OMP_NUM_THREADS - specifies the number of threads to use during execution of parallel regions. The
default value for this variable is 1. For historical reasons, the environment variable NCPUS is supported
with the same functionality. In the event that both OMP_NUM_THREADS and NCPUS are defined, the
value of OMP_NUM_THREADS takes precedence.

NOTE

OMP_NUM_THREADS threads will be used to execute the program regardless of the number
of physical processors available in the system. As a result, you can run programs using more
threads than physical processors and they will execute correctly. However, performance of
programs executed in this manner can be unpredictable, and oftentimes will be inefficient

OMP_SCHEDULE - specifies the type of iteration scheduling to use for omp for and omp parallel for
loops that include the schedule(runtime) clause. The default value for this variable is “static”. If the
optional chunk size is not set, a chunk size of 1 is assumed except in the case of a static schedule. For a
static schedule, the default is as defined in “omp for” on page 161.

Examples of the use of OMP_SCHEDULE are as follows:

Environment Variables

173

$ setenv OMP_SCHEDULE "static, 5"

$ setenv OMP_SCHEDULE "guided, 8"

$ setenv OMP_SCHEDULE "dynamic"

OMP_DYNAMIC - currently has no effect.

OMP_NESTED - currently has no effect.

MPSTKZ - increase the size of the stacks used by threads executing in parallel regions. For use with
programs that utilize large amounts of thread-local storage in the form of private variables or local
variables in functions or subroutines called within parallel regions. The value should be an integer <n>
concatenated with M or m to specify stack sizes of n megabytes. For example:

$ setenv MPSTKZ 8M

OMP_WAIT_POLICY (Proposed OpenMP 3.0 Feature) - The OpenMP environment variable
OMP_WAIT_POLICY sets the behavior of idle threads. The values are ACTIVE and PASSIVE. This behavior
is also shared by threads created by auto-parallelization. Threads are considered idle when waiting at a
barrier, when waiting to enter a critical region, or unemployed between parallel regions. Threads
waiting for critical sections always busy wait.

Barriers always busy wait with calls to sched_yield determined by MP_SPIN. Unemployed threads during
a serial region can either busy wait using the barrier (ACTIVE) or politely wait using a mutex (PASSIVE).
The choice is set by OMP_WAIT_POLICY. The default is ACTIVE.

When ACTIVE is set, idle threads consume 100% of their CPU allotment spinning in a busy loop waiting
to restart in a parallel region. This mechanism allows for very quick entry into parallel regions which is
good for programs that enter and leave parallel regions frequently.

When PASSIVE is set, idle threads wait on a mutex (in the operating system) and consume no CPU time
until being restarted. Passive idle is best when a program has long periods of serial activity or when the
program runs on a multi-user machine or otherwise shares CPU resources.

OMP_STACK_SIZE (Proposed OpenMP 3.0 Feature) - The OpenMP environment variable
OMP_STACK_SIZE overrides the default stack size for a newly created thread. The value is an decimal
integer followed by an optional letter B, K, M, or G, to specify bytes, kilobytes, megabytes, and gigabytes,
respectively. If no letter is used, the default is kilobytes. There is no space between the value and the
letter; for example, one megabyte is specified 1M.

OpenMP Pragmas for C and C++

174

The environment variable OMP_STACK_SIZE is read on program start-up; if the program changes its
own environment, the variable is not re-checked. This environment variable takes precedence over
MPSTKSZ (see above). Once a thread is created, its stack size cannot be changed. In the PGI
implementation, threads are created prior to the first parallel region and persist for the life of the
program. The stack size of the main program is not affected by OMP_STACK_SIZE. Its size is set at
program start up. For more information on controlling the program stack size in Linux, see “Running
Parallel Programs on Linux” on page 10.

PGI Proprietary Fortran Directives

175

7 Directives and Pragmas
Directives are Fortran comments that the user may supply in a Fortran source file to provide
information to the compiler. Directives alter the effects of certain command line options or default
behavior of the compiler. While a command line option affects the entire source file that is being
compiled, directives apply, or disable, the effects of a command line option to selected subprograms or to
selected loops in the source file (for example, an optimization). Use directives to tune selected routines
or loops.

PGI Proprietary Fortran Directives

PGI Fortran compilers support proprietary directives that may have any of the following forms:

!pgi$g directive

!pgi$r directive

!pgi$l directive

!pgi$ directive

Either * or C is allowed in place of !. The scope indicator occurs after the $; this indicator controls the
scope of the directive. Some directives ignore the scope indicator. The valid scopes, as shown above, are:

g (global) indicates the directive applies to the end of the source file.

r (routine) indicates the directive applies to the next subprogram.

l (loop) indicates the directive applies to the next loop (but not to any loop contained within
the loop body). Loop-scoped directives are only applied to DO loops.

blank indicates that the default scope for the directive is applied.

The body of the directive may immediately follow the scope indicator. Alternatively, any number of
blanks may precede the name of the directive. Any names in the body of the directive, including the
directive name, may not contain embedded blanks. Blanks may surround any special characters, such as
a comma or an equal sign.

The directive name, including the directive prefix, may contain upper or lower case letters (case is not
significant). Case is significant for any variable names that appear in the body of the directive if the
command line option –Mupcase is selected. For compatibility with other vendors’ directives, the prefix
cpgi$ may be substituted with cdir$ or cvd$.

Directives and Pragmas

176

PGI Proprietary Fortran Directive Summary

The next table summarizes the supported Fortran directives. The scope entry indicates the allowed scope
indicators for each directive; the default scope is surrounded by parentheses. The system field indicates
the target system type for which the pragma applies. Many of the directives can be preceded by NO. The
default entry in the table indicates the default of the directive; n/a appears if a default does not apply.
The name of a directive may also be prefixed with –M; for example, the directive –Mbounds is equivalent
to bounds and –Mopt is equivalent to opt.

PGI Proprietary Fortran Directive Summary

177

Table 7-1: Proprietary Fortran Directive Summary

Directive Function Default Scope

altcode noaltcode Do/don’t generate alternate code for
vectorized and parallelized loops

altcode (l)rg

assoc noassoc Do/don’t perform associative transfor-
mations

assoc (l)rg

bounds nobounds Do/don’t perform array bounds check-
ing

nobounds (r)g*

cncall nocncall Loops are considered for parallelization,
even if they contain calls to user-defined
subroutines or functions, or if their loop
counts do not exceed usual thresholds.

nocncall (l)rg

concur noconcur Do/don’t enable auto-concurrentiza-
tion of loops

concur (l)rg

depchk nodepchk Do/don’t ignore potential data depen-
dencies

depchk (l)rg

eqvchk noeqvchk Do/don’t check EQUIVALENCE s for data
dependencies.

eqvchk (l)rg

invarif noinvarif Do/don’t remove invariant if constructs
from loops.

invarif (l)rg

ivdep Ignore potential data dependencies depchk (l)rg

lstval nolstval Do/don’t compute last values. lstval (l)rg

opt Select optimization level. N/A (r)g

safe_lastval Parallelize when loop contains a scalar
used outside of loop.

not enabled (l)

tp Generate PGI Unified Binary code opti-
mized for specified targets

N/A (r)g

Directives and Pragmas

178

In the case of the vector/novector directive, the scope is the code following the directive until the end of
the routine for r-scoped directives (as opposed to the entire routine), or until the end of the file for g-
scoped directives (as opposed to the entire file).

altcode (noaltcode)

Instructs the compiler to generate alternate code for vectorized or parallelized loops. The noaltcode
directive disables generation of alternate code.

This directive affects the compiler only when –Mvect or –Mconcur is enabled on the command line.

cpgi$ altcode Enables alternate code (altcode) generation for vectorized
loops. For each loop the compiler decides whether to generate
altcode and what type(s) to generate, which may be any or all
of: altcode without iteration peeling, altcode with non-
temporal stores and other data cache optimizations, and
altcode based on array alignments calculated dynamically at
runtime. The compiler also determines suitable loop count and
array alignment conditions for executing the alternate code.

cpgi$ altcode alignment For a vectorized loop, if possible generate an alternate
vectorized loop containing additional aligned moves which is
executed if a runtime array alignment test is passed.

cpgi$ altcode [(n)] concur For each auto-parallelized loop, generate an alternate serial
loop to be executed if the loop count is less than or equal to n. If
n is omitted or n is 0, the compiler determines a suitable value
of n for each loop.

unroll nounroll Do/don’t unroll loops. nounroll (l)rg

vector novector Do/don't perform vectorizations. vector (l)rg

vintr novintr Do/don’t recognize vector intrinsics. vintr (l)rg

Directive Function Default Scope

PGI Proprietary Fortran Directive Summary

179

cpgi$ altcode [(n)] concurreduction This directive sets the loop count threshold for parallelization
of reduction loops to n. For each auto-parallelized reduction
loop, generate an alternate serial loop to be executed if the loop
count is less than or equal to n. If n is omitted or n is 0, the
compiler determines a suitable value of n for each loop.

cpgi$ altcode [(n)] nontemporal For a vectorized loop, if possible generate an alternate
vectorized loop containing non-temporal stores and other
cache optimizations to be executed if the loop count is greater
than n. If n is omitted or n is 1, the compiler determines a
suitable value of n for each loop. The alternate code is
optimized for the case when the data referenced in the loop
does not all fit in level 2 cache.

cpgi$ altcode [(n)] nopeel For a vectorized loop where iteration peeling is performed by
default, if possible generate an alternate vectorized loop
without iteration peeling to be executed if the loop count is less
than or equal to n. If n is omitted or n is 1, the compiler
determines a suitable value of n for each loop, and in some
cases it may decide not to generate an alternate unpeeled loop.

 For each vectorized loop, generate an alternate scalar loop to be
executed if the loop count is less than or equal to n. If n is
omitted or n is 1, the compiler determines a suitable value of n
for each loop.

cpgi$ altcode [(n)] vector cpgi$ noaltcodeThis directive sets the loop count thresholds for
parallelization of all innermost loops to 0, and disables
alternate code generation for vectorized loops.

assoc (noassoc)

This directive toggles the effects of the –Mvect=noassoc command-line option (an Optimization –M
control).

By default, when scalar reductions are present the vectorizer may change the order of operations so
that it can generate better code (e.g., dot product). Such transformations change the result of the
computation due to roundoff error. The noassoc directive disables these transformations. This
directive affects the compiler only when –Mvect is enabled on the command line.

Directives and Pragmas

180

bounds (nobounds)

This directive alters the effects of the –Mbounds command line option. This directive enables the
checking of array bounds when subscripted array references are performed. By default, array bounds
checking is not performed.

cncall (nocncall)

Loops within the specified scope are considered for parallelization, even if they contain calls to user-
defined subroutines or functions, or if their loop counts do not exceed the usual thresholds. A nocncall
directive cancels the effect of a previous cncall.

concur (noconcur)

This directive alters the effects of the –Mconcur command-line option. The directive instructs the
auto-parallelizer to enable auto-concurrentization of loops. If concur is specified, multiple processors
will be used to execute loops which the auto-parallelizer determines to be parallelizable. The
noconcur directive disables these transformations. This directive affects the compiler only when –
Mconcur is enabled on the command line.

depchk (nodepchk)

This directive alters the effects of the –Mdepchk command line option. When potential data
dependencies exist, the compiler, by default, assumes that there is a data dependence that in turn may
inhibit certain optimizations or vectorizations. nodepchk directs the compiler to ignore unknown data
dependencies.

eqvchk (noeqvchk)

When examining data dependencies, noeqvchk directs the compiler to ignore any dependencies
between variables appearing in EQUIVALENCE statements.

invarif (noinvarif)

There is no command-line option corresponding to this directive. Normally, the compiler removes
certain invariant if constructs from within a loop and places them outside of the loop. The directive
noinvarif directs the compiler to not move such constructs. The directive invarif toggles a previous
noinvarif.

ivdep

The ivdep directive is equivalent to the directive nodepchk.

PGI Proprietary Fortran Directive Summary

181

opt

The syntax of this directive is:

cpgi$<scope> opt=<level>

where, the optional <scope> is r or g and <level> is an integer constant representing the
optimization level to be used when compiling a subprogram (routine scope) or all subprograms in a
file (global scope). The opt directive overrides the value specified by the command line option –On.

lstval (nolstval)

There is no command line option corresponding to this directive. The compiler determines whether
the last values for loop iteration control variables and promoted scalars need to be computed. In
certain cases, the compiler must assume that the last values of these variables are needed and
therefore computes their last values. The directive nolstval directs the compiler not to compute the last
values for those cases.

safe_lastval

During parallelization scalars within loops need to be privatized. Problems are possible if a scalar is
accessed outside the loop. For example:

do i = 1, N

 if(f(x(i)) > 5.0)

 t = x(i)

enddo

 v = t

creates a problem since the value of t may not be computed on the last iteration of the loop. If a scalar
assigned within a loop is used outside the loop, we normally save the last value of the scalar.
Essentially the value of the scalar on the "last iteration" is saved, in this case when i = N.

If the loop is parallelized and the scalar is not assigned on every iteration, it may be difficult to
determine on what iteration t is last assigned, without resorting to costly critical sections. Analysis
allows the compiler to determine if a scalar is assigned on every iteration, thus the loop is safe to
parallelize if the scalar is used later. An example loop is:

do i = 1, N

if(x(i) > 0.0)

 t = 2.0

 else

 t = 3.0

Directives and Pragmas

182

 endif

 y(i) = ...t...

enddo

v = t

where t is assigned on every iteration of the loop. However, there are cases where a scalar may be
privatizable. If it is used after the loop, it is unsafe to parallelize. Examine this loop:

do i = 1,N

 if(x(i) > 0.0)

 t = x(i)

 ...

 ...

 y(i) = ...t..

 endif

enddo

v = t

where each use of t within the loop is reached by a definition from the same iteration. Here t is
privatizable, but the use of t outside the loop may yield incorrect results since the compiler may not be
able to detect on which iteration of the parallelized loop t is assigned last.

The compiler detects the above cases. Where a scalar is used after the loop, but is not defined on every
iteration of the loop, parallelization will not occur.

If you know that the scalar is assigned on the last iteration of the loop, making it safe to parallelize the
loop, a pragma is available to let the compiler know the loop is safe to parallelize. Use the following C
pragma to tell the compiler that for a given loop the last value computed for all scalars make it safe to
parallelize the loop:

cpgi$l safe_lastval

In addition, a command-line option, -Msafe_lastval, provides this information for all loops within the
routines being compiled (essentially providing global scope.)

tp

The directive tp is used to specify one or more processor targets for which to generate code.

 cpgi$ tp [target]...

Scope of Directives and Command Line options

183

See “Processor Options” on page xxi for a list of targets that can be used as parameters to the tp
directive. See “Processor-Specific Optimization and the Unified Binary” on page 35 for more
information on unified binaries.

unroll (nounroll)

The directive nounroll is used to disable loop unrolling and unroll to enable unrolling. The directive
takes arguments c and n. A c specifies that c (complete unrolling should be turned on or off) An n
specifies that n (count) unrolling should be turned on or off. In addition, the following arguments
may be added to the unroll directive:

 cpgi$ unroll = c:v

This sets the threshold to which c unrolling applies; v is a constant; a loop whose constant loop count
is <= v is completely unrolled.

 cpgi$ unroll = n:v

This adjusts threshold to which n unrolling applies; v is a constant; a loop to which n unrolling
applies is unrolled v times.

The directives unroll and nounroll only apply if –Munroll is selected on the command line.

vector (novector)

The directive novector is used to disable vectorization. The directive vector is used to re-enable
vectorization after a previous novector directive. The directives vector and novector only apply if –
Mvect has been selected on the command line.

vintr (novintr)

The directive novintr directs the vectorizer to disable recognition of vector intrinsics. The directive
vintr is used to re-enable recognition of vector intrinsics after a previous novintr directive. The
directives vintr and novintr only apply if –Mvect has been selected on the command line.

Scope of Directives and Command Line options

This section presents several examples showing the effect of directives and the scope of directives.
Remember that during compilation, the effect of a directive may be to either turn an option on, or turn
an option off. Directives apply to the section of code following the directive, corresponding to the
specified scope (that is, the following loop, the following routine, or the rest of the program).

Directives and Pragmas

184

Consider the following code:

 integer maxtime, time

 parameter (n = 1000, maxtime = 10)

 double precision a(n,n), b(n,n), c(n,n)

 do time = 1, maxtime

 do i = 1, n

 do j = 1, n

 c(i,j) = a(i,j) + b(i,j)

 enddo

 enddo

 enddo

 end

When compiled with –Mvect, both interior loops are interchanged with the outer loop.

$ pgf95 -Mvect dirvect1.f

Directives alter this behavior either globally or on a routine or loop by loop basis. To assure that
vectorization is not applied, use the novector directive with global scope.

cpgi$g novector

 integer maxtime, time

 parameter (n = 1000, maxtime = 10)

 double precision a(n,n), b(n,n), c(n,n)

 do time = 1, maxtime

 do i = 1, n

 do j = 1, n

 c(i,j) = a(i,j) + b(i,j)

 enddo

 enddo

 enddo

 end

In this version, the compiler disables vectorization for the entire source file. Another use of the directive
scoping mechanism turns an option on or off locally, either for a specific procedure or for a specific loop:

 integer maxtime, time

 parameter (n = 1000, maxtime = 10)

 double precision a(n,n), b(n,n), c(n,n)

cpgi$l novector

 do time = 1, maxtime

 do i = 1, n

 do j = 1, n

!DEC$ Directives for Windows Fortran

185

 c(i,j) = a(i,j) + b(i,j)

 enddo

 enddo

 enddo

 end

Loop level scoping does not apply to nested loops. That is, the directive only applies to the following loop.
In this example, the directive turns off vector transformations for the top-level loop. If the outer loop
were a timing loop, this would be a practical use for a loop-scoped directive.

!DEC$ Directives for Windows Fortran

PGI Fortran compilers for Microsoft Windows support several de-facto standard Fortran directives that
help with interlanguage calling and importing and exporting routines to and from DLLs. These
directives all take the form:

!DEC$ directive

Syntax:

ATTRIBUTES Clause

!DEC$ ATTRIBUTES <attr option>

where <attr option> is one of:

ALIAS : 'alias_name' :: routine_name
Specifies an alternative name with which to resolve
routine_name.

C Same as STDCALL on Win64

DLLEXPORT :: name Specifies that 'name' is being exported to other applications or
DLL's

DLLIMPORT :: name Specifies that 'name' is being imported from other applications
or DLL's

REFERENCE :: name Specifies that the argument 'name' is being passed by
reference. Often this attribute is used in conjuction with
STDCALL, where STDCALL refers to an entire routine,then
individual arguments are modified with REFERENCE.

Directives and Pragmas

186

STDCALL :: routine_name Specifies that routine 'routine_name' will have its arguments
passed by value. When a routine marked STDCALL is called,
arguments (except arrays and characters) will be sent by value.
The standard F90/F95 calling convention is by reference.

VALUE :: name Specifies that the argument 'name' is being passed by value.
Often used to specify that a particular argument is being passed
by value.

Loop Distribution Directive

!DEC$ DISTRIBUTE POINT

This directive is front-end based, and tells the compiler at what point within a loop to split into two
loops.

subroutine dist(a,b,n)

integer i

integer n

integer a(*)

integer b(*)

 do i = 1,n

 a(i) = a(i)+2

!DEC$ DISTRIBUTE POINT

 b(i) = b(i)*4

 enddo

end subroutine

!DEC$ DISTRIBUTEPOINT

is same as !DEC$ DISTRIBUTE POINT

ALIAS Attribute

!DEC$ ALIAS

same as !DEC$ ATTRIBUTES ALIAS

Adding Pragmas to C and C++

187

Adding Pragmas to C and C++

Pragmas may be supplied in a C/C++ source file to provide information to the compiler. Like directives
in Fortran, pragmas alter the effects of certain command-line options or default behavior of the
compiler (many pragmas have a corresponding command-line option). While a command-line option
affects the entire source file that is being compiled, pragmas apply the effects of a particular command-
line option to selected functions or to selected loops in the source file. Pragmas may also toggle an
option, selectively enabling and disabling the option. Pragmas let you tune selected functions or loops
based on your knowledge of the code.

The general syntax of a pragma is:

#pragma [scope] pragma-body

The optional scope field is an indicator for the scope of the pragma; some pragmas ignore the scope
indicator.

The valid scopes are:

global indicates the pragma applies to the entire source file.

routine indicates the pragma applies to the next function.

loop indicates the pragma applies to the next loop (but not to any loop
contained within the loop body). Loop-scoped pragmas are only applied to
for and while loops.

If a scope indicator is not present, the default scope, if any, is applied. Whitespace must appear after the
pragma keyword and between the scope indicator and the body of the pragma. Whitespace may also
surround any special characters, such as a comma or an equal sign. Case is significant for the names of
the pragmas and any variable names that appear in the body of the pragma.

C/C++ Pragma Summary

The following table summarizes the supported pragmas. The scope entry in the table indicates the
permitted scope indicators for each pragma: the letters L, R, and G indicate loop, routine, and global
scope, respectively. The default scope is surrounded by parentheses. The "*" in the scope field indicates
that the scope is the code following the pragma until the end of the routine for R-scoped pragmas, as
opposed to the entire routine, or until the end of the file for G-scoped pragmas, as opposed to the entire
file.

Directives and Pragmas

188

Many of the pragmas can be preceded by no. The default entry in the table indicates the default of the
pragma; N/A appears if a default does not apply. The name of any pragma may be prefixed with -M; for
example, –Mnoassoc is equivalent to noassoc and –Mvintr is equivalent to vintr. The section following
the table provides brief descriptions of the pragmas that are unique to C/C++. Pragmas that have a
corresponding directive in Fortran are described in “PGI Proprietary Fortran Directive Summary” on
page 176.

C/C++ Pragma Summary

189

Table 7-2: C/C++ Pragma Summary

Pragma Function Default Scope

altcode noalt-
code

Do/don’t generate alternate code for vec-
torized and parallelized loops

altcode (L)RG

assoc noassoc Do/don’t perform associative transforma-
tions.

assoc (L)RG

bounds
nobounds

Do/don’t perform array bounds checking. nobounds (R)G

concur nocon-
cur

Do/don’t enable auto-concurrentization
of loops.

concur (L)RG

depchk
nodepchk

Do/don’t ignore potential data dependen-
cies.

depchk (L)RG

fcon nofcon Do/don’t assume unsuffixed real con-
stants are single precision.

nofcon (R)G

invarif noinvarif Do/don’t remove invariant if constructs
from loops.

invarif (L)RG

lstval nolstval Do/don’t compute last values. lstval (L)RG

opt Select optimization level. N/A (R)G

safe nosafe Do/don’t treat pointer arguments as safe. safe (R)G

safe_lastval Parallelize when loop contains a scalar
used outside of loop.

not enabled (L)

safeptr nosafeptr Do/don’t ignore potential data dependen-
cies to pointers.

nosafeptr L(R)G

single nosingle Do/don’t convert float parameters to dou-
ble.

nosingle (R)G*

tp Generate PGI Unified Binary code opti-
mized for specified targets

N/A (R)G

Directives and Pragmas

190

fcon (nofcon)

This pragma alters the effects of the –Mfcon command-line option (a –M Language control).

The pragma instructs the compiler to treat non-suffixed floating-point constants as float rather than
double. By default, all non-suffixed floating-point constants are treated as double.

safe (nosafe)

By default, the compiler assumes that all pointer arguments are unsafe. That is, the storage located by
the pointer can be accessed by other pointers.

The forms of the safe pragma are:

#pragma [scope] [no]safe

#pragma safe (variable [, variable]...)

where scope is either global or routine.

When the pragma safe is not followed by a variable name (or name list), all pointer arguments
appearing in a routine (if scope is routine) or all routines (if scope is global) will be treated as safe.

If variable names occur after safe, each name is the name of a pointer argument in the current
function. The named argument is considered to be safe. Note that if just one variable name is
specified, the surrounding parentheses may be omitted.

There is no command-line option corresponding to this pragma.

safeptr (nosafeptr)

The pragma safeptr directs the compiler to treat pointer variables of the indicated storage class as safe.
The pragma nosafeptr directs the compiler to treat pointer variables of the indicated storage class as
unsafe. This pragma alters the effects of the –Msafeptr command-line option.

unroll nounroll Do/don’t unroll loops. nounroll (L)RG

vector novector Do/don’t perform vectorizations. vector (L)RG

vintr novintr Do/don’t recognize vector intrinsics. vintr (L)RG

Pragma Function Default Scope

Scope of C/C++ Pragmas and Command Line Options

191

The syntax of this pragma is:

#pragma [scope] value

where value is:

[no]safeptr={arg|local|auto|global|static|all},...

Note that the values local and auto are equivalent.

For example, in a file containing multiple functions, the command-line option –Msafeptr might be
helpful for one function, but can’t be used because another function in the file would produce
incorrect results. In such a file, the safeptr pragma, used with routine scope could improve
performance and produce correct results.

single (nosingle)

The pragma single directs the compiler not to convert float parameters to double in non-prototyped
functions. This can result in faster code if the program uses only float parameters.

Note

Since ANSI C specifies that routines must convert float parameters to double in non-
prototyped functions, this pragma results in non-ANSI conforming code.

Scope of C/C++ Pragmas and Command Line Options

This section presents several examples showing the effect of pragmas and the use of the pragma scope
indicators. Note during compilation a pragma either turns an option on or turns an option off. Pragmas
apply to the section of code corresponding to the specified scope (that is, the entire file, the following
loop, or the following or current routine). For pragmas that have only routine and global scope, there
are two rules for determining the scope of a pragma. We cover these special scope rules at the end of this
section. In all cases, pragmas override a corresponding command-line option.

Consider the program:

main() {

 float a[100][100], b[100][100],

c[100][100];

 int time, maxtime, n, i, j;

 maxtime=10;

 n=100;

Directives and Pragmas

192

 for (time=0; time<maxtime;time++)

 for (j=0; j<n;j++)

 for (i=0; i<n;i++)

 c[i][j] = a[i][j] + b[i][j];

}

When this is compiled using the –Mvect command-line option, both interior loops are interchanged with
the outer loop. Pragmas alter this behavior either globally or on a routine or loop by loop basis. To
ensure that vectorization is not applied, use the novector pragma with global scope.

main() {

#pragma global novector

 float a[100][100], b[100][100],

c[100][100];

 int time, maxtime, n, i, j;

 maxtime=10;

 n=100;

 for (time=0; time<maxtime;time++)

 for (j=0; j<n;j++)

 for (i=0; i<n;i++)

 c[i][j] = a[i][j] + b[i][j];

}

In this version, the compiler does not perform vectorization for the entire source file. Another use of the
pragma scoping mechanism turns an option on or off locally either for a specific procedure or for a
specific loop. The following example shows the use of a loop-scoped pragma.

main() {

 float a[100][100], b[100][100],

c[100][100];

 int time, maxtime, n, i, j;

 maxtime=10;

 n=100;

#pragma loop novector

 for (time=0; time<maxtime;time++)

 for (j=0; j<n;j++)

 for (i=0; i<n;i++)

 c[i][j] = a[i][j] + b[i][j];

}

Loop level scoping does not apply to nested loops. That is, the pragma only applies to the following loop.
In this example, the pragma turns off vector transformations for the top-level loop. If the outer loop
were a timing loop, this would be a practical use for a loop-scoped pragma.

Scope of C/C++ Pragmas and Command Line Options

193

The following example shows routine pragma scope:

#include "math.h"

func1() {

#pragma routine novector

 float a[100][100], b[100][100];

 float c[100][100], d[100][100];

 int i,j;

 for (i=0;i<100;i++)

 for (j=0;j<100;j++)

 a[i][j] = a[i][j] + b[i][j] * c[i][j];

 c[i][j] = c[i][j] + b[i][j] * d[i][j];

}

func2() {

 float a[200][200], b[200][200];

 float c[200][200], d[200][200];

 int i,j;

 for (i=0;i<200;i++)

 for (j=0;j<200;j++)

 a[i][j] = a[i][j] + b[i][j] * c[i][j];

 c[i][j] = c[i][j] + b[i][j] * d[i][j];

}

When this source is compiled using the –Mvect command-line option, func2 is vectorized but func1 is
not vectorized. In the following example, the global novector pragma turns off vectorization for the
entire file.

#include "math.h"

func1() {

#pragma global novector

 float a[100][100], b[100][100];

 float c[100][100], d[100][100];

 int i,j;

 for (i=0;i<100;i++)

 for (j=0;j<100;j++)

 a[i][j] = a[i][j] + b[i][j] * c[i][j];

 c[i][j] = c[i][j] + b[i][j] * d[i][j];

}

func2() {

 float a[200][200], b[200][200];

 float c[200][200], d[200][200];

 int i,j;

 for (i=0;i<200;i++)

Directives and Pragmas

194

 for (j=0;j<200;j++)

 a[i][j] = a[i][j] + b[i][j] * c[i][j];

 c[i][j] = c[i][j] + b[i][j] * d[i][j];

}

Special Scope Rules

Special rules apply for a pragma with loop, routine, and global scope. When the pragma is placed
within a routine, it applies to the routine from its point in the routine to the end of the routine. The
same rule applies for one of these pragmas with global scope.

However, there are several pragmas for which only routine and global scope applies and which affect
code immediately following the pragma:

• bounds and fcon – The bounds and fcon pragmas behave in a similar manner to pragmas with
loop scope. That is, they apply to the code following the pragma.

• opt and safe – When the opt, and safe pragmas are placed within a routine, they apply to the
entire routine as if they had been placed at the beginning of the routine.

Prefetch Directives

When vectorization is enabled using the –Mvect or –Mprefetch compiler options, or an aggregate option
such as –fastsse that incorporates –Mvect, the PGI compilers selectively emit instructions to explicitly
prefetch data into the data cache prior to first use. It is possible to control how these prefetch
instructions are emitted using prefetch directives. These directives only have an effect when vectorization
or prefetching are enabled on the command-line. See Table 2 , “Processor Options” in the Preface for a
list of processors that support prefetch instructions.

The syntax of a prefetch directive is as follows:

c$mem prefetch <var1>[,<var2>[,...]]

where <varn> is any valid variable or array element reference.

NOTE

The sentinel for prefetch directives is c$mem, which is distinct from the cpgi$ sentinel used
for optimization directives. Any prefetch directives that use the cpgi$ sentinel will be ignored
by the PGI compilers.

Prefetch Directives

195

The "c" must be in column 1. Either * or ! is allowed in place of c. The scope indicators g, r and l used
with the cpgi$ sentinel are not supported. The directive name, including the directive prefix, may
contain upper or lower case letters (case is not significant). Case is significant for any variable names
that appear in the body of the directive if the command line option –Mupcase is selected.

An example using prefetch directives to prefetch data in a matrix multiplication inner loop where a row
of one source matrix has been gathered into a contiguous vector might look as follows:

 real*8 a(m,n), b(n,p), c(m,p), arow(n)

...

 do j = 1, p

c$mem prefetch arow(1),b(1,j)

c$mem prefetch arow(5),b(5,j)

c$mem prefetch arow(9),b(9,j)

 do k = 1, n, 4

c$mem prefetch arow(k+12),b(k+12,j)

 c(i,j) = c(i,j) + arow(k) * b(k,j)

 c(i,j) = c(i,j) + arow(k+1) * b(k+1,j)

 c(i,j) = c(i,j) + arow(k+2) * b(k+2,j)

 c(i,j) = c(i,j) + arow(k+3) * b(k+3,j)

 enddo

 enddo

This pattern of prefetch directives will cause the compiler to emit prefetch instructions whereby elements
of arow and b are fetched into the data cache starting 4 iterations prior to first use. By varying the
prefetch distance in this way, it is possible in some cases to reduce the effects of main memory latency
and improve performance.

Directives and Pragmas

196

Using builtin Math Functions in C/C++

197

8 Libraries and Environment
Variables
This chapter discusses issues related to PGI-supplied compiler libraries. It also addresses the use of C/
C++ builtin functions in place of the corresponding libc routines, creation of dynamically linked
libraries (also known as shared objects or shared libraries), and math libraries.

Using builtin Math Functions in C/C++

The name of the math header file is math.h. Include the math header file in all of your source files that
use a math library routine as in the following example, which calculates the inverse cosine of pi/3.

#include <math.h>

#define PI 3.1415926535

main()

{

 double x, y;

 x = PI/3.0;

 y = acos(x);

}

Including math.h will cause PGCC C and C++ to use builtin functions, which are much more efficient
than library calls. In particular, the following intrinsics calls will be processed using builtins if you
include math.h:

atan2 cos fabs exp

atan sin log pow

tan sqrt log10

Libraries and Environment Variables

198

Creating and Using Shared Object Files on Linux

All of the PGI Fortran, C, and C++ compilers support creation of shared object files. Unlike statically
linked object and library files, shared object files link and resolve references with an executable at
runtime via a dynamic linker supplied with your operating system. The PGI compilers must generate
position independent code to support creation of shared objects by the linker. This is not the default, use
the steps that follow to create object files with position independent code and shared object files that are
to include them. The following steps describe how to create and use a shared object file.

1. To create an object file with position independent code, compile it with the appropriate PGI
compiler using the -fpic option (the -fPIC, -Kpic, and -KPIC options are supported for
compatibility with other systems you may have used, and are equivalent to-fpic). For example, use
the following command to create an object file with position independent code using pgf95:

% pgf95 -c -fpic tobeshared.f

2. To produce a shared object file, use the appropriate PGI compiler to invoke the linker supplied
with your system. It is customary to name such files using a .so filename extension. On Linux, this
is done by passing the -shared option to the linker:

% pgf95 -shared -o tobeshared.so tobeshared.o

Note that compilation and generation of the shared object can be performed in one step using both
the -fpic option and the appropriate option for generation of a shared object file.

3. To use a shared object file, compile and link the program which will reference functions or
subroutines in the shared object file using the appropriate PGI compiler and listing the shared
object on the link line:

% pgf95 -o myprog myprof.f tobeshared.so

4. You now have an executable myprog which does not include any code from functions or
subroutines in tobeshared.so, but which can be executed and dynamically linked to that code. By
default, when the program is linked to produce myprog, no assumptions are made on the location
of tobeshared.so. In order for myprog to execute correctly, you must initialize the environment
variable LD_LIBRARY_PATH to include the directory containing tobeshared.so. If
LD_LIBRARY_PATH is already initialized, it is important not to overwrite its contents. Assuming
you have placed tobeshared.so in a directory /home/myusername/bin, you can initialize
LD_LIBRARY_PATH to include that directory and preserve its existing contents as follows:

% setenv LD_LIBRARY_PATH "$LD_LIBRARY_PATH":/home/myusername/bin

Creating and Using Dynamic-Link Libraries on Windows

199

If you know that tobeshared.so will always reside in a specific directory, you can create the
executable myprog in a form that assumes this using the -R link-time option. For example, you
can link as follows:

% pgf95 -o myprog myprof.f tobeshared.so -R/home/myusername/bin

Note that there is no space between -R and the directory name. As with the -L option, no space can
be present. If the -R option is used, it is not necessary to initialize LD_LIBRARY_PATH. In the
example above, the dynamic linker will always look in /home/myusername/bin to resolve
references to tobeshared.so. By default, if the LD_LIBRARY_PATH environment variable is not set,
the linker will only search /usr/lib for shared objects.

The command ldd is a useful tool when working with shared object files and executables that
reference them. When applied to an executable as follows:

% ldd myprog

ldd lists all shared object files referenced in the executable along with the pathname of the
directory from which they will be extracted. If the pathname is not hard-coded using the -R option,
and if LD_LIBRARY_PATH is not initialized, the pathname is listed as “not found”. See the online
man page for ldd for more information on options and usage.

Creating and Using Dynamic-Link Libraries on Windows

Some of the PGI compiler runtime libraries are available in both static library and dynamic-link library
(DLL) form for Windows. The static libraries are always used by default. To use the PGI Workstation C
and Fortran compilers to create an executable that links to the runtime DLLs, use the compiler flag –
Mdll at the link step.

There are several differences between static and dynamic-link libraries. Both libraries are used when
resolving external references when linking an executable, but the process differs for each type of library.
When linking with a static library, the code needed from the library is incorporated into the executable.
When linking with a DLL, external references are resolved using the DLL's import library, not the DLL
itself. The code in the DLL associated with the external references does not become a part of the
executable. The DLL is loaded when the executable that needs it is run. For the DLL to be loaded in this
manner, the DLL must be in your path.

Static libraries and DLLs also handle global data differently. Global data in static libraries is
automatically accessible to other objects linked into an executable. Global data in a DLL can only be
accessed from outside the DLL if the DLL exports the data and the image that uses the data imports it. To

Libraries and Environment Variables

200

this end the C compilers support the Microsoft storage class extensions __declspec(dllimport) and
__declspec(dllexport). These extensions may appear as storage class modifiers and enable functions
and data to be imported and exported:

extern int __declspec(dllimport)

intfunc();

float __declspec(dllexport) fdata;

The Fortran compilers support the DEC ATTRIBUTES extensions DLLIMPORT and DLLEXPORT:

cDEC$ ATTRIBUTES DLLEXPORT :: object [,object] ...

cDEC$ ATTRIBUTES DLLIMPORT :: object [,object] ...

c is one of C, c, !, or *. object is the name of the subprogram or common block that is exported or
imported. Note that common block names are enclosed within slashes (/). In example:

cDEC$ ATTRIBUTES DLLIMPORT :: intfunc

!DEC$ ATTRIBUTES DLLEXPORT :: /fdata/

The Examples in this section further illustrate the use of these extensions.

To create a DLL from the command line, use the –Mmakedll option.

The following switches apply to making and using DLLs with the PGI compilers:

–Mdll Link with the DLL version of the runtime libraries. This flag is required
when linking with any DLL built by the PGI compilers.

–Mmakedll Generate a dynamic-link library or DLL.

–Mmakeimplib Generate an import library without generating a DLL. Use this flag when
you want to generate an import library for a DLL but are not yet ready to
build the DLL itself. This situation might arise, for example, when building
DLLs with mutual imports (see Example 4 below).

–o <file> Passed to the linker. Name the DLL or import library <file>.

–def <file> When used with –Mmakedll, this flag is passed to the linker and a .def file
named <file> is generated for the DLL. The .def file contains the symbols
exported by the DLL. Generating a .def file is not required when building a
DLL but can be a useful debugging tool if the DLL does not contain the
symbols that you expect it to contain.

Creating and Using Dynamic-Link Libraries on Windows

201

When used with –Mmakeimplib, this flag is passed to lib which requires a
.def file to create an import library. The .def file can be empty if the list of
symbols to export are passed to lib on the command line or explicitly
marked as dllexport in the source code.

–implib <file> Passed to linker. Generate an import library named <file> for the DLL. A
DLL’s import library is the interface used when linking an executable that
depends on routines in a DLL.

To use the PGI compilers to create an executable that links to the DLL form of the runtime, use the
compiler flag –Mdll. The executable built will be smaller than one built without –Mdll; the PGI runtime
DLLs, however, must be available on the system where the executable is run. The –Mdll flag must be used
when an executable is linked against a DLL built by the PGI compilers.

The following examples outline how to use –Mmakedll and –Mmakeimplib to build and use DLLs with
the PGI compilers.

Example 1: Build a DLL out of a single source file, object1.f, which exports data and a subroutine using
DLLEXPORT. Build the main source file, prog1.f, which uses DLLIMPORT to import the data and
subroutine from the DLL.

object1.f:

 subroutine sub1(i)

 !DEC$ ATTRIBUTES DLLEXPORT :: sub1

 integer i

 common /acommon/ adata

 integer adata

 !DEC$ ATTRIBUTES DLLEXPORT :: /acommon/

 print *, "sub1 adata", adata

 print *, "sub1 i ", i

 adata = i

 end

prog1.f:

 program prog1

 common /acommon/ adata

 integer adata

 external sub1

 !DEC$ ATTRIBUTES DLLIMPORT:: sub1, /acommon/

 adata = 11

 call sub1(12)

 print *, "main adata", adata

 end

Libraries and Environment Variables

202

Step 1: Create the DLL obj1.dll and its import library obj1.lib using the following series of commands:

% pgf95 -c object1.f

% pgf95 –Mmakedll object1.obj -o obj1.dll

Step 2: Compile the main program:

% pgf95 -Mdll -o prog1 prog1.f -defaultlib:obj1

The –Mdll switch causes the compiler to link against the PGI runtime DLLs instead of the PGI runtime
static libraries. The –Mdll switch is required when linking against any PGI-compiled DLL such as
obj1.dll. The -defaultlib: switch is used to specify that obj1.lib, the DLL’s import library, should be used to
resolve imports.

Step 3: Ensure that obj1.dll is in your path, then run the executable prog1 to determine if the DLL was
successfully created and linked:

% prog1

sub1 adata 11

sub1 i 12

main adata 12

Should you wish to change obj1.dll without changing the subroutine or function interfaces, no
rebuilding of prog1 is necessary. Just recreate obj1.dll and the new obj1.dll will be loaded at runtime.

Example 2: Build a DLL out of a single source file, object2.c, which exports data and a subroutine using
__declspec(dllexport). Build the main source file, prog2.c, which uses __declspec(dllimport) to import
the data and subroutine from the DLL.

object2.c:

int __declspec(dllexport) data;

void __declspec(dllexport)

func2(int i)

{

printf("func2: data == %d\n",

data);

printf("func2: i == %d\n", i);

data = i;

}

prog2.c:

int __declspec(dllimport) data;

void __declspec(dllimport) func2(int);

int

Creating and Using Dynamic-Link Libraries on Windows

203

main()

{

data = 11;

func2(12);

printf("main: data == %d\n",

data);

return 0;

}

Step 1: Create the DLL obj2.dll and its import library obj2.lib using the following series of commands:

% pgcc -c object2.c

% pgcc -Mmakedll object2.obj -o obj2.dll

Step 2: Compile the main program:

% pgcc -Mdll -o prog2 prog2.c

-defaultlib:obj2

The –Mdll switch causes the compiler to link against the PGI runtime DLLs instead of the PGI runtime
static libraries. The –Mdll switch is required when linking against any PGI-compiled DLL such as
obj2.dll. The -defaultlib: switch is used to specify that obj2.lib, the DLL’s import library, should be used to
resolve the imported data and subroutine in prog2.c.

Step 3: Ensure that obj2.dll is in your path, then run the executable prog2 to determine if the DLL was
successfully created and linked:

PGI$ prog2

func2: data == 11

func2: i == 12

main: data == 12

Should you wish to change obj2.dll without changing the subroutine or function interfaces, no
rebuilding of prog2 is necessary. Just recreate obj2.dll and the new obj2.dll will be loaded at runtime.

Example 3: DLLs Containing Circular Imports

The two DLLs to be built in this example, obj3.dll and obj4.dll, each import a routine exported by the
other. In order to link the first DLL, the import library for the second DLL must be available. Usually an
import library is created when a DLL is linked. In this case, however, the second DLL cannot be linked
without the import library for the first DLL. When such circular imports exist, an import library for one
of the DLLs must be created in a separate step without creating the DLL. The PGI drivers call the
Microsoft lib tool to create import libraries for this situation.

Libraries and Environment Variables

204

object3.c:

 void __declspec(dllimport) func_4b(void);

 void __declspec(dllexport)

 func_3a(void)

 {

 printf("func_3a, calling a routine in obj4.dll\n");

 func_4b();

 }

 void __declspec(dllexport)

 func_3b(void)

 {

 printf("func_3b\n");

 }

object4.c:

 void __declspec(dllimport) func_3b(void);

 void __declspec(dllexport)

 func_4a(void)

 {

 printf("func_4a, calling a routine in obj3.dll\n");

 func_3b();

 }

 void __declspec(dllexport)

 func_4b(void)

 {

 printf("func_4b\n");

 }

prog3.c:

 void __declspec(dllimport) func_3a(void);

 void __declspec(dllimport) func_4a(void);

 int

 main()

 {

 func_3a();

 func_4a();

 return 0;

 }

Step 1: Use the -Mmakelib and -def options with the PGI compilers to build an import library for the first
DLL without building the DLL itself.

% pgcc -c object3.c

% pgcc -Mmakeimplib -o obj3.lib object3.obj

Creating and Using Dynamic-Link Libraries on Windows

205

The -def=<deffile> option can also be used with -Mmakeimplib. Use a .def file when you need to export
additional symbols from the DLL. A .def file is not needed in this example because all symbols are
exported using __declspec(dllexport).

Step 2: Use the import library created in Step 1, obj3.lib, to link the second DLL.

% pgcc -c object4.c

% pgcc -Mmakedll -o obj4.dll object4.obj -defaultlib:obj3

Step 3: Use the import library created in Step 2, obj4.lib, to link the first DLL.

% pgcc -Mmakedll -o obj3.dll

object3.obj -defaultlib:obj4

Step 4: Compile the main program and link against the import libraries for the two DLLs.

% pgcc -Mdll prog3.c -o

prog3 -defaultlib:obj3 -defaultlib:obj4

Step 5: Execute prog3.exe to ensure that the DLLs were create properly.

% prog3

func_3a, calling a routine in obj4.dll

func_4b

func_4a, calling a routine in obj3.dll

func_3b

Example 5: Importing a Fortran module from a DLL. The source file my_module_def.f90 is used to
create a DLL containing a Fortran module. the source file my_module_use.f90 is used to build a
program that imports and uses the Fortran module from my_module_def.f90.

!---

! my_module_def.f90

!---

MODULE TESTM

TYPE A_TYPE

INTEGER :: AN_INT

END TYPE A_TYPE

TYPE(A_TYPE) :: A, B

!DEC$ ATTRIBUTES DLLEXPORT :: A,B

CONTAINS

SUBROUTINE PRINT_A

!DEC$ ATTRIBUTES DLLEXPORT :: PRINT_A

WRITE(*,*) A%AN_INT

Libraries and Environment Variables

206

END SUBROUTINE

SUBROUTINE PRINT_B

!DEC$ ATTRIBUTES DLLEXPORT :: PRINT_B

WRITE(*,*) B%AN_INT

END SUBROUTINE

END MODULE

!---

! my_module_use.f90

!--

USE TESTM

A%AN_INT = 1

B%AN_INT = 2

CALL PRINT_A

CALL PRINT_B

END

Step 1: Create the DLL.

% pgf90 -Mmakedll -o my_module_def.dll

my_module_def.f90

Creating library my_module_def.lib and object

my_module_def.exp

Step 2: Create the EXE and link against the import library for the imported DLL.

% pgf90 -Mdll -o my_module_use.exe

my_module_use.f90 -defaultlib:my_module_def.lib

Step 3: Run the EXE to ensure that the module was imported from the DLL properly.

% my_module_use.exe

1

2

Using LIB3F

The PGI Fortran compilers include complete support for the de facto standard LIB3F library routines on
both Linux and Windows operating systems. See the PGI Fortran Reference manual for a complete list of
available routines in the PGI implementation of LIB3F.

LAPACK, the BLAS and FFTs

207

LAPACK, the BLAS and FFTs

Pre-compiled versions of the public domain LAPACK and BLAS libraries are included with the PGI
compilers on Linux and Windows systems in the files $PGI/<target>/lib/lapack.a and $PGI/<target>/
lib/blas.a respectively, where <target> is replaced with the appropriate target name (linux86, linux86-
64, win64, win32, sua32, or sua64). (Note that sua32 is used for SFU.)

To use these libraries, simply link them in using the -l option when linking your main program:

% pgf95 myprog.f -llapack -lblas

Highly optimized assembly-coded versions of the BLAS and certain FFT routines may be available for
your platform. In some cases, these are shipped with the PGI compilers. See the current release notes for
the PGI compilers you are using to determine if these optimized libraries exist, where they can be
downloaded (if necessary), and how to incorporate them into your installation as the default.

The C++ Standard Template Library

The PGC++ compiler includes a bundled copy of the STLPort Standard C++ Library. See the online
Standard C++ Library tutorial and reference manual at

http://www.stlport.com

for further details and licensing.

Environment Variables

Several environment variables can be used to alter the default behavior of the PGI compilers and the
executables which they generate. Many of these environment variables are documented in context in
other sections of the PGI User’s Guide. They are gathered here for easy reference. Specifically excluded
are environment variables specific to OpenMP which are used to control the behavior of OpenMP
programs. See section 5.17, Environment Variables, for a list and description of environment variables
that affect the execution of Fortran OpenMP programs. See section 6.16, Environment Variables, for a
list and description of environment variables that affect the execution of C and C++ OpenMP programs.
Also excluded are environment variables that control the behavior of the PGDBG debugger or PGPROF
profiler. See the PGI Tools Guide for a description of environment variables that affect these tools.

Libraries and Environment Variables

208

FORTRAN_OPT - If this variable exists and contains the value vaxio, the record length in the open
statement is in units of 4-byte words, and the $ edit descriptor only has an effect for lines beginning with
a space or +. If this variable exists and contains the value format_relaxed, an I/O item corresponding to
a numerical edit descriptor (F, E, I, etc.) is not required to be a type implied by the descriptor. For
example:

$ setenv FORTRAN_OPT vaxio

will cause the PGI Fortran compilers to use VAX I/O conventions as defined above.

MPSTKZ - increase the size of the stacks used by threads executing in parallel regions. It is for use with
programs that utilize large amounts of thread-local storage in the form of private variables or local
variables in functions or subroutines called within parallel regions. The value should be an integer <n>
concatenated with M or m to specify stack sizes of n megabytes. For example:

$ setenv MPSTKZ 8M

MP_BIND - the MP_BIND environment variable can be set to yes or y to bind processes or threads
executing in a parallel region to physical processors, or to no or n to disable such binding. The default is
to not bind processes to processors. This is an execution time environment variable interpreted by the
PGI runtime support libraries. It does not affect the behavior of the PGI compilers in any way. Note: the
MP_BIND environment variable is not supported on all platforms.

MP_BLIST - In addition to the MP_BIND variable, it is possible to define the thread-CPU relationship.
For example, setting MP_BLIST=3,2,1,0 maps CPUs 3, 2, 1 and 0 to threads 0, 1, 2 and 3 respectively.

MP_SPIN - When a thread executing in a parallel region enters a barrier, it spins on a semaphore.
MP_SPIN can be used to specify the number of times it checks the semaphore before calling
sched_yield() (on linux) or _sleep() (on Windows). These calls cause the thread to be re-scheduled,
allowing other processes to run. The default values are 100 (Linux) and 10000 (Windows).

MP_WARN - By default, a warning will be printed to stderr if you execute an OpenMP or auto-
parallelized program with NCPUS or OMP_NUM_THREADS set to a value larger than the number of
physical processors in the system. For example, if you produce a parallelized executable a.out and
execute as follows on a system with only one processor:

% setenv NCPUS 2

% a.out

Warning: OMP_NUM_THREADS or NCPUS (2) greater

than available cpus (1)

FORTRAN STOP

Environment Variables

209

Setting MP_WARN to no will eliminate these warning messages.

NCPUS - The NCPUS environment variable can be used to set the number of processes or threads used
in parallel regions. The default is to use only one process or thread (serial mode). If both
OMP_NUM_THREADS and NCPUS are set, the value of OMP_NUM_THREADS takes precedence.
Warning: setting NCPUS to a value larger than the number of physical processors or cores in your system
can cause parallel programs to run very slowly.

NCPUS_MAX - The NCPUS_MAX environment variable can be used to limit the maximum number of
processes or threads used in a parallel program. Attempts to dynamically set the number of processes or
threads to a higher value, for example using set_omp_num_threads(), will cause the number of
processes or threads to be set at the value of NCPUS_MAX rather than the value specified in the function
call.

NO_STOP_MESSAGE - If this variable exists, the execution of a plain STOP statement does not produce
the message FORTRAN STOP. The default behavior of the PGI Fortran compilers is to issue this message.

OMP_WAIT_POLICY (Proposed OpenMP 3.0 Feature) - The OpenMP environment variable
OMP_WAIT_POLICY sets the behavior of idle threads. The values are ACTIVE and PASSIVE. This behavior
is also shared by threads created by auto-parallelization. Threads are considered idle when waiting at a
barrier, when waiting to enter a critical region, or unemployed between parallel regions. Threads
waiting for critical sections always busy wait.

Barriers always busy wait with calls to sched_yield determined by MP_SPIN. Unemployed threads during
a serial region can either busy wait using the barrier (ACTIVE) or politely wait using a mutex (PASSIVE).
The choice is set by OMP_WAIT_POLICY. The default is ACTIVE.

When ACTIVE is set, idle threads consume 100% of their CPU allotment spinning in a busy loop waiting
to restart in a parallel region. This mechanism allows for very quick entry into parallel regions which is
good for programs that enter and leave parallel regions frequently.

When PASSIVE is set, idle threads wait on a mutex (in the operating system) and consume no CPU time
until being restarted. Passive idle is best when a program has long periods of serial activity or when the
program runs on a multi-user machine or otherwise shares CPU resources.

OMP_STACK_SIZE (Proposed OpenMP 3.0 Feature) - The OpenMP environment variable
OMP_STACK_SIZE overrides the default stack size for a newly created thread. The value is an decimal
integer followed by an optional letter B, K, M, or G, to specify bytes, kilobytes, megabytes, and gigabytes,
respectively. If no letter is used, the default is kilobytes. There is no space between the value and the
letter; for example, one megabyte is specified 1M.

Libraries and Environment Variables

210

The environment variable OMP_STACK_SIZE is read on program start-up; if the program changes its
own environment, the variable is not re-checked. This environment variable takes precedence over
MPSTKSZ (see above). Once a thread is created, its stack size cannot be changed. In the PGI
implementation, threads are created prior to the first parallel region and persist for the life of the
program. The stack size of the main program is not affected by OMP_STACK_SIZE. Its size is set at
program start up. For more information on controlling the program stack size in Linux, see “Running
Parallel Programs on Linux” on page 10.

PGI - The PGI environment variable specifies the root directory where the PGI compilers and tools are
installed. The default value of this variable is /usr/pgi. In most cases, the name of this root directory is
derived dynamically by the PGI compilers and tools through determination of the path to the instance of
the compiler or tool that has been invoked. However, there are still some dependencies on the PGI
environment variable, and it can be used as a convenience when initializing your environment for use of
the PGI compilers and tools. For example, assuming you use csh and want the 64-bit linux86-64 versions
of the PGI compilers and tools to be default:

 % setenv PGI /usr/pgi

 % setenv MANPATH "$MANPATH":$PGI/linux86/6.0/man

 % setenv LM_LICENSE_FILE $PGI/license.dat

 % set path = ($PGI/linux86-64/6.0/bin $path)

PGI_CONTINUE - If the PGI_CONTINUE environment variable is set upon execution of a program
compiled with –Mchkfpstk, the stack will be automatically cleaned up and execution will continue.
There is a performance penalty associated with the stack cleanup. If PGI_CONTINUE is set to verbose,
the stack will be automatically cleaned up and execution will continue after printing of a warning
message.

STATIC_RANDOM_SEED - The first call to the Fortran 90/95 RANDOM_SEED intrinsic without
arguments will reset the random seed to a default value, then advance the seed by a variable amount
based on time. Subsequent calls to RANDOM_SEED without arguments will reset the random seed to the
same initial value as the first call. Unless the time is exactly the same, each time a program is run a
different random number sequence will be generated. You can force the seed returned by
RANDOM_SEED to be constant, thereby generating the same sequence of random numbers at each
execution of the program, by setting the environment variable STATIC_RANDOM_SEED to yes.

PGI_TERM - The stack traceback and just-in-time debugging functionality is controlled by the
PGI_TERM environment variable. The run-time libraries use the value of PGI_TERM to determine what
action to take when a progam abnormally terminates. See “Stack Traceback and JIT Debugging” on
page 211 for more information.

Environment Variables

211

PGI_TERM_DEBUG - The PGI_TERM_DEBUG variable may be set to override the default behavior
when PGI_TERM is set to debug.

TMPDIR - Can be used to specify the directory that should be used for placement of any temporary files
created during execution of the PGI compilers and tools.

TZ - Can be used to explicitly set the time zone, and is used in some contexts by the PGC++ compiler.
For more information on the possible settings for TZ, use the tzselect utility on Linux for a detailed
description of possible settings and step-by-step instructions for setting the value of TZ for a given time
zone.

Stack Traceback and JIT Debugging

When a programming error results in a run-time error message or an application exception, a program
will usually exit, perhaps with an error message. The PGI run-time library includes a mechanism to
override this default action and instead print a stack traceback, start a debugger, or (on Linux) create a
core file for post-mortem debugging.

The stack traceback and just-in-time debugging functionality is controlled by an environment variable,
PGI_TERM. The run-time libraries use the value of PGI_TERM to determine what action to take when a
program abnormally terminates.

When the PGI run-time library detects an error or catches a signal, it calls the routine pgi_stop_here
prior to generating a stack traceback or starting the debugger. The pgi_stop_here routine is a
convenient spot to set a breakpoint when debugging a program.

The value of PGI_TERM is a comma-separated list of options. The format used to set the environment
variable follows.

in csh:

% setenv PGI_TERM option[,option...]

in bash or sh:

$ PGI_TERM=option[,option...]

$ export PGI_TERM

in the Windows Command Prompt:

C:\> set PGI_TERM=option[,option...]

Libraries and Environment Variables

212

Supported values for option are listed in the following table. By default, all of these options are disabled.

Table 8-1: Supported PGI_TERM Values

A description of how to apply each of these options follows.

[no]debug

This enables/disables just-in-time debugging. The default is nodebug. When the debugger is invoked, the
following default command is issued to start the debugger.

pgdbg -text -attach pid

The PGI_TERM_DEBUG environment variable may be set to override the default setting. The value of
the environment variable should be set to the command line used to invoke the program. For example:

gdb --quiet --pid %d

The first occurrence of %d in PGI_TERM_DEBUG string will be replaced by the process id. The program
named in PGI_TERM_DEBUG string must be found on the current $PATH or specified with a full path
name.

[no]trace

This enables/disables the stack traceback. The default is notrace.

[no]signal

This enables/disables the establishing signal handlers for the most common signals that cause program
termination. The default is nosignal; however, setting trace and debug will enable signal; override this
behavior with nosignal.

[no]debug Enables/disables just-in-time debugging (debug-
ging invoked on error)

[no]trace Enables/disables stack traceback on error

[no]signal Enables/disables establishment of signal handlers
for common signals that cause program termina-
tion

[no]abort Enables/disables calling the system termination
routine abort()

Environment Variables

213

[no]abort

This enables/disables calling the system termination routine abort(). The default is noabort. When
noabort is in effect the process terminates by calling "_exit(127)".

On Linux and SUA, the abort routine will create a core file and exit with code 127. On Windows, the abort
routine exits with the status of the exception received; for example, if the program receives an access
violation abort exits with status 0xC0000005.

A few runtime errors just print an error message and call "exit(127)". These are mainly errors such as
specifying an invalid environment variable value where a traceback would not be useful.

If it appears that abort does not generate core files on a Linux system, be sure to unlimit the
coredumpsize. For example, using csh:

% limit coredumpsize unlimited

% setenv PGI_TERM abort

Using bash or sh:

$ ulimit -c unlimited

$ export PGI_TERM=abort

To debug a core file with pgdbg, start pgdbg with the -core option. For example, to view a core file named
“core” for a program named “a.out”:

$ pgdbg -core core a.out

Libraries and Environment Variables

214

Fortran Data Types

215

9 Fortran, C and C++ Data
Types
This chapter describes the scalar and aggregate data types recognized by the PGI Fortran, C, and C++
compilers, the format and alignment of each type in memory, and the range of values each type can take
on x86 or x64 processor-based systems running a 32-bit operating system. For more information on x86-
specific data representation, refer to the System V Application Binary Interface, Processor Supplement,
listed in the This chapter specifically does not address x64 processor-based systems running a 64-bit
operating system, because the application binary interface (ABI) for those systems is still evolving. See
http://www.x86-64.org/abi.pdf for the latest version of this ABI.

Fortran Data Types

Fortran Scalars

A scalar data type holds a single value, such as the integer value 42 or the real value 112.6. The next
table lists scalar data types, their size, format and range. Table 9-2 , “Real Data Type Ranges” shows the
range and approximate precision for Fortran real data types. Table 9-3 , “Scalar Type Alignment” shows
the alignment for different scalar data types. The alignments apply to all scalars, whether they are
independent or contained in an array, a structure or a union.

Fortran, C and C++ Data Types

216

Table 9-1: Representation of Fortran Data Types

Fortran Data Type Format Range

INTEGER 2's complement integer -231 to 231-1

INTEGER*2 2's complement integer -32768 to 32767

INTEGER*4 same as INTEGER

INTEGER*8 same as INTEGER -263 to 263-1

LOGICAL same as INTEGER true or false

LOGICAL*1 8 bit value true or false

LOGICAL*2 16 bit value true or false

LOGICAL*4 same as INTEGER true or false

LOGICAL*8 same as INTEGER true or false

BYTE 2's complement -128 to 127

REAL Single-precision floating
point

10-37 to 1038 (1)

REAL*4 Single-precision floating
point

10-37 to 1038 (1)

REAL*8 Double-precision floating
point

10-307 to 10308 (1)

DOUBLE PRECISION Double-precision floating
point

10-307 to 10308 (1)

COMPLEX See REAL See REAL

Fortran Data Types

217

(1) Approximate value

The logical constants .TRUE. and .FALSE. are all ones and all zeroes, respectively. Internally, the value of
a logical variable is true if the least significant bit is one and false otherwise. When the option –
Munixlogical is set, a logical variable with a non-zero value is true and with a zero value is false.

DOUBLE COMPLEX See DOUBLE PRECISION See DOUBLE PRECISION

COMPLEX*16 Same as above Same as above

CHARACTER*n Sequence of n bytes

Fortran Data Type Format Range

Fortran, C and C++ Data Types

218

Table 9-2: Real Data Type Ranges

Table 9-3: Scalar Type Alignment

Data Type Binary Range Decimal Range Digits of
Precision

REAL 2-126 to 2128 10-37 to 1038 7-8

 REAL*8 2-1022 to 21024 10-307 to 10308 15-16

Type Is Aligned on a

LOGICAL*1 1-byte boundary

LOGICAL*2 2-byte boundary

LOGICAL*4 4-byte boundary

LOGICAL*8 8-byte boundary

BYTE 1-byte boundary

INTEGER*2 2-byte boundary

INTEGER*4 4-byte boundary

INTEGER*8 8-byte boundary

REAL*4 4-byte boundary

REAL*8 8-byte boundary

COMPLEX*8 4-byte boundary

Fortran Data Types

219

FORTRAN 77 Aggregate Data Type Extensions

The PGF77 compiler supports de facto standard extensions to FORTRAN 77 that allow for aggregate data
types. An aggregate data type consists of one or more scalar data type objects. You can declare the
following aggregate data types:

array consists of one or more elements of a single data type placed in contiguous
locations from first to last.

structure is a structure that can contain different data types. The members are
allocated in the order they appear in the definition but may not occupy
contiguous locations.

union is a single location that can contain any of a specified set of scalar or
aggregate data types. A union can have only one value at a time. The data
type of the union member to which data is assigned determines the data
type of the union after that assignment.

The alignment of an array, a structure or union (an aggregate) affects how much space the object
occupies and how efficiently the processor can address members. Arrays use the alignment of their
members.

Array types align according to the alignment of the array elements. For example, an
array of INTEGER*2 data aligns on a 2 byte boundary.

Structures and Unions align according to the alignment of the most restricted data type of the
structure or union. In the next example, the union aligns on a 4-byte
boundary since the alignment of c, the most restrictive element, is four.

STRUCTURE /astr/

UNION

 MAP

 INTEGER*2 a ! 2 bytes

 END MAP

 MAP

 BYTE b ! 1 byte

 END MAP

COMPLEX*16 8-byte boundary

Type Is Aligned on a

Fortran, C and C++ Data Types

220

 MAP

 INTEGER*4 c ! 4 bytes

 END MAP

END UNION

END STRUCTURE

Structure alignment can result in unused space called padding. Padding between members of the
structure is called internal padding. Padding between the last member and the end of the space is called
tail padding.

The offset of a structure member from the beginning of the structure is a multiple of the member’s
alignment. For example, since an INTEGER*2 aligns on a 2-byte boundary, the offset of an INTEGER*2
member from the beginning of a structure is a multiple of two bytes.

Fortran 90 Aggregate Data Types (Derived Types)

The Fortran 90 standard added formal support for aggregate data types. The TYPE statement begins a
derived type data specification or declares variables of a specified user-defined type. For example, the
following would define a derived type ATTENDEE:

TYPE ATTENDEE

 CHARACTER(LEN=30) NAME

 CHARACTER(LEN=30) ORGANIZATION

 CHARACTER (LEN=30) EMAIL

END TYPE ATTENDEE

In order to declare a variable of type ATTENDEE and access the contents of such a variable, code such as
the following would be used:

TYPE (ATTENDEE) ATTLIST(100)

. . .

ATTLIST(1)%NAME = ‘JOHN DOE’

C and C++ Data Types

C and C++ Scalars

The next table lists C and C++ scalar data types, their size and format. The alignment of a scalar data
type is equal to its size. Table 9-5 , “Scalar Alignment” shows scalar alignments that apply to individual
scalars and to scalars that are elements of an array or members of a structure or union. Wide characters
are supported (character constants prefixed with an L). The size of each wide character is 4 bytes.

C and C++ Data Types

221

Table 9-4: C/C++ Scalar Data Types

Data Type Size
(bytes) Format Range

unsigned char 1 ordinal 0 to 255

[signed] char 1 two's-complement
integer

-128 to 127

unsigned short 2 ordinal 0 to 65535

[signed] short 2 two's-complement
integer

-32768 to 32767

unsigned int 4 ordinal 0 to 232 -1

[signed] int 4 two's-complement
integer

-231 to 231-1

[signed] long [int] (32-bit
operating systems and
win64)

4 two's-complement
integer

-231 to 231-1

[signed] long [int]
(linux86-64 and sua64)

8 two's-complement
integer

-263 to 263-1

unsigned long [int] (32-
bit operating systems and
win64)

4 ordinal 0 to 232-1

unsigned long [int]
(linux86-64 and sua64)

8 ordinal 0 to 264-1

[signed] long long [int] 8 two's-complement
integer

-263 to 263-1

unsigned long long [int] 8 ordinal 0 to 264-1

float 4 IEEE single-preci-
sion floating-point

10-37 to 1038 (1)

Fortran, C and C++ Data Types

222

(1) Approximate value

(2) Bit fields occupy as many bits as you assign them, up to 4 bytes, and their length need not be a
multiple of 8 bits (1 byte)

double 8 IEEE double-preci-
sion floating-point

10-307 to 10308 (1)

long double 8 IEEE double-preci-
sion floating-point

10-307 to 10308 (1)

bit field(2) (unsigned
value)

1 to 32
bits

ordinal 0 to 2size-1, where size is
the number of bits in
the bit field

bit field(2) (signed value) 1 to 32
bits

two's complement
integer

-2size-1 to 2size-1-1,
where size is the num-
ber of bits in the bit field

pointer 4 address 0 to 232-1

enum 4 two's complement
integer

-231 to 231-1

Data Type Size
(bytes) Format Range

C and C++ Data Types

223

Table 9-5: Scalar Alignment

(*)signed or unsigned

C and C++ Aggregate Data Types

An aggregate data type consists of one or more scalar data type objects. You can declare the following
aggregate data types:

array consists of one or more elements of a single data type placed in contiguous locations from
first to last.

class (C++ only) is a class that defines an object and its member functions. The object can
contain fundamental data types or other aggregates including other classes. The class
members are allocated in the order they appear in the definition but may not occupy
contiguous locations.

struct is a structure that can contain different data types. The members are allocated in the order
they appear in the definition but may not occupy contiguous locations. When a struct is
defined with member functions, its alignment issues are the same as those for a class.

union is a single location that can contain any of a specified set of scalar or aggregate data types. A
union can have only one value at a time. The data type of the union member to which data
is assigned determines the data type of the union after that assignment.

Data Type Alignment

char is aligned on a 1-byte boundary.*

short is aligned on a 2-byte boundary.*

[long] int is aligned on a 4-byte boundary.*

enum is aligned on a 4-byte boundary.

pointer is aligned on a 4-byte boundary.

float is aligned on a 4-byte boundary.

double is aligned on an 8-byte boundary.

long double is aligned on an 8-byte boundary.

Fortran, C and C++ Data Types

224

Class and Object Data Layout

Class and structure objects with no virtual entities and with no base classes, that is just direct data field
members, are laid out in the same manner as C structures. The following section describes the
alignment and size of these C-like structures. C++ classes (and structures as a special case of a class)
are more difficult to describe. Their alignment and size is determined by compiler generated fields in
addition to user-specified fields. The following paragraphs describe how storage is laid out for more
general classes. The user is warned that the alignment and size of a class (or structure) is dependent on
the existence and placement of direct and virtual base classes and of virtual function information. The
information that follows is for informational purposes only, reflects the current implementation, and is
subject to change. Do not make assumptions about the layout of complex classes or structures.

All classes are laid out in the same general way, using the following pattern (in the sequence indicated):

• First, storage for all of the direct base classes (which implicitly includes storage for non-virtual
indirect base classes as well):

• When the direct base class is also virtual, only enough space is set aside for a pointer to the
actual storage, which appears later.

• In the case of a non-virtual direct base class, enough storage is set aside for its own non-
virtual base classes, its virtual base class pointers, its own fields, and its virtual function
information, but no space is allocated for its virtual base classes.

• Next, storage for the class’s own fields.

• Next, storage for virtual function information (typically, a pointer to a virtual function table).

• Finally, storage for its virtual base classes, with space enough in each case for its own non-virtual
base classes, virtual base class pointers, fields, and virtual function information.

Aggregate Alignment

The alignment of an array, a structure or union (an aggregate) affects how much space the object
occupies and how efficiently the processor can address members. Arrays use the alignment of their
members.

Arrays align according to the alignment of the array elements. For example, an
array of short data type aligns on a 2-byte boundary.

C and C++ Data Types

225

Structures and Unions align according to the most restrictive alignment of the enclosing
members. For example the union un1 below aligns on a 4-byte boundary
since the alignment of c, the most restrictive element, is four:

union un1 {

 short a; /* 2 bytes */

 char b; /* 1 byte */

 int c; /* 4 bytes */

};

Structure alignment can result in unused space, called padding. Padding between members of a
structure is called internal padding. Padding between the last member and the end of the space occupied
by the structure is called tail padding. *** 'Internal Padding in a Structure' on page 225 ***, illustrates
structure alignment. Consider the following structure:

struct strc1 {

 char a; /* occupies byte 0 */

 short b; /* occupies bytes 2 and 3 */

 char c; /* occupies byte 4 */

 int d; /* occupies bytes 8 through 11 */

};

Figure 9-1: Internal Padding in a Structure

*** 'Tail Padding in a Structure' on page 226 ***, shows how tail padding is applied to a structure
aligned on a doubleword boundary.

struct strc2{

 int m1[4]; /* occupies bytes

0 through 15 */

 double m2; /* occupies bytes 16 through 23 */

 short m3; /* occupies bytes 24 and 25 */

} st;

Fortran, C and C++ Data Types

226

Bit-field Alignment

Bit-fields have the same size and alignment rules as other aggregates, with several additions to these
rules:

• Bit-fields are allocated from right to left.

• A bit-field must entirely reside in a storage unit appropriate for its type. Bit-fields never cross unit
boundaries.

• Bit-fields may share a storage unit with other structure/union members, including members that
are not bit-fields.

• Unnamed bit-field's types do not affect the alignment of a structure or union.

• Items of [signed/unsigned] long long type may not appear in field declarations.

Figure 9-2: Tail Padding in a Structure

Other Type Keywords in C and C++

The void data type is neither a scalar nor an aggregate. You can use void or void* as the return type of a
function to indicate the function does not return a value, or as a pointer to an unspecified data type,
respectively.

C and C++ Data Types

227

The const and volatile type qualifiers do not in themselves define data types, but associate attributes with
other types. Use const to specify that an identifier is a constant and is not to be changed. Use volatile to
prevent optimization problems with data that can be changed from outside the program, such as
memory-mapped I/O buffers.

Fortran, C and C++ Data Types

228

Data Types in the 64-Bit Environment

229

10 Programming
 Considerations for 64-Bit
 Environments
PGI provides 64-bit compilers for the 64-bit Linux, Windows, SUA, and Apple operating systems running
on the AMD64 architecture. These compilers can be used to create programs that use 64-bit memory
addresses. However, there are limitations in how this capability can be applied. With the exception of
Linux86-64, the object file formats on all of the operating systems limit the total cumulative size of code
plus static data to 2GB. This includes the code and statically declared data in the program and in system
and user object libraries. Linux86-64 implements a mechanism that overcomes this limitation (see
“Large Static Data in Linux”). This chapter describes the specifics of how to use the PGI compilers to
make use of 64-bit memory addressing.

The 64-bit Windows, Linux, SUA, and Apple environments maintain 32-bit compatibility, which means
that 32-bit applications can be developed and executed on the corresponding 64-bit operating system.

Note

The 64-bit PGI compilers are 64-bit applications themselves, and cannot run on anything but
64-bit CPUs running 64-bit Operating Systems.

Data Types in the 64-Bit Environment

The size of some data types can be different in a 64-bit environment. This section describes the major
differences. Refer to the chapter “Fortran, C, and C++ Data Types” for detailed information.

C/C++ Data Types

On 32-bit Windows, int is 4 bytes, long is 4 bytes, and pointers are 4 bytes. On 64-bit windows, the size of
an int is 4 bytes, a long is 4 bytes, and a pointer is 8 bytes.

On the 32-bit Linux, SUA, and Apple operating systems, the size of an int is 4 bytes, a long is 4 bytes, and
a pointer is 4 bytes. On the 64-bit Linux, SUA, and Apple operating systems, the size of an int is 4 bytes, a
long is 8 bytes, and a pointer is 8 bytes.

Programming Considerations for 64-Bit Environments

230

Fortran Data Types

In Fortran, the default size of the INTEGER type is 4 bytes. The -i8 compiler option may be used to make
the default size of all INTEGER data in the program 8 bytes.

When using the -Mlarge_arrays option (see “64-Bit Array Indexing”), any 4-byte INTEGER variables
that are used to index arrays are silently promoted by the compiler to 8 bytes. This can lead to
unexpected consequences, so 8 byte INTEGER variables are recommended for array indexing when using
-Mlarge_arrays.

Large Static Data in Linux

Linux86-64 operating systems support two different memory models. The default model used by PGI
compilers is the small memory model, which can be specified using -mcmodel=small. This is the 32-bit
model, which limits the size of code plus statically allocated data, including system and user libraries, to
2GB. The medium memory model, specified by -mcmodel=medium, allows combined code and static
data areas (.text and .bss sections) larger than 2GB. The -mcmodel=medium option must be used on
both the compile command and the link command in order to take effect.

The Win64, SUA64, and 64-bit Apple operating systems do not have any support for large static data
declarations.

There are two drawbacks to using –mcmodel=medium. First, there is increased addressing overhead to
support the large data range. This can affect performance, though the compilers seek to minimize the
added overhead through careful instruction generation. Second, -mcmodel=medium cannot be used for
objects in shared libraries, because there is no OS support for 64-bit dynamic linkage.

Large Dynamically Allocated Data

Dynamically allocated data objects in programs compiled by the 64-bit PGI compilers can be larger than
2GB. No special compiler options are required to enable this functionality. The size of the allocation is
only limited by the system. However, to correctly access dynamically allocated arrays with more than 2G
elements you should use the -Mlarge_arrays option (see “64-Bit Array Indexing“).

64-Bit Array Indexing

231

64-Bit Array Indexing

The 64-bit PGI compilers provide an option, -Mlarge_arrays, that enables 64-bit indexing of arrays This
means that, as necessary, 64-bit INTEGER constants and variables are used to index arrays. Note that in
the presence of -Mlarge_arrays, the compiler may silently promote 32-bit integers to 64 bits, which can
have unexpected side effects.

On Linux86-64, the -Mlarge_arrays option also enables single static data objects larger than 2 GB. This
option is the default in the presence of -mcmodel=medium.

Compiler Options for 64-bit Programming

The usual switches that apply to 64-bit programmers seeking to increase the data range of their
applications are in the table below.

Programming Considerations for 64-Bit Environments

232

Table 10-1: 64-bit Compiler Options

The following table summarizes the limits of these programming models:

Option Purpose Considerations

-mcmodel=medium Enlarge object size; Allow for
declared data the size of larger
than 2GB

Linux86-64 only. Slower execution.
Cannot be used with –fPIC. Objects
cannot be put into shared libraries

-Mlarge_arrays Perform all array-location-to-
address calculations using 64-bit
integer arithmetic.

Slightly slower execution. Implicit
with –mcmodel=medium. Can be
used with Win64 and –
mcmodel=small.

-fPIC Position independent code. Neces-
sary for shared libraries.

Dynamic linking restricted to a 32-
bit offset. External symbol refer-
ences should refer to other shared
lib routines, rather than the pro-
gram calling them.

-i8 All INTEGER functions, data, and
constants not explicitly declared
INTEGER*4 are assumed to be
INTEGER*8.

Users should take care to explicitly
declare INTEGER functions as INTE-
GER*4.

Compiler Options for 64-bit Programming

233

Table 10-2: Effects of Options on Memory and Array Sizes

Combined

Compiler Options

Addr. Math Max Size Gbytes

CommentsA I AS DS TS

–tp k8-32 or –tp p7 32 32 2 2 2 32-bit linux86
programs

–tp k8-64 –tp p7-64 64 32 2 2 2 64-bit addrlim-
ited by –
mcmodel=smal
l

–tp k8-64 –fpic or

–tp p7-64 –fpic

64 32 2 2 2 –fpic incompat-
ible with –
mcmodel=medi
um

–tp k8-64 or –tp p7-64

–mcmodel=medium

64 64 >2 >2 >2 Enable full sup-
port for 64-bit
data addressing

Column Legend

A Address Type (A) -size in bits of data used for address calculations, 32-bit or 64-bit.

I Index Arithmetic (I)- bit-size of data used to index into arrays and other aggregate data
structures. If 32-bit, total range of any single data object is limited to 2GB.

AS Maximum Array Size (AS)- the maximum size in gigabytes of any single data object.

DS Maximum Data Size (DS)- max size in gigabytes combined of all data objects in .bss

TS Maximum Total Size (TS) max size in bytes, in aggregate, of all executable code and data
objects in a running program.

Programming Considerations for 64-Bit Environments

234

Practical Limitations of Large Array Programming

The 64-bit addressing capability of the linux86-64 and Win64 environments can cause unexpected issues
when data sizes are enlarged significantly. For example:

Table 10-3: 64-Bit Limitations

Example: Medium Memory Model and Large Array in C

Consider the following example, where the aggregate size of the arrays exceeds 2GB.

% cat bigadd.c#include <stdio.h>

#define SIZE 600000000 /* > 2GB/4 */

static float a[SIZE],b[SIZE];

void main() {

long long i,n,m;

array initialization Initializing a large array with a data statement may result in very
large assembly and object files, where a line of assembler source
is required for each element in the initalized array. Compilation
and linking can be very time consuming as well. To avoid this
issue, consider initializing large arrays in a loop at runtime
rather than in a data statement.

stack space Stack space can be a problem for data that is stack-based. In
Win64, stack space is increased in the link stage to the new_size
by adding the link switch –Wl,-stack:new_sizeIn linux86-64,
stack size is increased in the environment (note: setting stacksize
to unlimited often is not large enough)limit stacksize new_size !
in cshulimit –s new_size ! in bash

page swapping If your executable is much larger than the physical size of mem-
ory, page swapping can cause it to run dramatically slower and it
may even fail. This is not a compiler problem. Try smaller data
sets to determine if a problem is due to page thrashing, or not.

configured space Be sure your linux86-64 system is configured with swap space suf-
ficiently large to support the data sets used in your application(s).
If your memory+swap space is not sufficiently large, your appli-
cation will likely encounter a segmentation fault at runtime.

Example: Medium Memory Model and Large Array in C

235

float c[SIZE]; /* goes on stack */

n=SIZE;m=0;

 for(i=0;i<n;i+=10000){

 a[i]=i+1;

 b[i]=2.0*(i+1);

 c[i]=a[i]+b[i];

 m=i;

 }

 printf(“a[0]=%g

b[0]=%g c[0]=%g\n”,

a[0], b[0],

 c[0]);

 printf(“m=%d a[%d]=%g

b[%d]=%g c[%d]= %g\n”,

m,

 a[m], m, b[m], m,

c[m]);

}

% pgcc –mcmodel=medium –o

bigadd bigadd.c

When SIZE is greater than 2G/4, and the arrays are of type float with 4 bytes per element, the size of each
array is greater than 2GB. With pgcc, using the –mcmodel=medium switch, a static data object can now
be > 2GB in size. Note that if you execute with the above settings in your environment, you may see the
following:

% bigadd

Segmentation fault

Execution fails because the stack size is not large enough. Try resetting the stack size in your
environment:

% limit stacksize 3000M

Note that ‘limit stacksize unlimited’ will probably not provide as large a stack as we are using above.

% bigadd

a[0]=1 b[0]=2

c[0]=3

n=599990000 a[599990000]=5.9999e+08

b[599990000]=1.19998e+09 c[599990000]=1.79997e+09

The size of the bss section of the bigadd executable is now larger than 2GB:

Programming Considerations for 64-Bit Environments

236

% size –-format=sysv bigadd | grep

bss

.bss 4800000008 5245696

% size -–format=sysv bigadd | grep

Total

Total 4800005080

Example: Medium Memory Model and Large Array in Fortran

The following example works with both the PGF95 and PGF77 compilers included in Release 7.0. Both
compilers use 64-bit addresses and index arithmetic when the –mcmodel=medium option is used.

Consider the following example:

% cat mat.f

 program mat

 integer i, j, k, size, l, m, n parameter (size=16000)

! >2GB

 parameter (m=size,n=size)

 real*8 a(m,n),b(m,n),c(m,n),d

 do i = 1, m

 do j = 1, n

 a(i,j)=10000.0D0*dble(i)+dble(j)

 b(i,j)=20000.0D0*dble(i)+dble(j)

 enddo

 enddo

!$omp parallel

!$omp do

 do i = 1, m

 do j = 1, n

 c(i,j) = a(i,j) + b(i,j)

 enddo

 enddo

!$omp do

 do i=1,m

 do j = 1, n

 d = 30000.0D0*dble(i)+dble(j)+dble(j)

 if(d .ne. c(i,j)) then

 print *,”err i=”,i,”j=”,j

 print *,”c(i,j)=”,c(i,j)

 print *,”d=”,d

 stop

 endif

Example: Large Array and Small Memory Model in Fortran

237

 enddo

 enddo

!$omp end parallel

 print *, “M =”,M,”,

N =”,N

 print *, “c(M,N) = “,

c(m,n)

 end

When compiled with the PGF95 compiler using –mcmodel=medium:

% pgf95 –mp –o mat mat.f –i8 –mcmodel=medium

% setenv OMP_NUM_THREADS 2

% mat

M = 16000 , N = 16000

c(M,N) = 480032000.0000000

Example: Large Array and Small Memory Model in Fortran

The next example uses large arrays, but not statically declared. It is broken into a main and subroutine
so you can put the subroutine into a shared library. Dynamic allocation of large arrays saves space in the
size of executable, saves time initializing data, and the routines can also be compiled with 32-bit
compilers, by just decreasing the parameter size below. This example works on Win64 as well.

% cat mat_allo.f program mat_allo

integer i, j integer size, m, n parameter (size=16000)

parameter (m=size,n=size) double precision,allocatable::a(:,:),b(:,:),c(:,:)

allocate(a(m,n),b(m,n), c(m,n)) do i = 100, m, 1

 do j = 100, n, 1 a(i,j) = 10000.0D0 * dble(i) + dble(j)

 b(i,j) = 20000.0D0 * dble(i) + dble(j)

 enddo enddo call mat_add(a,b,c,m,n) print *, “M =”,m,”,

N =”,n

 print *, “c(M,N) = “, c(m,n)

 end subroutine mat_add(a,b,c,m,n) integer m, n,

i, j double precision a(m,n),b(m,n),c(m,n)

!$omp do

 do i = 1, m

 do j = 1, n

 c(i,j) = a(i,j) + b(i,j)

 enddo

 enddo return end% pgf95 –o mat_allo

mat_allo.f –i8 –Mlarge_arrays

 -mp -fast

Programming Considerations for 64-Bit Environments

238

Overview of Calling Conventions

239

11 Inter-language Calling
This chapter describes inter-language calling conventions for C, C++, and Fortran programs using the
PGI compilers. The following sections describe how to call a Fortran function or subroutine from a C or
C++ program and how to call a C or C++ function from a Fortran program. For information on calling
assembly language programs, refer to Appendix A, .

Overview of Calling Conventions

This chapter includes information on the following topics:

• Functions and subroutines in Fortran, C, and C++

• Naming and case conversion conventions

• Compatible data types

• Argument passing and special return values

• Arrays and Indexes

• Win32 calling conventions

Default Fortran calling conventions under Win32 differ from those used under Linux, Win64, and SUA
operating systems. Win32 programs compiled using the -Munix Fortran command-line option use the
Linux/Win64 convention rather than the default Win32 convention. The sections Inter-language Calling
Considerations through Example - C++ Calling Fortran describe how to perform inter-language calling
using the Linux/Win64 convention. All information in those sections pertaining to compatibility of
arguments applies to Win32 as well. See “Win32 Calling Conventions” on page 253 for details on the
symbol name and argument passing conventions used on Win32 platforms.

Inter-language Calling Considerations

In general, when argument data types and function return values agree you can call a C or C++
function from Fortran and likewise, you can call a Fortran function from C or C++. You may need to
develop special procedures in cases where data types for arguments do not agree. For example, the

Inter-language Calling

240

Fortran COMPLEX type does not have a matching type in C, it is still possible to provide inter-language
calls but there are no general calling conventions for such cases. In this instance, you need to develop a
special procedure.

Follow these guidelines:

• Note that if a C++ function contains objects with constructors and destructors, calling such a
function from either C or Fortran will not be possible unless the initialization in the main
program is performed from a C++ program where constructors and destructors are properly
initialized.

• In general, you can call a C function from C++ without problems as long as you use the extern
"C" keyword to declare the C function in the C++ program. This prevents name mangling for the
C function name. If you want to call a C++ function from C, likewise you have to use the extern
"C" keyword to declare the C++ function. This keeps the C++ compiler from mangling the name
of the function.

• You can use the __cplusplus macro to allow a program or header file to work for both C and C++.
For example, the following defines in the header file stdio.h allow this file to work for both C and
C++.

#ifndef _STDIO_H

#define _STDIO_H

#ifdef __cplusplus

extern "C" {

#endif /* __cplusplus */

.

. /* Functions and data types defined... */

.

#ifdef __cplusplus

}

#endif /* __cplusplus */

#endif

• C++ member functions cannot be declared extern, since their names will always be mangled.
Therefore, C++ member functions cannot be called from C or Fortran.

Functions and Subroutines

Fortran, C, and C++ define functions and subroutines differently. For a Fortran program calling a C or
C++ function, observe the following return value convention:

Upper and Lower Case Conventions, Underscores

241

• When the C or C++ function returns a value, call it from Fortran as a function, and otherwise call
it as a subroutine.

For a C/C++ program calling a Fortran function, the call should return a similar type. Table 11-1 ,
“Fortran and C/C++ Data Type Compatibility” lists compatible types. If the call is to a Fortran
subroutine, a Fortran CHARACTER function, or a Fortran COMPLEX function, call it from C/C++ as a
function that returns void. The exception to this convention is when a Fortran subroutine has alternate
returns; call such a subroutine from C/C++ as a function returning int whose value is the value of the
integer expression specified in the alternate RETURN statement.

Upper and Lower Case Conventions, Underscores

By default on Linux, Win64, and SUA systems, all Fortran symbol names are converted to lower case. C
and C++ are case sensitive, so upper-case function names stay upper-case. When you use inter-language
calling, you can either name your C/C++ functions with lower-case names, or invoke the Fortran
compiler command with the option –Mupcase, in which case it will not convert symbol names to lower-
case.

When programs are compiled using one of the PGI Fortran compilers on Linux, Win64, and SUA systems,
an underscore is appended to Fortran global names (names of functions, subroutines and common
blocks). This mechanism distinguishes Fortran name space from C/C++ name space. Use these naming
conventions:

• If you call a C/C++ function from Fortran, you should rename the C/C++ function by appending
an underscore (or use C$PRAGMA C in the Fortran program, refer to 7, “Directives and Pragmas”,
for details on C$PRAGMA C).

• If you call a Fortran function from C/C++, you should append an underscore to the Fortran
function name in the calling program.

Compatible Data Types

The next table shows compatible data types between Fortran and C/C++. Table 11-2 , “Fortran and C/
C++ Representation of the COMPLEX Type” shows how the Fortran COMPLEX type may be represented
in C/C++. If you can make your function/subroutine parameters and return values match types, you
should be able to use inter-language calling.

Inter-language Calling

242

Table 11-1: Fortran and C/C++ Data Type Compatibility

Table 11-2: Fortran and C/C++ Representation of the COMPLEX Type

Fortran Type (lower
case) C/C++ Type Size

(bytes)

character x char x 1

character*n x char x[n] n

real x float x 4

real*4 x float x 4

real*8 x double x 8

double precision double x 8

integer x int x 4

integer*1 x signed char x 1

integer*2 x short x 2

integer*4 x int x 4

integer*8 x long long x 8

logical x int x 4

logical*1 x char x 1

logical*2 x short x 2

logical*4 int x 4

logical*8 long long x 8

Fortran Type (lower
case) C/C++ Type Size (bytes)

complex x struct {float r,i;} x; 8

Compatible Data Types

243

Fortran Named Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose members correspond
to the members of the common block. The name of the structure in C/C++ must have the added
underscore. For example, the Fortran common block:

INTEGER I

COMPLEX C

DOUBLE COMPLEX CD

DOUBLE PRECISION D

COMMON /COM/ i, c, cd, d

is represented in C with the following equivalent:

extern struct {

 int i;

 struct {float real, imag;} c;

 struct {double real, imag;} cd;

 double d;

} com_;

and in C++ with the following equivalent:

extern "C" struct {

 int i;

 struct {float real, imag;} c;

 struct {double real, imag;} cd;

 double d;

} com_;

complex*8 x struct {float r,i;} x; 8

double complex x struct {double dr,di;} x; 16

Fortran Type (lower
case) C/C++ Type Size (bytes)

Inter-language Calling

244

Argument Passing and Return Values

In Fortran, arguments are passed by reference (i.e. the address of the argument is passed, rather than
the argument itself). In C/C++, arguments are passed by value, except for strings and arrays, which are
passed by reference. Due to the flexibility provided in C/C++, you can work around these differences.
Solving the parameter passing differences generally involves intelligent use of the & and * operators in
argument passing when C/C++ calls Fortran and in argument declarations when Fortran calls C/C++.

For strings declared in Fortran as type CHARACTER, an argument representing the length of the string is
passed to a calling function. On Linux systems, or when using the UNIX calling convention on Windows
(-Munix), the compiler places the length argument(s) at the end of the parameter list, following the
other formal arguments. The length argument is passed by value, not by reference.

Passing by Value (%VAL)

When passing parameters from a Fortran subprogram to a C/C++ function, it is possible to pass by value
using the %VAL function. If you enclose a Fortran parameter with %VAL(), the parameter is passed by
value. For example, the following call passes the integer i and the logical bvar by value.

integer*1i

logical*1bvar

call cvalue (%VAL(i), %VAL(bvar))

Character Return Values

“Functions and Subroutines” on page 240 describes the general rules for return values for C/C++ and
Fortran inter-language calling. There is a special return value to consider. When a Fortran function
returns a character, two arguments need to be added at the beginning of the C/C++ calling function’s
argument list:

• the address of the return character or characters

• the length of the return character

Example 11-1, “Character Return Parameters” illustrates the extra parameters, tmp and 10, supplied by
the caller:

Argument Passing and Return Values

245

Example 11-1: Character Return Parameters

 CHARACTER*(*) FUNCTION CHF(C1,

I)

 CHARACTER*(*) C1

 INTEGER I

 END

extern void chf_();

char tmp[10];

char c1[9];

int i;

chf_(tmp, 10, c1, &i, 9);

If the Fortran function is declared to return a character value of constant length, for example
CHARACTER*4 FUNCTION CHF(), the second extra parameter representing the length must still be
supplied, but is not used.

NOTE

The value of the character function is not automatically NULL-terminated.

Complex Return Values

When a Fortran function returns a complex value, an argument needs to be added at the beginning of
the C/C++ calling function’s argument list; this argument is the address of the complex return value.
Example 11-2, “COMPLEX Return Values” illustrates the extra parameter, cplx, supplied by the caller:

Example 11-2: COMPLEX Return Values

 COMPLEX FUNCTION CF(C, I)

 INTEGER I

 . . .

 END

extern void cf_();

typedef struct {float real, imag;} cplx;

cplx c1;

int i;

cf_(&c1, &i);

Inter-language Calling

246

Array Indices

C/C++ arrays and Fortran arrays use different default initial array index values. By default, C/C++
arrays start at 0 and Fortran arrays start at 1. If you adjust your array comparisons so that a Fortran
second element is compared to a C/C++ first element, and adjust similarly for other elements, you
should not have problems working with this difference. If this is not satisfactory, you can declare your
Fortran arrays to start at zero.

Another difference between Fortran and C/C++ arrays is the storage method used. Fortran uses
column-major order and C/C++ use row-major order. For one-dimensional arrays, this poses no
problems. For two-dimensional arrays, where there are an equal number of rows and columns, row and
column indexes can simply be reversed. For arrays other than single dimensional arrays, and square
two-dimensional arrays, inter-language function mixing is not recommended.

Example - Fortran Calling C

Example 11-4 , “C function cfunc_” shows a C function that is called by the Fortran main program
shown in Example 11-3 , “Fortran Main Program fmain.f”. Notice that each argument is defined as a
pointer, since Fortran passes by reference. Also notice that the C function name uses all lower-case and a
trailing "_".

Example 11-3: Fortran Main Program fmain.f

 logical*1 bool1

 character letter1

 integer*4 numint1, numint2

 real numfloat1

 double precision numdoub1

 integer*2 numshor1

 external cfunc

 call cfunc (bool1, letter1, numint1, numint2,

& numfloat1, numdoub1, numshor1)

 write(*, "(L2, A2, I5, I5, F6.1, F6.1, I5)")

& bool1, letter1, numint1, numint2, numfloat1,

& numdoub1, numshor1

 end

Example - C Calling Fortran

247

Example 11-4: C function cfunc_

#define TRUE 0xff

#define FALSE 0

void cfunc_(bool1, letter1, numint1, numint2, numfloat1,\

 numdoub1, numshor1, len_letter1)

 char *bool1, *letter1;

 int *numint1, *numint2;

 float *numfloat1;

 double *numdoub1;

 short *numshor1;

 int len_letter1;

{

 *bool1 = TRUE; *letter1 = 'v'; *numint1 = 11; *numint2 = -44;

 *numfloat1 = 39.6 ; *numdoub1 = 39.2; *numshor1 = 981;

}

Compile and execute the program fmain.f with the call to cfunc_ using the following command lines:

$ pgcc -c cfunc.c

$ pgf95 cfunc.o fmain.f

Executing the a.out file should produce the following output:

T v 11 -44 39.6 39.2 981

Example - C Calling Fortran

Example 11-6 , “C Main Program cmain.c” shows a C main program that calls the Fortran subroutine
shown in Example 11-5 , “Fortran Subroutine forts.f”. Notice that each call uses the & operator to pass
by reference. Also notice that the call to the Fortran subroutine uses all lower-case and a trailing "_".

Example 11-5: Fortran Subroutine forts.f

 subroutine forts (bool1, letter1, numint1,

& numint2, numfloat1, numdoub1, numshor1)

 logical*1 bool1

 character letter1

 integer numint1, numint2

 double precision numdoub1

 real numfloat1

 integer*2 numshor1

Inter-language Calling

248

 bool1 = .true.

 letter1 = "v"

 numint1 = 11

 numint2 = -44

 numdoub1 = 902

 numfloat1 = 39.6

 numshor1 = 299

 return

 end

Example 11-6: C Main Program cmain.c

main () {

 char bool1, letter1;

 int numint1, numint2;

 float numfloat1;

 double numdoub1;

 short numshor1;

 extern void forts_ ();

 forts_(&bool1,&letter1,&numint1,&numint2,&numfloat1,

 &numdoub1,&numshor1, 1);

 printf(" %s %c %d %d %3.1f %.0f %d\n",

 bool1?"TRUE":"FALSE",letter1,numint1,

 numint2, numfloat1, numdoub1, numshor1);

}

To compile this Fortran subroutine and C program, use the following commands:

$ pgcc -c cmain.f

$ pgf95 -Mnomain cmain.o forts.f

Executing the resulting a.out file should produce the following output:

TRUE v 11 -44 39.6 902 299

Example - C ++ Calling C

Example 11-7: Simple C Function cfunc.c

void cfunc(num1, num2, res)

int num1, num2, *res;

{

 printf("func: a = %d b = %d

Example - C Calling C++

249

ptr c = %x\n",num1,num2,res);

 *res=num1/num2;

 printf("func: res = %d\n",*res);

}

Example 11-8: C++ Main Program cpmain.C Calling a C Function

xtern "C" void cfunc(int n, int m, int *p);

#include <iostream>

main()

{

 int a,b,c;

 a=8;

 b=2;

 cout << "main: a = "<<a<<" b = "<<b<<"

ptr c = "<<&c<< endl;

 cfunc(a,b,&c);

 cout << "main: res = "<<c<<endl;

}

To compile this C function and C++ main program, use the following commands:

$ pgcc -c csub.c

$ pgcpp cpmain.C csub.o

Executing the resulting a.out file should produce the following output:

main: a = 8 b = 2 ptr c = 0xbffffb94

func: a = 8 b = 2 ptr c = bffffb94

func: res = 4

main: res = 4

Example - C Calling C++

Example 11-9: Simple C++ Function cpfunc.C with Extern C

#include <iostream>

extern "C" void cpfunc(int num1,int num2,int *res) {

 cout << "func: a = "<<num1<<" b = "<<num2<<"

ptr c ="<<res<<endl;

 *res=num1/num2;

 cout << "func: res = "<<res<<endl;

}

Inter-language Calling

250

Example 11-10: C Main Program cmain.c Calling a C++ Function

extern void cpfunc(int a, int b, int *c);

#include <stdio.h>

main() {

 int a,b,c;

 a=8;

 b=2;

 printf("main: a = %d b = %d

ptr c = %x\n",a,b,&c);

 cpfunc(a,b,&c);

 printf("main: res = %d\n",c);

}

To compile this C function and C++ main program, use the following commands:

$ pgcc -c cmain.c

$ pgcpp cmain.o cpsub.C

Executing the resulting a.out file should produce the following output:

main: a = 8 b = 2 ptr c = 0xbffffb94

func: a = 8 b = 2 ptr c = bffffb94

func: res = 4

main: res = 4

Note that you cannot use the extern "C" form of declaration for an object’s member functions.

Example - Fortran Calling C++

The Fortran main program shown in Example 11-11 , “Fortran Main Program fmain.f calling a C++
function” calls the C++ function shown in Example 11-12 , “C++ function cpfunc.C”. Notice that each
argument is defined as a pointer in the C++ function, since Fortran passes by reference. Also notice that
the C++ function name uses all lower-case and a trailing "_":

Example 11-11: Fortran Main Program fmain.f calling a C++ function

 logical*1 bool1

 character letter1

 integer*4 numint1, numint2

 real numfloat1

 double precision numdoub1

 integer*2 numshor1

Example - C++ Calling Fortran

251

 external cfunc

 call cpfunc (bool1, letter1, numint1,

& numint2, numfloat1, numdoub1, numshor1)

 write(*, "(L2, A2, I5, I5, F6.1, F6.1, I5)")

& bool1, letter1, numint1, numint2, numfloat1,

& numdoub1, numshor1

 end

Example 11-12: C++ function cpfunc.C

#define TRUE 0xff

#define FALSE 0

extern "C" {

extern void cpfunc_ (

 char *bool1, *letter1,

 int *numint1, *numint2,

 float *numfloat1,

 double*numdoub1,

 short *numshort1,

 intlen_letter1) {

 *bool1 = TRUE; *letter1 = 'v'; *numint1 = 11;

 *numint2 = -44; *numfloat1 = 39.6; *numdoub1 = 39.2;

 *numshort1 = 981;

}

}

Assuming the Fortran program is in a file fmain.f, and the C++ function is in a file cpfunc.C, create an
executable, using the following command lines:

$ pgcpp -c cpfunc.C

$ pgf95 cpfunc.o fmain.f

Executing the a.out file should produce the following output:

T v 11 -44 39.6 39.2 981

Example - C++ Calling Fortran

Example 11-13 , “Fortran Subroutine forts.f” shows a Fortran subroutine called by the C++ main
program shown in Example 11-14 , “C++ main program cpmain.C”. Notice that each call uses the &
operator to pass by reference. Also notice that the call to the Fortran subroutine uses all lower-case and a
trailing "_":

Inter-language Calling

252

Example 11-13: Fortran Subroutine forts.f

 subroutine forts (bool1, letter1, numint1,

 & numint2, numfloat1, numdoub1, numshor1)

 logical*1 bool1

 character letter1

 integer numint1, numint2

 double precision numdoub1

 real numfloat1

 integer*2 numshor1

 bool1 = .true. ; letter1 = "v" ; numint1 = 11

; numint2 = -44

 numdoub1 = 902 ; numfloat1 = 39.6 ; numshor1 = 299

 return

 end

Example 11-14: C++ main program cpmain.C

#include <iostream>

extern "C" { extern void forts_(char *,char *,int *,int *,

 float *,double *,short *); }

main ()

{

 char bool1, letter1;

 int numint1, numint2;

 float numfloat1;

 double numdoub1;

 short numshor1;

 forts_(&bool1,&letter1,&numint1,&numint2,&numfloat1,

 &numdoub1,&numshor1);

 cout << " bool1 = ";

 bool1?cout << "TRUE ":cout << "FALSE "; cout <<

endl;

 cout << " letter1 = " << letter1 <<

endl;

 cout << " numint1 = " << numint1 <<

endl;

 cout << " numint2 = " << numint2 <<

endl;

 cout << " numfloat1 = " << numfloat1 <<

endl;

 cout << " numdoub1 = " << numdoub1 <<

Win32 Calling Conventions

253

endl;

 cout << " numshor1 = " << numshor1 <<

endl;

}

To compile this Fortran subroutine and C++ program, use the following command lines:

$ pgf95 -c forts.f

$ pgcpp forts.o cpmain.C -lpgf95 -lpgf95_rpm1

-lpgf952 \

 -lpgf95rtl -lpgftnrtl

Executing this C++ main should produce the following output:

bool1 = TRUE

letter1 = v

numint1 = 11

numint2 = -44

numfloat1 = 39.6

numdoub1 = 902

numshor1 = 299

Note that you must explicitly link in the PGF95 runtime support libraries when linking pgf95-compiled
program units into C or C++ main programs. When linking pgf77 -compiled program units into C or
C++ main programs, you need only link in –lpgftnrtl.

Win32 Calling Conventions

Aside from name-mangling considerations in C++, the calling convention (i.e., the symbol name to
which the subroutine or function name is mapped and the means by which arguments are passed) for C/
C++ is identical between most compilers on Win32 and Linux/Win64. However, Fortran calling
conventions vary widely between legacy Win32 Fortran compilers and Linux/Win64 Fortran compilers.

Win32 Fortran Calling Conventions

Four styles of calling conventions are supported using the PGI Fortran compilers for Win32: Default, C,
STDCALL, and UNIX.

• Default - Default is the method used in the absence of compilation flags or directives to alter the
default.

Inter-language Calling

254

• C or STDCALL - The C or STDCALL conventions are used if an appropriate compiler directive is
placed in a program unit containing the call. The C and STDCALL conventions are typically used to
call routines coded in C or assembly language that depend on these conventions.

• UNIX - The UNIX convention is used in any Fortran program unit compiled using the -Munix
compilation flag. The following table outlines each of these calling conventions.

Table 11-3: Calling Conventions Supported by the PGI Fortran Compilers

* Except arrays, which are always passed by reference even in the STDCALL and C conventions

Convention Default STDCALL C UNIX

Case of symbol name Upper Lower Lower Lower

Leading underscore Yes Yes Yes Yes

Trailing underscore No No No Yes

Argument byte count
added

Yes Yes No No

Arguments passed by ref-
erence

Yes No* No* Yes

Character argument byte
counts passed

After each
char argu-
ment

No No End of
argument
list

Character strings trun-
cated to first character
and passed by value

No Yes Yes No

varargs support No No Yes No

Caller cleans stack No No Yes Yes

Win32 Calling Conventions

255

NOTE

While it is compatible with the Fortran implementations of Microsoft and several other
vendors, the C calling convention supported by the PGI Fortran compilers for Windows is not
strictly compatible with the C calling convention used by most C/C++ compilers. In
particular, symbol names produced by PGI Fortran compilers using the C convention are all
lower case. The standard C convention is to preserve mixed-case symbol names. You can
cause any of the PGI Fortran compilers to preserve mixed-case symbol names using the -
Mupcase option, but be aware that this could have other ramifications on your program.

Symbol Name Construction and Calling Example

This section presents an example of the rules outlined in table 10-3. In the pseudocode used below,
%addr refers to the address of a data item while %val refers to the value of that data item. Subroutine
and function names are converted into symbol names according to the rules outlined in table 10-3.
Consider the following subroutine call:

call work (‘ERR’, a, b, n)

where a is a double precision scalar, b is a real vector of size n, and n is an integer.

• Default - The symbol name for the subroutine is constructed by pre-pending an underscore,
converting to all upper case, and appending an @ sign followed by an integer indicating the total
number of bytes occupied by the argument list. Byte counts for character arguments appear
immediately following the corresponding argument in the argument list. The following is an
example of the pseudo-code for the above call using Default conventions:

call _WORK@20 (%addr(‘ERR’),

3, %addr(a), %addr(b), %addr(n))

• STDCALL - The symbol name for the subroutine is constructed by pre-pending an underscore,
converting to all lower case, and appending an @ sign followed by an integer indicating the total
number of bytes occupied by the argument list. Character strings are truncated to the first
character in the string, which is passed by value as the first byte in a 4-byte word. The following is
an example of the pseudo-code for the above call using STDCALL conventions:

call _work@20 (%val(‘E’), %val(a), %addr(b), %val(n))

Note that in this case there are still 20 bytes in the argument list. However, rather than 5 4-byte
quantities as in the Default convention, there are 3 4-byte quantities and 1 8-byte quantity (the
double precision value of a).

Inter-language Calling

256

• C - The symbol name for the subroutine is constructed by pre-pending an underscore and
converting to all lower case. Character strings are truncated to the first character in the string,
which is passed by value as the first byte in a 4-byte word. The following is an example of the
pseudo-code for the above call using C conventions:

call _work (%val(‘E’), %val(a), %addr(b), %val(n))

• UNIX - The symbol name for the subroutine is constructed by pre-pending an underscore,
converting to all lower case, and appending an underscore. Byte counts for character strings
appear in sequence following the last argument in the argument list. The following is an example
of the pseudo-code for the above call using UNIX conventions:

call _work_ (%addr(‘ERR’), %addr(a), %addr(b), %addr(n),

3)

Using the Default Calling Convention

Using the Default calling convention is straightforward. Use the default convention if no directives are
inserted to modify calling conventions and if the -Munix compilation flag is not used. See the previous
section for a complete description of the Default convention.

Using the STDCALL Calling Convention

Using the STDCALL calling convention requires the insertion of a compiler directive into the declarations
section of any Fortran program unit which calls the STDCALL program unit. This directive has no effect
when the -Munix compilation flag is used, meaning you cannot mix UNIX-style argument passing and
STDCALL calling conventions within the same file. Syntax for the directive is as follows:

!MS$ATTRIBUTES STDCALL :: work

Where work is the name of the subroutine to be called using STDCALL conventions. More than one
subroutine may be listed, separated by commas. See “Symbol Name Construction and Calling Example”
on page 255 for a complete description of the implementation of STDCALL.

NOTE

The directive prefix !DEC$ is also supported, but requires a space between the prefix and the
directive keyword ATTRIBUTES. The ! must begin the prefix when compiling using Fortran 90
freeform format. The characters C or * can be used in place of ! in either form of the prefix
when compiling used fixed-form (F77-style) format. The directives are completely case
insensitive.

Win32 Calling Conventions

257

Using the C Calling Convention

Using the C calling convention requires the insertion of a compiler directive into the declarations section
of any Fortran program unit which calls the C program unit. This directive has no effect when the -
Munix compilation flag is used, meaning you cannot mix UNIX-style argument passing and C calling
conventions within the same file. Syntax for the directive is as follows:

!MS$ATTRIBUTES C :: work

Where work is the name of the subroutine to be called using C conventions. More than one subroutine
may be listed, separated by commas. See above for a complete description of the implementation of the C
calling convention.

NOTE

The directive prefix !DEC$ is also supported, but requires a space between the prefix and the
directive keyword ATTRIBUTES. The ! must begin the prefix when compiling using Fortran 90
freeform format. The characters C or * can be used in place of ! in either form of the prefix
when compiling used fixed-form (F77-style) format. The directives are completely case
insensitive.

Using the UNIX Calling Convention

Using the UNIX calling convention is straightforward. Any program unit compiled using -Munix
compilation flag will use the UNIX convention.

Inter-language Calling

258

Inline Assembly

259

12 C/C++ Inline Assembly and
 Intrinsics

Inline Assembly

Inline Assembly lets you specify machine instructions inside a "C" function. Below is the format for an
inline assembly instruction:

{ asm | __asm__ } ("string");

The asm statement begins with the asm or __asm__ keyword. The __asm__ keyword is typically used in
header files that may be included in ISO "C" programs.

"string" is one or more machine specific instructions separated with a semi-colon (;) or newline (\n)
character. These instructions are inserted directly into the compiler's assembly-language output for the
enclosing function.

Some simple asm statements are:

asm ("cli");

asm ("sti");

The asm statements above disable and enable system interrupts respectively.

In the following example, the eax register is set to zero.

asm("pushl %eax\n\t"

 "movl $0, %eax\n\t"

 "popl %eax"

);

Note that eax is pushed on the stack so that it is it not clobbered. When the statement is done with eax, it
is restored with the popl instruction.

Typically a program uses macros that enclose asm statements. The interrupt constructs shown above are
used in the following two examples:

#define disableInt __asm__ ("cli");

#define enableInt __asm__ ("sti");

C/C++ Inline Assembly and Intrinsics

260

Extended Inline Assembly

“Inline Assembly” on page 259 explains how to use inline assembly to specify machine specific
instructions inside a "C" function. This approach works well for simple machine operations such as
disabling and enabling system interrupts. However, inline assembly has three distinct shortcomings:

1. 1.The programmer must choose the registers required by the inline assembly.

2. To prevent register clobbering, the inline assembly must include push and pop code for registers
that get modified by the inline assembly.

3. There is no easy way to access stack variables in an inline assembly statement.

Extended Inline Assembly was created to address these shortcomings. Below is the format for extended
inline assembly, also known as extended asm:

{ asm | __asm__ } [volatile | __volatile__] ("string"

 [: [output

operands]]

 [: [input

operands]]

 [: [clobber

list]]);

Extended asm statements begin with the asm or __asm__ keyword. The __asm__ keyword is typically
used in header files that may be included by ISO "C" programs.

An optional volatile or __volatile__ keyword may appear after the (or) keyword. This keyword
instructs the compiler not to delete, move significantly, or combine with any other asm statement. Like
__asm__, the __volatile__ keyword is typically used with header files that may be included by ISO "C"
programs.

"string" is one or more machine specific instructions separated with a semi-colon (;) or newline (\n)
character. The string can also contain operands specified in the [output operands], [input
operands], and [clobber list]. The instructions are inserted directly into the compiler's assembly-
language output for the enclosing function.

The [output operands], [input operands], and [clobber list] items each describe the effect
of the instruction for the compiler. For example:

Extended Inline Assembly

261

asm("movl %1, %%eax\n"

 "movl %%eax, %0" :

 "=r" (x) : "r" (y) : "%eax");

• "=r" (x) is an output operand

• "r" (y) is an input operand.

• "%eax" is the clobber list consisting of one register, "%eax".

The notation for the output and input operands is a constraint string surrounded by quotes, followed by
an expression, and surrounded by parentheses. The constraint string describes how the input and output
operands are used in the asm "string". For example, "r" tells the compiler that the operand is a register.
The "=" tells the compiler that the operand is write only, which means that a value is stored in an output
operand's expression at the end of the asm statement.

Each operand is referenced in the asm "string" by a percent "%" and its number. The first operand is
number 0, the second is number 1, the third is number 2, and so on. In the example above, "%0"
references the output operand, and "%1" references the input operand. The asm "string" also contains
"%%eax", which references machine register "%eax". Hard coded registers like "%eax". should be
specified in the clobber list to prevent conflicts with other instructions in the compiler's assembly-
language output.

[output operands], [input operands], and [clobber list] items are described in more detail
in the following sections.

Output Operands

The [output operands] are an optional list of output constraint and expression pairs that specify the
result(s) of the asm statement. An output constraint is a string that specifies how a result is delivered to
the expression. For example, "=r" (x) says the output operand is a write-only register that stores its value
in the "C" variable x at the end of the asm statement. An example follows:

void example()

{

 int x;

 asm("movl $0, %0": "=r" (x));

}

C/C++ Inline Assembly and Intrinsics

262

The example above assigns 0 to the "C" variable x. For the function shown above, the compiler produces
the following assembly (to produce an assembly listing, compile the example with the pgcc -S compiler
option):

example:

..Dcfb0:

 pushq %rbp

..Dcfi0:

 movq %rsp, %rbp

..Dcfi1:

..EN1:

lineno: 5

 movl $0, %eax

 movl %eax, -4(%rbp)

lineno: 0

 popq %rbp

 ret

In the generated assembly shown above, note that the compiler generated two statements for the asm
statement at line number 5. The compiler generated "movl $0, %eax" from the asm "string". Note
that %eax appears in place of "%0". That is because the compiler assigned the %eax register to variable
x. Because item 0 is an output operand, the result must be stored in its expression (x). The instruction
movl %eax, -4(%rbp) assigns the output operand to variable x.

Besides write-only output operands, there are read/write output operands designated with a "+" instead
of a "=". For example, "+r" (x) tells the compiler to initialize the output operand with variable x at the
beginning of the asm statement.

To illustrate this point, the following example increments variable x by 1:

void example2()

{

 int x=1;

 asm("addl $1, %0": "+r" (x));

}

In order to perform the increment, the output operand must be initialized with variable x. The read/
write constraint modifier ("+") instructs the compiler to initialize the output operand with its
expression. The compiler generates the following assembly code for the example2() function:

Extended Inline Assembly

263

example2:

 ..Dcfb0:

 pushq %rbp

..Dcfi0:

 movq %rsp, %rbp

..Dcfi1:

..EN1:

lineno: 3

 movl $1, -4(%rbp)

 movl -4(%rbp), %eax

 addl $1, %eax

 movl %eax, -4(%rbp)

lineno: 5

 popq %rbp

 ret

Note the movl -4(%rbp), %eax statement. This statement initializes the output operand (%eax) with
variable x.

From the example shown above, two extraneous moves are generated in the assembly: one movl for
initializing the output operand and a second movl to write it to variable x. To eliminate these moves, use
a memory constraint type instead of a register constraint type as shown in the following example:

void example3()

{

 int x=1;

 asm("addl $1, %0": "+m" (x));

}

The compiler generates a memory reference in place of a memory constraint. This eliminates the two
extraneous moves:

example3:

..Dcfb0:

 pushq %rbp

..Dcfi0:

 movq %rsp, %rbp

..Dcfi1:

..EN1:

lineno: 3

 movl $1, -4(%rbp)

C/C++ Inline Assembly and Intrinsics

264

 addl $1, -4(%rbp)

lineno: 5

 popq %rbp

 ret

Because the assembly uses a memory reference to variable x, it does not have to move x into a register
prior to the asm statement; nor does it need to store the result after the asm statement. Additional
constraint types are found in ******Section 2.3*******.

The examples so far have used only one output operand. Because extended asm accepts a list of output
operands, asm statements can have more than one result. For example:

void example4()

{

int x=1;

int y=2;

asm("addl $1, %1\n"

 "addl %1, %0"

 : "+r" (x), "+m" (y));

}

The example above increments variable y by 1 then adds it to variable x. Multiple output operands are
separated with a comma. The first output operand is item 0 ("%0") and the second is item 1 ("%1") in
the asm "string". The resulting values for x and y are 4 and 3 respectively.

Input Operands

The [input operands] are an optional list of input constraint and expression pairs that specify what
"C" values are needed by the asm statement. The input constraints specify how the data is delivered to
the asm statement. For example, "r" (x) says that the input operand is a register that has a copy of the
value stored in "C" variable x. Another example is "m" (x) which says that the input item is the
memory location associated with variable x. Other constraint types are discussed in “Additional
Constraints” on page 268. An example follows:

void example5()

{

int x=1;

int y=2;

int z=3;

asm("addl %2, %1\n"

Extended Inline Assembly

265

 "addl %2, %0"

 : "+r" (x), "+m" (y)

 : "r" (z));

}

The above example adds variable z, item 2, to variable x and variable y. The resulting values for x and y
are 4 and 5 respectively.

Another type of input constraint worth mentioning here is the matching constraint. A matching
constraint is used to specify an operand that fills both an input as well as an output role. An example
follows:

void example6()

{

int x=1;

asm("addl $1, %1\n"

 : "=r" (x)

 : "0" (x));

}

The example above is equivalent to the example2() function shown in “Output Operands” on
page 261. The constraint/expression pair, "0" (x), tells the compiler to initialize output item 0 with
variable x at the beginning of the asm statement. The resulting value for x is 2. Also note that "%1" in the
asm "string" means the same thing as "%0" in this case. That is because there is only one operand
with both an input and an output role.

Matching constraints are very similar to the read/write output operands mentioned in “Output
Operands” on page 261. However, there is one key difference between read/write output operands and
matching constraints. The matching constraint can have an input expression that differs from its
output expression. The example below uses different values for the input and output roles:

void example7()

{

int x;

int y=2;

asm("addl $1, %1\n"

 : "=r" (x)

 : "0" (y));

}

The compiler generates the following assembly for example example7():

C/C++ Inline Assembly and Intrinsics

266

example7:

..Dcfb0:

 pushq %rbp

..Dcfi0:

 movq %rsp, %rbp

..Dcfi1:

..EN1:

lineno: 4

 movl $2, %eax

 addl $1, %eax

 movl %eax, -4(%rbp)

lineno: 8

 popq %rbp

 ret

Variable x gets initialized with the value stored in y, which is 2. After adding 1, the resulting value for
variable x is 3.

Because matching constraints perform an input role for an output operand, it does not make sense for
the output operand to have the read/write ("+") modifier. In fact, the compiler disallows matching
constraints with read/write output operands. The output operand must have a write only ("=") modifier.

Clobber List

The [clobber list] is an optional list of strings that hold machine registers used in the asm
"string". Essentially, these strings tell the compiler which registers may be clobbered by the asm
statement. By placing registers in this list, the programmer does not have to explicitly save and restore
them as required in traditional inline assembly (described in “Inline Assembly” on page 259). The
compiler takes care of any required saving and restoring of the registers in this list.

Each machine register in the [clobber list] is a string separated by a comma. The leading '%' is optional
in the register name. For example, "%eax" is equivalent to "eax". When specifying the register inside the
asm "string", you must include two leading '%' characters in front of the name (for example., "%%eax").
Otherwise, the compiler will behave as if a bad input/output operand was specified and generate an error
message. An example follows:

void example8()

{

int x;

int y=2;

asm("movl %1, %%eax\n"

 "movl %1, %%edx\n"

Extended Inline Assembly

267

 "addl %%edx, %%eax\n"

 "addl %%eax, %0"

 : "=r" (x)

 : "0" (y)

 : "eax", "edx");

}

The code shown above uses two hard-coded registers, eax and edx. It performs the equivalent of 3*y and
assigns it to x, producing a result of 6.

In addition to machine registers, the clobber list may contain the following special flags:

"cc" The asm statement may alter the condition code register.

"memory" The asm statement may modify memory in an unpredictable fashion.

The "memory" flag causes the compiler not to keep memory values cached in registers across the asm
statement and not to optimize stores or loads to that memory. For example:

asm("call MyFunc":::"memory");

This asm statement contains a "memory" flag because it contains a call. The callee may otherwise
clobber registers in use by the caller without the "memory" flag.

The following function uses extended asm and the "cc" flag to compute 2n:

#pragma noinline

int asmDivideConquer(int n)

{

 int ax = 0;

 int bx = 1;

 asm (

 "LogLoop:\n"

 "cmp %2, %1\n"

 "jnle Done\n"

 "inc %0\n"

 "add %1,%1\n"

 "jmp LogLoop\n"

 "Done:\n"

 "dec %0\n"

 :"+r" (ax), "+r" (bx) : "r" (n) : "cc");

 return ax;

}

C/C++ Inline Assembly and Intrinsics

268

The "cc" flag is used because the asm statement contains some control flow that may alter the condition
code register. The #pragma noinline statement prevents the compiler from inlining the
asmDivideConquer()function. If the compiler inlines asmDivideConquer(), then it may illegally
duplicate the labels LogLoop and Done in the generated assembly.

Additional Constraints

Operand constraints can be divided into four main categories:

• Simple Constraints

• Machine Constraints

• Multiple Alternative Constraints

• Constraint Modifiers

Extended Inline Assembly

269

Simple Constraints

Table 12-1: Simple Constraints

The simplest kind of constraint is a string of letters or characters from the table above. These are known
as Simple Constraints. The "r" and "m" constraints introduced in “Output Operands” on page 261 are
examples of Simple Constraints. Also useful is the general or "g" constraint. It allows the compiler to
pick an appropriate constraint type for the operand. The compiler will choose from a general purpose
register, memory, or immediate operand. An example follows:

void example9()

{

 int x, y=2;

 asm("movl %1, %0\n" : "=r"

(x) : "g" (y));

}

Constraint Description

whitespace Whitespace characters are ignored.

M A memory operand. Any address supported by the machine is allowed.

O Same as "M".

R A general purpose register operand.

I An immediate integer operand.

N Same as "I".

E An immediate floating point operand.

F Same as "E".

g Any general purpose register, memory, or immediate integer operand is allowed.

X Same as "G".

0,1,2,..9 Matching Constraint. See “Input Operands” on page 264 for a description.

P An operand that is a valid memory address. The expression associated with the
constraint is expected to evaluate to an address (for example, "p" (&x)).

C/C++ Inline Assembly and Intrinsics

270

The example above lets the compiler choose the constraint type for "y". This technique can result in
more efficient code. For example, when compiling example9() with -O2 (for additional optimizations),
the compiler replaces the load and store of y with a constant, 2. The compiler can then generate an
immediate 2 for the y operand above. The assembly generated by pgcc compiled with -O2 is shown
below:

example9:

..Dcfb0:

 pushq %rbp

..Dcfi0:

 movq %rsp, %rbp

..Dcfi1:

..EN1:

lineno: 4

 movl $2, %eax

 movl %eax, -4(%rbp)

lineno: 8

 popq %rbp

 ret

Note the use of $2 for the "y" operand in the example above.

Of course, if y is always 2, then the immediate value may be used instead of the variable with the "i"
constraint, as shown below:

void example10()

{

int x;

asm("movl %1, %0\n"

 : "=r" (x)

 : "i" (2));

}

Compiling example10() with pgcc produces assembly similar to that produced for example9() above.
The only difference is that it does not have to be compiled with -O2 because example10() is "hand
optimized".

Extended Inline Assembly

271

Machine Constraints

Table 12-2: x86/x86_64 Machine Constraints

Constraint Description

q Same as "r" simple constraint.

Q Same as "r" simple constraint.

R Same as "r" simple constraint.

A Specifies a or d registers. This is used primarily for holding 64-bit integer values
on 32 bit targets. The d register holds the most significant bits and the a register
holds the least significant bits.

f Not supported.

t Not supported.

u Not supported.

a a register (e.g., %al, %ax, %eax, %rax)

b b register (e.g, %bl, %bx, %ebx, %rbx)

c c register (e.g., %cl, %cx, %ecx, %rcx)

C Not supported.

d d register (e.g., %dl, %dx, %edx, %rdx)

D di register (e.g., %dil, %di, %edi, %rdi)

S si register (e.g., %sil, %si, %edi, %rsi)

x XMM SSE register

y Not supported.

I Constant in range of 0 to 31 (e.g., for 32-bit shifts).

J Constant in range of 0 to 63 (e.g., for 64-bit shifts)

C/C++ Inline Assembly and Intrinsics

272

The next category of constraints is called Machine Constraints. The x86 and x86_64 architectures have
several classes of registers. To choose a particular class of register, you can use the x86/x86_64 Machine
Constraints described in the table above. An example follows:

double example11()

{

 double a;

 double b = 400.99;

 double c = 300.98;

 asm ("subpd %2, %0;"

 :"=x" (a)

 : "0" (b), "x" (c)

);

 return a;

}

The example above uses the "x" or XMM register constraint to subtract c from b and store the result in a.
The generated assembly for this example is shown below:

example11:

..Dcfb0:

 pushq %rbp

..Dcfi0:

 movq %rsp, %rbp

..Dcfi1:

..EN1:

lineno: 18

K Constant in range of 0 to 127.

L Constant in range of 0 to 65535.

M Constant in range of 0 to 3 constant (e.g., shifts for lea instruction).

N Constant in range of 0 to 255 (e.g., for out instruction).

Z Constant in range of 0 to 0x7fffffff.

e Constant in range of 0xffffffff to 0x7fffffff

G Floating point constant in range of 0.0 to 1.0.

Constraint Description

Extended Inline Assembly

273

 movlpd .C00450(%rip), %xmm0

 movlpd .C00451(%rip), %xmm1

 movsd %xmm0, %xmm2

 subpd %xmm1, %xmm2;

 movlpd %xmm2, -8(%rbp)

lineno: 26

 movlpd -8(%rbp), %xmm0

lineno: 27

 popq %rbp

 ret

If a specified register is not available, the pgcc and pgcpp compilers will issue an error message. For
example, pgcc and pgcpp reserves the "%ebx" register for Position Independent Code (PIC) on 32-bit
system targets. If a program has an asm statement with a "b" register for one of the operands, the
compiler will not be able to obtain that register when compiling for 32-bit with the -fPIC switch (which
generates PIC). To illustrate this point, the following example is compiled for a 32-bit target using PIC:

void example12()

{

int x=1;

int y=1;

asm("addl %1, %0\n"

 : "+a" (x)

 : "b" (y));

}

Compiling with the "-tp p7" switch chooses a 32-bit target.

% pgcc example12.c -fPIC -c -tp p7

PGC-S-0354-Can't find a register in class 'BREG' for extended ASM

operand 1 (example12.c: 3)

PGC/x86 Linux/x86 Rel Dev: compilation completed

with severe errors

C/C++ Inline Assembly and Intrinsics

274

Multiple Alternative Constraints

Table 12-3: Multiple Alternative Constraints

Sometimes a single instruction can take a variety of operand types. For example, the x86 permits register
to memory and memory to register operations. To allow this flexibility in inline assembly, use multiple
alternative constraints. An alternative is a series of constraints for each operand. To specify multiple
alternatives, separate each alternative with a comma. The example below uses multiple alternatives for
an add operation:

void example13()

{

int x=1;

int y=1;

asm("addl %1, %0\n"

 : "+ab,cd" (x)

 : "db,cam" (y));

}

example13() shown above has two alternatives for each operand: "ab,cd" for the output operand and
"db,cam" for the input operand. Each operand must have the same number of alternatives; however,
each alternative can have any number of constraints (for example, the output operand in example13()
has two constraints for its second alternative and the input operand has three for its second alternative).

The compiler first tries to satisfy the left-most alternative of the first operand (for example, the output
operand in example13()). When satisfying the operand, the compiler starts with the left-most
constraint. If the compiler cannot satisfy an alternative with this constraint (for example, if the desired
register is not available), it tries to use any subsequent constraints. If the compiler runs out of
constraints, it moves on to the next alternative. If the compiler runs out of alternatives, it issues an error

Constraint Description

, Separates each alternative for a particular
operand.

? Ignored

! Ignored

Extended Inline Assembly

275

similar to the one mentioned in example12(). If an alternative is found, the compiler uses the same
alternative for subsequent operands. For example, if the compiler chooses the "c" register for the output
operand in example13(), then it will use either the "a" or "m" constraint for the input operand.

Constraint Modifiers

Table 12-4: Constraint Modifier Characters

Characters that affect the compiler's interpretation of a constraint are known as Constraint Modifiers.
Two constraint modifiers, the "=" and the "+", were introduced in “Output Operands” on page 261. The
table above summarizes each constraint modifier. The "=" and "+" modifiers apply to the operand,
regardless of the number of alternatives in the constraint string. For example, the "+" in the output
operand of example13() appears once and applies to both alternatives in the constraint string. The "&",
"#", and "*" modifiers apply only to the alternative in which they appear.

Constraint
Modifier Description

= This operand is write-only. It is valid for output operands only. If specified, the "="
must appear as the first character of the constraint string.

+ This operand is both read and written by the instruction. It is valid for output
operands only. The output operand is initialized with its expression before the first
instruction in the asm statement. If specified, the "+" must appear as the first
character of the constraint string.

& A constraint (or an alternative as defined in “Multiple Alternative Constraints” on
page 274) containing an "&" indicates that the output operand is an early clob-
ber operand. This is an output operand that may be modified before the asm
statement finishes using all of the input operands. The compiler will not place this
operand in a register that may be used as an input operand or part of any memory
address.

% Ignored.

Characters following a "#" up to the first comma (if present) are to be ignored in
the constraint.

* The character that follows the "*" is to be ignored in the constraint.

C/C++ Inline Assembly and Intrinsics

276

Normally, the compiler assumes that input operands are used before assigning results to the output
operands. This assumption lets the compiler reuse registers as needed inside the asm statement.
However, if the asm statement does not follow this convention, the compiler may indiscriminately
clobber a result register with an input operand. To prevent this behavior, apply the early clobber "&"
modifier. An example follows:

void example15()

{

int w=1;

int z;

asm("movl $1, %0\n"

 "addl %2, %0\n"

 "movl %2, %1"

 : "=a" (w), "=r" (z) : "r" (w));

}

The code example above presents an interesting ambiguity because "w" appears both as an output and
as an input operand. So, the value of "z" can be either 1 or 2, depending on whether the compiler uses
the same register for operand 0 and operand 2. The use of constraint "r" for operand 2 allows the
compiler to pick any general purpose register, so it may (or may not) pick register "a" for operand 2.
This ambiguity can be eliminated by changing the constraint for operand 2 from "r" to "a" so the value
of "z" will be 2, or by adding an early clobber "&" modifier so that "z" will be 1. The following example
shows the same function with an early clobber "&" modifier:

void example16()

{

int w=1;

int z;

asm("movl $1, %0\n"

 "addl %2, %0\n"

 "movl %2, %1"

 : "=&a" (w), "=r" (z) : "r" (w));

}

Adding the early clobber "&" forces the compiler not to use the "a" register for anything other than
operand 0. Operand 2 will therefore get its own register with its own copy of "w". The result for "z" in
example16() is 1.

Extended Inline Assembly

277

Operand Aliases

Extended asm specifies operands in assembly strings with a percent '%' followed by the operand number.
For example, "%0" references operand 0 or the output item "=&a" (w) in function example16() shown
above. Extended asm also supports operand aliasing, which allows use of a symbolic name instead of a
number for specifying operands. An example follows:

void example17()

{

int w=1, z=0;

asm("movl $1, %[output1]\n"

 "addl %[input], %[output1]\n"

 "movl %[input], %[output2]"

 : [output1] "=&a" (w), [output2] "=r"

(z)

 : [input] "r" (w));

}

In example17(), "%[output1]" is an alias for "%0", "%[output2]" is an alias for "%1", and "%[input]"
is an alias for "%2". Aliases and numeric references can be mixed, as shown in the following example:

void example18()

{

int w=1, z=0;

asm("movl $1, %[output1]\n"

 "addl %[input], %0\n"

 "movl %[input], %[output2]"

 : [output1] "=&a" (w), [output2] "=r"

(z)

 : [input] "r" (w));

}

In example18(), "%0" and "%[output1]" both represent the output operand.

C/C++ Inline Assembly and Intrinsics

278

Assembly String Modifiers

Table 12-5: Assembly String Modifier Characters

Modifier Description

\ Same as \ in printf format strings.

%* Adds a '*' in the assembly string.

%% Adds a '%' in the assembly string.

%A Adds a '*' in front of an operand in the assembly string. (For example, %A0 adds
a '*' in front of operand 0 in the assembly output.)

%B Produces the byte op code suffix for this operand. (For example, %b0 produces 'b'
on x86 and x86_64.)

%L Produces the word op code suffix for this operand. (For example, %L0 produces
'l' on x86 and x86_64.)

%P If producing Position Independent Code (PIC), the compiler adds the PIC suffix
for this operand. (For example, %P0 produces @PLT on x86 and x86_64.)

%Q Produces a quad word op code suffix for this operand if is supported by the tar-
get. Otherwise, it produces a word op code suffix. (For example, %Q0 produces 'q'
on x86_64 and 'l' on x86.)

%S Produces 's' suffix for this operand. (For example, %S0 produces 's' on x86 and
x86_64.)

%T Produces 't' suffix for this operand. (For example, %S0 produces 't' on x86 and
x86_64.)

%W Produces the half word op code suffix for this operand. (For example, %W0 pro-
duces 'w' on x86 and x86_64.)

%a Adds open and close parentheses () around the operand.

%b Produces the byte register name for an operand. (For example, if operand 0 is in
register 'a', then %b0 will produce '%al'.)

Extended Inline Assembly

279

Special character sequences in the assembly string affect the way the assembly is generated by the
compiler. For example, the "%" is an escape sequence for specifying an operand, "%%" produces a
percent for hard coded registers, and "\n" specifies a new line. There are a few more modifiers that affect
the way the compiler produces the assembly string in the compiler's output. These modifiers, known as
Assembly String Modifiers, are summarized in the table shown above. They begin with either a
backslash "\" or a percent "%". The modifiers that begin with a backslash "\" (e.g., "\n") have the same
effect as they do in a printf format string. The modifiers that are preceded with a "%" are used to modify
a particular operand. For example, "%b0" means, "produce the byte or 8 bit version of operand 0". If
operand 0 is a register, it will produce a byte register such as %al, %bl, %cl, and so on. Another example
follows:

void example19()

{

int a = 1;

int *p = &a;

asm ("add%z0 %q1, %a0"

 : "=&p" (p) : "r" (a), "0" (p));

}

%c Cuts the '$' character from an immediate operand.

%k Produces the word register name for an operand. (For example, if operand 0 is in
register 'a', then %k0 will produce '%eax'.)

%q Produces the quad word register name for an operand if the target supports quad
word. Otherwise, it produces a word register name. (For example, if operand 0 is
in register 'a', then %q0 produces %rax on x86_64 or %eax on x86.)

%w Produces the half word register name for an operand. (For example, if operand 0
is in register 'a', then %w0 will produce '%ax'.)

%z Produces an op code suffix based on the size of an operand. (For example, 'b' for
byte, 'w' for half word, 'l' for word, and 'q' for quad word.)

%+ %C %D
%F %O %X
%f %h %l
%n %s %y

 Not Supported.

Modifier Description

C/C++ Inline Assembly and Intrinsics

280

On an x86 target, the compiler produces the following instruction for the asm string shown above:

addl %ecx, (%eax)

The "%z0" modifier produced an 'l' (lower-case 'L') suffix because the size of pointer p is 32 bits on x86.
The "%q1" modifier produced the word register name for variable a. The "%a0" instructs the compiler to
add parentheses around operand 0, hence "(%eax)".

On an x86_64 target, the compiler produces the following instruction for the above asm string:

addq %rcx, (%rax)

The "%z0" modifier produced a 'q' suffix because the size of pointer p is 64-bit on x86_64. Because
x86_64 supports quad word registers, the "%q1" modifier produced the quad word register name (%rax)
for variable a.

Extended Asm Macros

As with traditional inline assembly (see “Inline Assembly” on page 259), extended asm can be used in a
macro. Following is an example of a macro that can be used to access the runtime stack pointer:

#define GET_SP(x) \

asm("mov %%sp, %0": "=m" (##x)

:: "%sp");

void example20()

{

 void * stack_pointer;

 GET_SP(stack_pointer);

}

The GET_SP macro assigns the value of the stack pointer to whatever is inserted in its argument (for
example, stack_pointer). Another "C" extension known as statement expressions is used to write the
GET_SP macro another way:

#define GET_SP2 ({ \

void *my_stack_ptr; \

asm("mov %%sp, %0": "=m" (my_stack_ptr)

:: "%sp"); \

my_stack_ptr; \

})

Intrinsics

281

void example21()

{

 void * stack_pointer = GET_SP2;

}

The statement expression allows a body of code to evaluate to a single value. This value is specified as the
last instruction in the statement expression. In this case, the value is the result of the asm statement,
my_stack_ptr. By writing an asm macro with a statement expression, the asm result may be assigned
directly to another variable (for example, void * stack_pointer = GET_SP2) or included in a larger
expression (for example, void * stack_pointer = GET_SP2 - sizeof(long)).

Which style of macro to use depends on the application. If the asm statement needs to be a part of an
expression, then a macro with a statement expression is a good approach. Otherwise, a traditional
macro, like GET_SP(x), will probably suffice.

Intrinsics

Inline intrinsic functions map to actual x86 or x64 machine instructions. Intrinsics are inserted inline
to avoid the overhead of a function call. The compiler has special knowlege of intrinsics, so with use of
intrinsics, better code may be generated as compared to extended inline assembly code.

The PGI Workstation 7.0 compiler intrinsics library implements MMX, SSE, SS2, SSE3, SSSE3, SSE4a,
and ABM instructions. The intrinsic functions are available to C and C++ programs on Linux and
Windows.

Unlike most functions which are in libraries, intrinsics are implemented internally by the compiler. A
program can call the intrinsic functions from C/C++ source code after including the corresponding
header file.

The intrinsics are divided into header files as follows:

C/C++ Inline Assembly and Intrinsics

282

Table 12-6: Intrinsic Header File Organization

The following is a simple example program that calls XMM intrinsics.

#include <xmmintrin.h>

int main(){

 __m128 __A, __B,

result;

 __A = _mm_set_ps(23.3,

43.7, 234.234, 98.746);

 __B = _mm_set_ps(15.4,

34.3, 4.1, 8.6);

 result = _mm_add_ps(__A,__B);

 return 0;

}

Instructions Header File

MMX mmintrin.h

SSE xmmintrin.h

SSE2 emmintrin.h

SSE3 pmmintrin.h

SSSE3 tmmintrin.h

SSE4a ammintrin.h

ABM intrin.h

283

13 C++ Name Mangling
Name mangling transforms the names of entities so that the names include information on aspects of
the entity’s type and fully qualified name. This is necessary since the intermediate language into which a
program is translated contains fewer and simpler name spaces than there are in the C++ language.
Specifically:

• Overloaded function names are not allowed in the intermediate language.

• Classes have their own scopes in C++, but not in the generated intermediate language. For
example, an entity x from inside a class must not conflict with an entity x from the file scope.

• External names in the object code form a completely flat name space. The names of entities with
external linkage must be projected onto that name space so that they do not conflict with one
another. A function f from a class A, for example, must not have the same external name as a
function f from class B.

• Some names are not names in the conventional sense of the word, they're not strings of
alphanumeric characters, for example operator=.

We can see that there are two problems here:

1. Generating external names that will not clash.

2. Generating alphanumeric names for entities with strange names in C++.

Name mangling solves these problems by generating external names that will not clash, and
alphanumeric names for entities with strange names in C++. It also solves the problem of generating
hidden names for some behind-the-scenes language support in such a way that they will match up
across separate compilations.

You will see mangled names if you view files that are translated by PGC++, and you do not use tools that
demangle the C++ names. Intermediate files that use mangled names include the assembly and object
files created by the pgcpp command and the C-like file that can be viewed as output from pgcpp using
the +i command-line option

The name mangling algorithm for the PGC++ compiler is the same as that for cfront, and also matches
the description in Section 7.2, Function Name Encoding, of The Annotated C++ Reference Manual
(except for some minor details). Refer to the ARM for a complete description of name mangling.

C++ Name Mangling

284

Types of Mangling

The following entity names are mangled:

• Function names including non-member function names are mangled, to deal with overloading.
Names of functions with extern "C" linkage are not mangled.

• Mangled function names have the function name followed by __ followed by F followed by the
mangled description of the types of the parameters of the function. If the function is a member
function, the mangled form of the class name precedes the F. If the member function is static, an S
also precedes the F.

int f(float); // f__Ff

class A

 int f(float); // f__1AFf

 static int g(float); // g__1ASFf

;

• Special and operator function names, like constructors and operator=(). The encoding is similar
to that for normal functions, but a coded name is used instead of the routine name:

class A

 int operator+(float); // __pl__1Aff

 A(float); // __ct__1Aff

;

int operator+(A, float); // __pl__F1Af

• Static data member names. The mangled form is the member name followed by __ followed by the
mangled form of the class name:

class A

 static int i; // i__1A

;

• Names of variables generated for virtual function tables. These have names like vtblmangled-
class-name or vtblmangled-base-class-namemangled-class-name.

• Names of variables generated to contain runtime type information. These have names like Ttype-
encoding and TIDtype-encoding.

Mangling Summary

285

Mangling Summary

This section lists some of the C++ entities that are mangled and provides some details on the mangling
algorithm. For more details, refer to The Annotated C++ Reference Manual.

Type Name Mangling

Using PGC++, each type has a corresponding mangled encoding. For example, a class type is
represented as the class name preceded by the number of characters in the class name, as in 5abcde for
abcde. Simple types are encoded as lower-case letters, as in i for int or f for float. Type modifiers and
declarators are encoded as upper-case letters preceding the types they modify, as in U for unsigned or P
for pointer.

Nested Class Name Mangling

Nested class types are encoded as a Q followed by a digit indicating the depth of nesting, followed by a _,
followed by the mangled-form names of the class types in the fully-qualified name of the class, from
outermost to innermost:

class A

 class B // Q2_1A1B

 ;

;

Local Class Name Mangling

The name of the nested class itself is mangled to the form described above with a prefix __, which serves
to make the class name distinct from all user names. Local class names are encoded as L followed by a
number (which has no special meaning; it’s just an identifying number assigned to the class) followed
by __ followed by the mangled name of the class (this is not in the ARM, and cfront encodes local class
names slightly differently):

void f()

 class A // L1__1A}

 ;

;

This form is used when encoding the local class name as a type. It’s not necessary to mangle the name of
the local class itself unless it's also a nested class.

C++ Name Mangling

286

Template Class Name Mangling

Template classes have mangled names that encode the arguments of the template:

template<class T1, class T2> class abc ;

abc<int, int> x;

abc__pt__3_ii

This describes two template arguments of type int with the total length of template argument list string,
including the underscore, and a fixed string, indicates parameterized type as well, the name of the class
template.

Linux86 and Win32 Programming Model

287

Appendix A. Run-time
Environment

This appendix describes the programming model supported for compiler code generation, including
register conventions and calling conventions for x86 and x64 processor-based systems. Section A1
addresses these conventions for processors running linux86 or Win32 operating systems, section A2 for
processors running linux86-64 operating systems, and section A3 for processors running Win64
operating systems.

Linux86 and Win32 Programming Model

This section defines compiler and assembly language conventions for the use of certain aspects of an x86
processor running a linux86 or Win32 operating system. These standards must be followed to guarantee
that compilers, application programs, and operating systems written by different people and
organizations will work together. The conventions supported by the PGCC ANSI C compiler implement
the application binary interface (ABI) as defined in the System V Application Binary Interface: Intel
Processor Supplement and the System V Application Binary Interface, listed in the “Related
Publications” section in the Preface.

Function Calling Sequence

This section describes the standard function calling sequence, including the stack frame, register usage,
and parameter passing.

Register Usage Conventions

The following table defines the standard for register allocation. The 32-bit x86 Architecture provides a
number of registers. All the integer registers and all the floating-point registers are global to all
procedures in a running program.

288

Table A-1: Register Allocation

In addition to the registers, each function has a frame on the run-time stack. This stack grows
downward from high addresses. The next table shows the stack frame organization.

Type Name Purpose

General %eax integer return value

%edx dividend register (for divide operations)

%ecx count register (shift and string operations)

%ebx local register variable

%ebp optional stack frame pointer

%esi local register variable

%edi local register variable

%esp stack pointer

Floating-point %st(0) floating-point stack top, return value

%st(1) floating-point next to stack top

%st(...)

%st(7) floating-point stack bottom

Linux86 and Win32 Programming Model

289

Table A-2: Standard Stack Frame

Several key points concerning the stack frame:

• The stack is kept double word aligned

• Argument words are pushed onto the stack in reverse order (i.e., the rightmost argument in C call
syntax has the highest address) A dummy word may be pushed ahead of the rightmost argument
in order to preserve doubleword alignment. All incoming arguments appear on the stack, residing
in the stack frame of the caller.

• An argument’s size is increased, if necessary, to make it a multiple of words. This may require tail
padding, depending on the size of the argument.

All registers on an x86 system are global and thus visible to both a calling and a called function.
Registers %ebp, %ebx, %edi, %esi, and %esp are non-volatile across function calls. Therefore, a function
must preserve these registers’ values for its caller. Remaining registers are volatile (scratch). If a calling
function wants to preserve such a register value across a function call, it must save its value explicitly.

Some registers have assigned roles in the standard calling sequence:

%esp The stack pointer holds the limit of the current stack frame, which is the
address of the stack’s bottom-most, valid word. At all times, the stack
pointer should point to a word-aligned area.

Position Contents Frame

4n+8 (%ebp) argument word n previous

 8 (%ebp) argument word 0

 4 (%ebp) return address

 0 (%ebp) caller's %ebp current

 -4 (%ebp) n bytes of local

 -n (%ebp) variables and temps

290

%ebp The frame pointer holds a base address for the current stack frame.
Consequently, a function has registers pointing to both ends of its frame.
Incoming arguments reside in the previous frame, referenced as positive
offsets from %ebp, while local variables reside in the current frame,
referenced as negative offsets from %ebp. A function must preserve this
register value for its caller.

%eax Integral and pointer return values appear in %eax. A function that returns
a structure or union value places the address of the result in %eax.
Otherwise, this is a scratch register.

%esi, %edi These local registers have no specified role in the standard calling
sequence. Functions must preserve their values for the caller.

%ecx, %edx Scratch registers have no specified role in the standard calling sequence.
Functions do not have to preserve their values for the caller.

%st(0) Floating-point return values appear on the top of the floating point
register stack; there is no difference in the representation of single or
double-precision values in floating point registers. If the function does not
return a floating point value, then the stack must be empty.

%st(1) - %st(7) Floating point scratch registers have no specified role in the standard
calling sequence. These registers must be empty before entry and upon exit
from a function.

EFLAGS The flags register contains the system flags, such as the direction flag and
the carry flag. The direction flag must be set to the “forward” (i.e., zero)
direction before entry and upon exit from a function. Other user flags have
no specified role in the standard calling sequence and are not reserved.

Floating Point Control Word The control word contains the floating-point flags, such as the rounding
mode and exception masking. This register is initialized at process
initialization time and its value must be preserved.

Signals can interrupt processes. Functions called during signal handling have no unusual restriction on
their use of registers. Moreover, if a signal handling function returns, the process resumes its original
execution path with registers restored to their original values. Thus, programs and compilers may freely
use all registers without danger of signal handlers changing their values.

Linux86 and Win32 Programming Model

291

Function Return Values

Functions Returning Scalars or No Value

• A function that returns an integral or pointer value places its result in register %eax.

• A function that returns a long long integer value places its result in the registers %edx and %eax.
The most significant word is placed in %edx and the least significant word is placed in %eax.

• A floating-point return value appears on the top of the floating point stack. The caller must then
remove the value from the floating point stack, even if it does not use the value. Failure of either
side to meet its obligations leads to undefined program behavior. The standard calling sequence
does not include any method to detect such failures nor to detect return value type mismatches.
Therefore, the user must declare all functions properly. There is no difference in the representation
of single-, double- or extended-precision values in floating-point registers.

• Functions that return no value (also called procedures or void functions) put no particular value
in any register.

• A call instruction pushes the address of the next instruction (the return address) onto the stack.
The return instruction pops the address off the stack and effectively continues execution at the
next instruction after the call instruction. A function that returns a scalar or no value must
preserve the caller's registers as described above. Additionally, the called function must remove the
return address from the stack, leaving the stack pointer (%esp) with the value it had before the call
instruction was executed.

Functions Returning Structures or Unions

If a function returns a structure or union, then the caller provides space for the return value and
places its address on the stack as argument word zero. In effect, this address becomes a hidden first
argument.

A function that returns a structure or union also sets %eax to the value of the original address of the
caller's area before it returns. Thus, when the caller receives control again, the address of the returned
object resides in register %eax and can be used to access the object. Both the calling and the called
functions must cooperate to pass the return value successfully:

• The calling function must supply space for the return value and pass its address in the stack
frame;

292

• The called function must use the address from the frame and copy the return value to the object
so supplied;

• The called function must remove this address from the stack before returning.

Failure of either side to meet its obligation leads to undefined program behavior. The standard
function calling sequence does not include any method to detect such failures nor to detect structure
and union type mismatches. Therefore, you must declare the function properly.

The following table illustrates the stack contents when the function receives control, after the call
instruction, and when the calling function again receives control, after the ret instruction.

Table A-3: Stack Contents for Functions Returning struct/union

The following sections of this appendix describe where arguments appear on the stack. The examples
are written as if the function prologue described above had been used.

Position After Call After Return Position

4n+8 (%esp) argument word n argument word n 4n-4 (%esp)

8 (%esp) argument word 1 argument word 1 0 (%esp)

4 (%esp) value address undefined

0 (%esp) return address

Linux86 and Win32 Programming Model

293

Argument Passing

Integral and Pointer Arguments

As mentioned, a function receives all its arguments through the stack; the last argument is pushed
first. In the standard calling sequence, the first argument is at offset 8(%ebp), the second argument is
at offset 12(%ebp), etc., as previously shown in Table A-3 , “Stack Contents for Functions Returning
struct/union”. Functions pass all integer-valued arguments as words, expanding or padding signed or
unsigned bytes and halfwords as needed.

Table A-4: Integral and Pointer Arguments

Floating-Point Arguments

The stack also holds floating-point arguments: single-precision values use one word and double-
precision use two. The example below uses only double-precision arguments.

Call Argument Stack Address

g(1, 2, 3, (void *)0); 1 8 (%ebp)

2 12 (%ebp)

3 16 (%ebp)

(void *) 0 20 (%ebp)

294

Table A-5: Floating-point Arguments

Structure and Union Arguments

Structures and unions can have byte, halfword, or word alignment, depending on the constituents. An
argument’s size is increased, if necessary, to make it a multiple of words. This may require tail
padding, depending on the size of the argument. Structure and union arguments are pushed onto the
stack in the same manner as integral arguments, described above. This provides call-by-value
semantics, letting the called function modify its arguments without affecting the calling function’s
object. In the example below, the argument, s, is a structure consisting of more than 2 words.

Call Argument Stack
Address

h(1.414, 1,
2.998e10);

word 0, 1.414 8 (%ebp)

word 1, 1.414 12 (%ebp)

1 16 (%ebp)

word 0 2.998e10 20 (%ebp)

word 1, 2.998e10 24 (%ebp)

Linux86 and Win32 Programming Model

295

Table A-6: Structure and Union Arguments

Implementing a Stack

In general, compilers and programmers must maintain a software stack. Register %esp is the stack
pointer. Register %esp is set by the operating system for the application when the program is started.
The stack must be a grow-down stack.

A separate frame pointer enables calls to routines that change the stack pointer to allocate space on
the stack at run-time (e.g. alloca). Some languages can also return values from a routine allocated on
stack space below the original top-of-stack pointer. Such a routine prevents the calling function from
using %esp-relative addressing to get at values on the stack. If the compiler does not call routines that
leave %esp in an altered state when they return, a frame pointer is not needed and is not used if the
compiler option –Mnoframe is specified.

Although not required, the stack should be kept aligned on 8-byte boundaries so that 8-byte locals are
favorably aligned with respect to performance. PGI's compilers allocate stack space for each routine in
multiples of 8 bytes.

Variable Length Parameter Lists.

Parameter passing in registers can handle a variable number of parameters. The C language uses a
special method to access variable-count parameters. The stdarg.h and varargs.h files define several
functions to access these parameters. A C routine with variable parameters must use the va_start
macro to set up a data structure before the parameters can be used. The va_arg macro must be used to
access the successive parameters.

Call Argument Stack Address

i(1,s); 1 8 (%ebp)

word 0, s 12 (%ebp)

word 1, s 16 (%ebp)

... ...

296

C Parameter Conversion.

In C, for a called prototyped function, the parameter type in the called function must match the
argument type in the calling function. If the called function is not prototyped, the calling convention
uses the types of the arguments but promotes char or short to int, and unsigned char or unsigned
short to unsigned int and promotes float to double, unless you use the --Msingle option. For more
information on the –Msingle option, refer to Chapter 3. If the called function is prototyped, the
unused bits of a register containing a char or short parameter are undefined and the called function
must extend the sign of the unused bits when needed.

Calling Assembly Language Programs

Example A-1: C Program Calling an Assembly-language Routine

/* File: testmain.c */

main(){

 long l_para1 = 0x3f800000;

 float f_para2 = 1.0;

 double d_para3 = 0.5;

 float f_return;

 extern float sum_3 (long para1, float para2, double para3);

 f_return = sum_3(l_para1,

f_para2, d_para3);

 printf("Parameter one, type long = %08x\n",

l_para1);

 printf("Parameter two, type float = %f\n",

f_para2);

 printf("Parameter three, type double = %g\n",

d_para3);

 printf("The sum after conversion = %f\n",

f_return);

}

File: sum_3.s

Computes (para1 + para2) + para3

 .text

 .align 4

 .long .EN1-sum_3+0xc8000000

 .align 16

 .globl sum_3

sum_3:

 pushl %ebp

Linux86-64 Programming Model

297

 movl %esp,%ebp

 subl $8,%esp

..EN1:

 fildl 8(%ebp)

 fadds 12(%ebp)

 faddl 16(%ebp)

 fstps -4(%ebp)

 flds -4(%ebp)

 leave

 ret

 .type sum_3,@function

 .size sum_3,.-sum_3

Linux86-64 Programming Model

This section defines compiler and assembly language conventions for the use of certain aspects of an x64
processor running a linux86-64 operating system. These standards must be followed to guarantee that
compilers, application programs, and operating systems written by different people and organizations
will work together. The conventions supported by the PGCC ANSI C compiler implement the application
binary interface (ABI) as defined in the System V Application Binary Interface: AMD64 Architecture
Processor Supplement and the System V Application Binary Interface, listed in the “Related
Publications” section in the Preface.

Note

The SUA64 Programming Model is the same as the Win64 Programming Model.

Function Calling Sequence

This section describes the standard function calling sequence, including the stack frame, register usage,
and parameter passing.

Register Usage Conventions.

The following table defines the standard for register allocation. The x64 Architecture provides a variety
of registers. All the general purpose registers, XMM registers, and x87 registers are global to all
procedures in a running program.

298

Table A-7: Register Allocation

In addition to the registers, each function has a frame on the run-time stack. This stack grows

Type Name Purpose

General %rax 1st return register

%rbx callee-saved; optional base pointer

%rcx pass 4th argument to functions

%rdx pass 3rd argument to functions; 2nd return register

%rsp stack pointer

%rbp callee-saved; optional stack frame pointer

%rsi pass 2nd argument to functions

%rdi pass 1st argument to functions

%r8 pass 5th argument to functions

%r9 pass 6th argument to functions

%r10 temporary register; pass a function’s static chain
pointer

%r11 temporary register

%r12-r15 callee-saved registers

XMM %xmm0-%xmm1 pass and return floating point arguments

%xmm2-%xmm7 pass floating point arguments

%xmm8-
%xmm15

temporary registers

x87 %st(0) temporary register; return long double arguments

%st(1) temporary register; return long double arguments

%st(2) - %st(7) temporary registers

Linux86-64 Programming Model

299

downward from high addresses. The next table shows the stack frame organization.

Table A-8: Standard Stack Frame

Key points concerning the stack frame:

• The end of the input argument area is aligned on a 16-byte boundary.

• The 128-byte area beyond the location of %rsp is called the red zone and can be used for temporary
local data storage. This area is not modified by signal or interrupt handlers.

• A call instruction pushes the address of the next instruction (the return address) onto the stack.
The return instruction pops the address off the stack and effectively continues execution at the
next instruction after the call instruction. A function must preserve non-volatile registers
(described below). Additionally, the called function must remove the return address from the
stack, leaving the stack pointer (%rsp) with the value it had before the call instruction was
executed.

Position Contents Frame

8n+16 (%rbp) argument eightbyte n previous

. . .

 16 (%rbp) argument eightbyte 0

 8 (%rbp) return address current

 0 (%rbp) caller's %rbp current

 -8 (%rbp) unspecified

. . .

 0 (%rsp) variable size

 -128 (%rsp) red zone

300

All registers on an x64 system are global and thus visible to both a calling and a called function.
Registers %rbx, %rsp, %rbp, %r12, %r13, %r14, and %r15 are non-volatile across function calls.
Therefore, a function must preserve these registers’ values for its caller. Remaining registers are volatile
(scratch). If a calling function wants to preserve such a register value across a function call, it must save
its value explicitly.

Registers are used extensively in the standard calling sequence. The first six integer and pointer
arguments are passed in these registers (listed in order): %rdi, %rsi, %rdx, %rcx, %r8, %r9. The first eight
floating point arguments are passed in the first eight XMM registers: %xmm0, %xmm1, …, %xmm7.
The registers %rax and %rdx are used to return integer and pointer values. The registers %xmm0 and
%xmm1 are used to return floating point values.

Additional registers with assigned roles in the standard calling sequence:

%rsp The stack pointer holds the limit of the current stack frame, which is the
address of the stack’s bottom-most, valid word. The stack must be 16-byte
aligned.

%rbp The frame pointer holds a base address for the current stack frame.
Consequently, a function has registers pointing to both ends of its frame.
Incoming arguments reside in the previous frame, referenced as positive
offsets from %rbp, while local variables reside in the current frame,
referenced as negative offsets from %rbp. A function must preserve this
register value for its caller.

RFLAGS The flags register contains the system flags, such as the direction flag and
the carry flag. The direction flag must be set to the “forward” (i.e., zero)
direction before entry and upon exit from a function. Other user flags have
no specified role in the standard calling sequence and are not preserved.

Floating Point Control Word The control word contains the floating-point flags, such as the rounding
mode and exception masking. This register is initialized at process
initialization time and its value must be preserved.

Signals can interrupt processes. Functions called during signal handling have no unusual restriction on
their use of registers. Moreover, if a signal handling function returns, the process resumes its original
execution path with registers restored to their original values. Thus, programs and compilers may freely
use all registers without danger of signal handlers changing their values.

Linux86-64 Programming Model

301

Function Return Values

Functions Returning Scalars or No Value

• A function that returns an integral or pointer value places its result in the next available register
of the sequence %rax, %rdx.

• A function that returns a floating point value that fits in the XMM registers returns this value in
the next available XMM register of the sequence %xmm0, %xmm1.

• An X87 floating-point return value appears on the top of the floating point stack in %st(0) as an
80-bit X87 number. If this X87 return value is a complex number, the real part of the value is
returned in %st(0) and the imaginary part in %st(1).

• A function that returns a value in memory also returns the address of this memory in %rax.

• Functions that return no value (also called procedures or void functions) put no particular
value in any register.

Functions Returning Structures or Unions

A function can use either registers or memory to return a structure or union. The size and type of the
structure or union determine how it is returned. If a structure or union is larger than 16 bytes, it is
returned in memory allocated by the caller.

To determine whether a 16-byte or smaller structure or union can be returned in one or more return
registers, examine the first eight bytes of the structure or union. The type or types of the structure or
union’s fields making up these eight bytes determine how these eight bytes will be returned. If the
eight bytes contain at least one integral type, the eight bytes will be returned in %rax even if non-
integral types are also present in the eight bytes. If the eight bytes only contain floating point types,
these eight bytes will be returned in %xmm0.

If the structure or union is larger than eight bytes but smaller than 17 bytes, examine the type or types
of the fields making up the second eight bytes of the structure or union. If these eight bytes contain at
least one integral type, these eight bytes will be returned in %rdx even if non-integral types are also
present in the eight bytes. If the eight bytes only contain floating point types, these eight bytes will be
returned in %xmm1.

If a structure or union is returned in memory, the caller provides the space for the return value and
passes its address to the function as a “hidden” first argument in %rdi. This address will also be
returned in %rax.

302

Argument Passing

Integral and Pointer Arguments

Integral and pointer arguments are passed to a function using the next available register of the
sequence %rdi, %rsi, %rdx, %rcx, %r8, %r9. After this list of registers has been exhausted, all
remaining integral and pointer arguments are passed to the function via the stack.

Floating-Point Arguments

Float and double arguments are passed to a function using the next available XMM register taken in
the order from %xmm0 to %xmm7. After this list of registers has been exhausted, all remaining float
and double arguments are passed to the function via the stack.

Structure and Union Arguments

Structure and union arguments can be passed to a function in either registers or on the stack. The size
and type of the structure or union determine how it is passed. If a structure or union is larger than 16
bytes, it is passed to the function in memory.

To determine whether a 16-byte or smaller structure or union can be passed to a function in one or
two registers, examine the first eight bytes of the structure or union. The type or types of the structure
or union’s fields making up these eight bytes determine how these eight bytes will be passed. If the
eight bytes contain at least one integral type, the eight bytes will be passed in the first available general
purpose register of the sequence %rdi, %rsi, %rdx, %rcx, %r8, %r9 even if non-integral types are also
present in the eight bytes. If the eight bytes only contain floating point types, these eight bytes will be
passed in the first available XMM register of the sequence from %xmm0 to %xmm7.

If the structure or union is larger than eight bytes but smaller than 17 bytes, examine the type or types
of the fields making up the second eight bytes of the structure or union. If the eight bytes contain at
least one integral type, the eight bytes will be passed in the next available general purpose register of
the sequence %rdi, %rsi, %rdx, %rcx, %r8, %r9 even if non-integral types are also present in the eight
bytes. If these eight bytes only contain floating point types, these eight bytes will be passed in the next
available XMM register of the sequence from %xmm0 to %xmm7.

If the first or second eight bytes of the structure or union cannot be passed in a register for some
reason, the entire structure or union must be passed in memory.

Linux86-64 Programming Model

303

Passing Arguments on the Stack

If there are arguments left after every argument register has been allocated, the remaining arguments
are passed to the function on the stack. The unassigned arguments are pushed on the stack in reverse
order, with the last argument pushed first.

Table A-9 , “Register Allocation for Example A-2” shows the register allocation and stack frame offsets
for the function declaration and call shown in the following example. Both table and example are
adapted from System V Application Binary Interface: AMD64 Architecture Processor Supplement.

Example A-2: Parameter Passing

typedef struct {

 int a, b;

 double d;

} structparm;

structparm s;

int e,f,g,h,i,j,k;

float flt;

double m,n;

extern void func (int e, int f, structparm s, int g, int h,

 float flt, double m, double n, int i, int j,

 int k);

func (e, f, s, g, h, flt, m, n, i, j, k);

304

Table A-9: Register Allocation for Example A-2

Implementing a Stack

In general, compilers and programmers must maintain a software stack. The stack pointer, register
%rsp, is set by the operating system for the application when the program is started. The stack must
grow downwards from high addresses.

A separate frame pointer enables calls to routines that change the stack pointer to allocate space on
the stack at run-time (e.g. alloca). Some languages can also return values from a routine allocated on
stack space below the original top-of-stack pointer. Such a routine prevents the calling function from
using %rsp-relative addressing for values on the stack. If the compiler does not call routines that leave
%rsp in an altered state when they return, a frame pointer is not needed and may not be used if the
compiler option –Mnoframe is specified.

The stack must be kept aligned on 16-byte boundaries.

Variable Length Parameter Lists.

Parameter passing in registers can handle a variable number of parameters. The C language uses a
special method to access variable-count parameters. The stdarg.h and varargs.h files define several
functions to access these parameters. A C routine with variable parameters must use the va_start
macro to set up a data structure before the parameters can be used. The va_arg macro must be used to
access the successive parameters.

General Purpose
Registers

Floating Point
Registers

Stack Frame
Offset

%rdi: e %xmm0: s.d 0: j

%rsi: f %xmm1: flt 8: k

%rdx: s.a,s.b %xmm2: m

%rcx: g %xmm3: n

%r8: h

%r9: i

Linux86-64 Programming Model

305

For calls that use varargs or stdargs, the register %rax acts as a hidden argument whose value is the
number of XMM registers used in the call.

C Parameter Conversion.

In C, for a called prototyped function, the parameter type in the called function must match the
argument type in the calling function. If the called function is not prototyped, the calling convention
uses the types of the arguments but promotes char or short to int, and unsigned char or unsigned
short to unsigned int and promotes float to double, unless you use the --Msingle option. For more
information on the –Msingle option, refer to Chapter 3.

Calling Assembly Language Programs

Example A-3: C Program Calling an Assembly-language Routine

/* File: testmain.c */

main() {

 long l_para1 = 0x3f800000;

 float f_para2 = 1.0;

 double d_para3 = 0.5;

 float f_return;

 extern float sum_3 (long para1, float para2, double

para3);

 f_return = sum_3(l_para1, f_para2,

d_para3);

 printf("Parameter one, type long = %08x\n",

l_para1);

 printf("Parameter two, type float = %f\n",

f_para2);

 printf("Parameter three, type double = %g\n",

d_para3);

 printf("The sum after conversion = %f\n",

f_return);

}

File: sum_3.s

Computes (para1 + para2) + para3

 .text

 .align 16

 .globl sum_3

sum_3:

 pushq %rbp

 movq %rsp, %rbp

306

 cvtsi2ssq %rdi, %xmm2

 addss %xmm0, %xmm2

 cvtss2sd %xmm2, %xmm2

 addsd %xmm1, %xmm2

 cvtsd2ss %xmm2, %xmm2

 movaps %xmm2, %xmm0

 popq %rbp

 ret

 .type sum_3,@function

 .size sum_3,.-sum_3

Linux86-64 Fortran Supplement

Sections A2.4.1 through A2.4.4 define the Fortran supplement to the ABI for x64 Linux. The register
usage conventions set forth in that document remain the same for Fortran.

Linux86-64 Programming Model

307

Fortran Fundamental Types

Table A-10: Linux86-64 Fortran Fundamental Types

Fortran Type Size
(bytes)

Alignment
(bytes)

INTEGER 4 4

INTEGER*1 1 1

INTEGER*2 2 2

INTEGER*4 4 4

INTEGER*8 8 8

LOGICAL 4 4

LOGICAL*1 1 1

LOGICAL*2 2 2

LOGICAL*4 4 4

LOGICAL*8 8 8

BYTE 1 1

CHARACTER*n n 1

REAL 4 4

REAL*4 4 4

REAL*8 8 8

DOUBLE PRECISION 8 8

COMPLEX 8 4

COMPLEX*8 8 4

COMPLEX*16 16 8

308

A logical constant is one of:

• .TRUE.

• .FALSE.

The logical constants .TRUE. and .FALSE. are defined to be the four-byte values -1 and 0 respectively. A
logical expression is defined to be .TRUE. if its least significant bit is 1 and .FALSE. otherwise.

Note that the value of a character is not automatically NULL-terminated.

Naming Conventions

By default, all globally visible Fortran symbol names (subroutines, functions, common blocks) are
converted to lower-case. In addition, an underscore is appended to Fortran global names to distinguish
the Fortran name space from the C/C++ name space..

Argument Passing and Return Conventions

Arguments are passed by reference (i.e. the address of the argument is passed, rather than the argument
itself). In contrast, C/C++ arguments are passed by value.

When passing an argument declared as Fortran type CHARACTER, an argument representing the length
of the CHARACTER argument is also passed to the function. This length argument is a four-byte integer
passed by value, and is passed at the end of the parameter list following the other formal arguments. A
length argument is passed for each CHARACTER argument; the length arguments are passed in the same
order as their respective CHARACTER arguments.

A Fortran function, returning a value of type CHARACTER, adds two arguments to the beginning of its
argument list. The first additional argument is the address of the area created by the caller for the return
value; the second additional argument is the length of the return value. If a Fortran function is declared
to return a character value of constant length, for example CHARACTER*4 FUNCTION CHF(), the second
extra parameter representing the length of the return value must still be supplied.

DOUBLE COMPLEX 16 8

Fortran Type Size
(bytes)

Alignment
(bytes)

Linux86-64 Programming Model

309

A Fortran complex function returns its value in memory. The caller provides space for the return value
and passes the address of this storage as if it were the first argument to the function.

Alternate return specifiers of a Fortran function are not passed as arguments by the caller. The alternate
return function passes the appropriate return value back to the caller in %rax.

The handling of the following Fortran 90 features is implementation-defined: internal procedures,
pointer arguments, assumed-shape arguments, functions returning arrays, and functions returning
derived types.

Inter-language Calling

Inter-language calling between Fortran and C/C++ is possible if function/subroutine parameters and
return values match types. If a C/C++ function returns a value, call it from Fortran as a function,
otherwise, call it as a subroutine. If a Fortran function has type CHARACTER or COMPLEX, call it from C/
C++ as a void function. If a Fortran subroutine has alternate returns, call it from C/C++ as a function
returning int; the value of such a subroutine is the value of the integer expression specified in the
alternate RETURN statement. If a Fortran subroutine does not contain alternate returns, call it from C/
C++ as a void function.

The following table provides the C/C++ data type corresponding to each Fortran data type.

310

Table A-11: Fortran and C/C++ Data Type Compatibility

Table A-12: Fortran and C/C++ Representation of the COMPLEX Type

Fortran Type C/C++ Type Size
(bytes)

CHARACTER*n x char x[n] n

REAL x float x 4

REAL*4 x float x 4

REAL*8 x double x 8

DOUBLE PRECISION x double x 8

INTEGER x int x 4

INTEGER*1 x signed char x 1

INTEGER*2 x short x 2

INTEGER*4 x int x 4

INTEGER*8 x long x, orlong long x 88

LOGICAL x int x 4

LOGICAL*1 x char x 1

LOGICAL*2 x short x 2

LOGICAL*4 x int x 4

LOGICAL*8 x long x, orlong long x 88

Fortran Type C/C++ Type Size
(bytes)

COMPLEX x struct {float r, I;} x; 8

COMPLEX*8 x struct {float r, I;} x; 8

Linux86-64 Programming Model

311

Arrays

C/C++ arrays and Fortran arrays use different default initial array index values. By default, C/C++
arrays start at 0 and Fortran arrays start at 1. A Fortran array can be declared to start at zero.

Another difference between Fortran and C/C++ arrays is the storage method used. Fortran uses column-
major order and C/C++ use row-major order. For one-dimensional arrays, this poses no problems. For
two-dimensional arrays, where there are an equal number of rows and columns, row and column
indexes can simply be reversed. Inter-language function mixing is not recommended for arrays other
than single dimensional arrays and square two-dimensional arrays.

Structures, Unions, Maps, and Derived Types.

Fields within Fortran structures and derived types, and multiple map declarations within a Fortran
union, conform to the same alignment requirements used by C structures.

Common Blocks.

A named Fortran common block can be represented in C/C++ by a structure whose members correspond
to the members of the common block. The name of the structure in C/C++ must have the added
underscore. For example, the Fortran common block:

INTEGER I, J

COMPLEX C

DOUBLE COMPLEX CD

DOUBLE PRECISION D

COMMON /COM/ i, j, c, cd, d

is represented in C with the following equivalent:

COMPLEX*16 x struct {double dr,di;} x; 16

DOUBLE COMPLEX x struct {double dr,di;} x; 16

Fortran Type C/C++ Type Size
(bytes)

312

 extern struct {

 int i;

 int j;

 struct {float real, imag;} c;

 struct {double real, imag;} cd;

 double d;

 } com_;

and in C++ with the following equivalent:

 extern "C" struct {

 int i;

 int j;

 struct {float real, imag;} c;

 struct {double real, imag;} cd;

 double d;

 } com_;

Note that the compiler-provided name of the BLANK COMMON block is implementation specific.

Calling Fortran COMPLEX and CHARACTER functions from C/C++ is not as straightforward as calling
other types of Fortran functions. Additional arguments must be passed to the Fortran function by the C/
C++ caller. A Fortran COMPLEX function returns its value in memory; the first argument passed to the
function must contain the address of the storage for this value. A Fortran CHARACTER function adds two
arguments to the beginning of its argument list. The following example of calling a Fortran CHARACTER
function from C/C++ illustrates these caller-provided extra parameters:

 CHARACTER*(*) FUNCTION CHF(C1, I)

 CHARACTER*(*) C1

 INTEGER I

 END

 extern void chf_();

 char tmp[10];

 char c1[9];

 int i;

 chf_(tmp, 10, c1, &i, 9);

The extra parameters tmp and 10 are supplied for the return value, while 9 is supplied as the length of
c1. Refer to Section 2.8, Argument Passing and Return Conventions, for additional information.

Win64/SUA64 Programming Model

313

Win64/SUA64 Programming Model

This section defines compiler and assembly language conventions for the use of certain aspects of an x64
processor running a Win64 operating system, including SUA64. These standards must be followed to
guarantee that compilers, application programs, and operating systems written by different people and
organizations will work together. The conventions supported by the PGCC ANSI C compiler implement
the application binary interface (ABI) as defined in the AMD64 Software Conventions document.

Function Calling Sequence

This section describes the standard function calling sequence, including the stack frame, register usage,
and parameter passing.

Register Usage Conventions.

The following table defines the standard for register allocation. The 64-bit AMD64 and EM64T
Architectures provide a number of registers. All the general purpose registers, XMM registers, and x87
registers are global to all procedures in a running program.

314

Table A-13: Register Allocation

In addition to the registers, each function has a frame on the run-time stack. This stack grows
downward from high addresses. The next table shows the stack frame organization.

Type Name Purpose

General %rax return value register

%rbx callee-saved

%rcx pass 1st argument to functions

%rdx pass 2nd argument to functions

%rsp stack pointer

%rbp callee-saved; optional stack frame pointer

%rsi callee-saved

%rdi callee-saved

%r8 pass 3rd argument to functions

%r9 pass 4th argument to functions

%r10-%r11 temporary registers; used in syscall/sysret instructions

%r12-r15 callee-saved registers

XMM %xmm0 pass 1st floating point argument; return value register

%xmm1 pass 2nd floating point argument

%xmm2 pass 3rd floating point argument

%xmm3 pass 4th floating point argument

%xmm4-%xmm5 temporary registers

%xmm6-%xmm15 callee-saved registers

Win64/SUA64 Programming Model

315

Table A-14: Standard Stack Frame

Key points concerning the stack frame:

• The parameter area at the bottom of the stack must contain enough space to hold all the
parameters needed by any function call. Space must be set aside for the four register parameters
to be “homed” to the stack even if there are less than four register parameters used in a given
call.

• Sixteen-byte alignment of the stack is required except within a function’s prolog and within leaf
functions.

All registers on an x64 system are global and thus visible to both a calling and a called function.
Registers %rbx, %rsp, %rbp, %rsi, %rdi, %r12, %r13, %r14, and %r15 are non-volatile. Therefore, a
called function must preserve these registers’ values for its caller. Remaining registers are scratch. If a
calling function wants to preserve such a register value across a function call, it must save a value in
its local stack frame.

Position Contents Frame

 8n-120 (%rbp) argument eightbyte n previous

. . .

 -80 (%rbp) argument eightbyte 5

 -88 (%rbp) %r9 home

 -96 (%rbp) %r8 home

 -104 (%rbp) %rdx home

 -112 (%rbp) %rcx home

 -120 (%rbp) return address current

 -128 (%rbp) caller's %rbp

. . .

 0 (%rsp) variable size

316

Registers are used in the standard calling sequence. The first four arguments are passed in registers.
Integral and pointer arguments are passed in these general purpose registers (listed in order): %rcx,
%rdx, %r8, %r9. Floating point arguments are passed in the first four XMM registers: %xmm0,
%xmm1, %xmm2, %xmm3. Registers are assigned using the argument’s ordinal position in the
argument list. For example, if a function’s first argument is an integral type and its second argument
is a floating-point type, the first argument will be passed in the first general purpose register (%rcx)
and the second argument will be passed in the second XMM register (%xmm1); the first XMM register
and second general purpose register are ignored. Arguments after the first four are passed on the
stack.

Integral and pointer type return values are returned in %rax. Floating point return values are
returned in %xmm0.

Additional registers with assigned roles in the standard calling sequence:

%rsp The stack pointer holds the limit of the current stack frame, which is the
address of the stack’s bottom-most, valid word. The stack pointer should
point to a 16-byte aligned area unless in the prolog or a leaf function.

%rbp The frame pointer, if used, can provide a way to reference the previous
frame on the stack. Details are implementation dependent. A function
must preserve this register value for its caller.

MXCSR The flags register MXCSR contains the system flags, such as the direction
flag and the carry flag. The six status flags (MXCSR[0:5]) are volatile;
the remainder of the register is nonvolatile.

x87 Floating Point Control Word (FPCSR)The control word contains the
floating-point flags, such as the rounding mode and exception masking.
This register is initialized at process initialization time and its value
must be preserved.

Signals can interrupt processes. Functions called during signal handling have no unusual restriction
on their use of registers. Moreover, if a signal handling function returns, the process resumes its
original execution path with registers restored to their original values. Thus, programs and compilers
may freely use all registers without danger of signal handlers changing their values.

Win64/SUA64 Programming Model

317

Function Return Values

Functions Returning Scalars or No Value

• A function that returns an integral or pointer value that fits in 64 bits places its result in %rax.

• A function that returns a floating point value that fits in the XMM registers returns this value in
%xmm0.

• A function that returns a value in memory via the stack places the address of this memory
(passed to the function as a “hidden” first argument in %rcx) in %rax.

• Functions that return no value (also called procedures or void functions) put no particular
value in any register.

• A call instruction pushes the address of the next instruction (the return address) onto the stack.
The return instruction pops the address off the stack and effectively continues execution at the
next instruction after the call instruction. A function that returns a scalar or no value must
preserve the caller's registers as described above. Additionally, the called function must remove
the return address from the stack, leaving the stack pointer (%rsp) with the value it had before
the call instruction was executed.

Functions Returning Structures or Unions

A function can use either registers or the stack to return a structure or union. The size and type of the
structure or union determine how it is returned. A structure or union is returned in memory if it is
larger than 8 bytes or if its size is 3, 5, 6, or 7 bytes. A structure or union is returned in %rax if its size
is 1, 2, 4, or 8 bytes.

If a structure or union is to be returned in memory, the caller provides space for the return value and
passes its address to the function as a “hidden” first argument in %rcx. This address will also be
returned in %rax.

Argument Passing

Integral and Pointer Arguments

Integral and pointer arguments are passed to a function using the next available register of the
sequence %rcx, %rdx, %r8, %r9. After this list of registers has been exhausted, all remaining integral
and pointer arguments are passed to the function via the stack.

318

Floating-Point Arguments

Float and double arguments are passed to a function using the next available XMM register of the
sequence %xmm0, %xmm1, %xmm2, %xmm3. After this list of registers has been exhausted, all
remaining XMM floating-point arguments are passed to the function via the stack.

Array, Structure, and Union Arguments

Arrays and strings are passed to functions using a pointer to caller-allocated memory.

Structure and union arguments of size 1, 2, 4, or 8 bytes will be passed as if they were integers of the
same size. Structures and unions of other sizes will be passed as a pointer to a temporary, allocated by
the caller, and whose value contains the value of the argument. The caller-allocated temporary
memory used for arguments of aggregate type must be 16-byte aligned.

Passing Arguments on the Stack

Registers are assigned using the argument’s ordinal position in the argument list. For example, if a
function’s first argument is an integral type and its second argument is a floating-point type, the first
argument will be passed in the first general purpose register (%rcx) and the second argument will be
passed in the second XMM register (%xmm1); the first XMM register and second general purpose
register are ignored. Arguments after the first four are passed on the stack; they are pushed on the
stack in reverse order, with the last argument pushed first.

Table A-15 , “Register Allocation for Example A-4” shows the register allocation and stack frame
offsets for the function declaration and call shown in the following example.

Example A-4: Parameter Passing

typedef struct {

 int i;

 float f;

} struct1;

int i;

float f;

double d;

long l;

long long ll;

struct1 s1;

extern void func (int i, float f, struct1 s1, double d,

 long long ll, long l);

func (i, f, s1, d, ll, l);

Win64/SUA64 Programming Model

319

Table A-15: Register Allocation for Example A-4

Implementing a Stack

In general, compilers and programmers must maintain a software stack. The stack pointer, register
%rsp, is set by the operating system for the application when the program is started. The stack must
grow downwards from high addresses.

A separate frame pointer enables calls to routines that change the stack pointer to allocate space on
the stack at run-time (e.g. alloca). Some languages can also return values from a routine allocated on
stack space below the original top-of-stack pointer. Such a routine prevents the calling function from
using %rsp-relative addressing to get at values on the stack. If the compiler does not call routines that
leave %rsp in an altered state when they return, a frame pointer is not needed and is not used if the
compiler option –Mnoframe is specified.

The stack must always be 16-byte aligned except within the prolog and within leaf functions.

Variable Length Parameter Lists.

Parameter passing in registers can handle a variable number of parameters. The C language uses a
special method to access variable-count parameters. The stdarg.h and varargs.h files define several
functions to access these parameters. A C routine with variable parameters must use the va_start
macro to set up a data structure before the parameters can be used. The va_arg macro must be used to
access the successive parameters.

For unprototyped functions or functions that use varargs, floating-point arguments passed in registers
must be passed in both an XMM register and its corresponding general purpose register.

General Purpose
Registers

Floating Point
Registers

Stack Frame
Offset

%rcx: i %xmm0: <ignored> 32: ll

%rdx: <ignored> %xmm1: f 40: l

%r8: s1.i, s1.f %xmm2: <ignored>

%r9: <ignored> %xmm3: d

320

C Parameter Conversion.

In C, for a called prototyped function, the parameter type in the called function must match the
argument type in the calling function. If the called function is not prototyped, the calling convention
uses the types of the arguments but promotes char or short to int, and unsigned char or unsigned
short to unsigned int and promotes float to double, unless you use the –Msingle option. For more
information on the –Msingle option, refer to Chapter 3. If the called function is prototyped, the
unused bits of a register containing a char or short parameter are undefined and the called function
must extend the sign of the unused bits when needed.

Calling Assembly Language Programs

Example A-5: C Program Calling an Assembly-language Routine

/* File: testmain.c */

main() {

 long l_para1 = 0x3f800000;

 float f_para2 = 1.0;

 double d_para3 = 0.5;

 float f_return;

 extern float sum_3 (long para1, float para2, double para3);

 f_return = sum_3(l_para1,

f_para2, d_para3);

 printf("Parameter one, type long = %08x\n",

l_para1);

 printf("Parameter two, type float = %f\n",

f_para2);

 printf("Parameter three, type double = %g\n",

d_para3);

 printf("The sum after conversion = %f\n",

f_return);

}

File: sum_3.s

Computes (para1 + para2) + para3

 .text

 .align 16

 .globl sum_3

sum_3:

 pushq %rbp

 leaq 128(%rsp), %rbp

 cvtsi2ss %ecx, %xmm0

 addss %xmm1, %xmm0

Win64/SUA64 Programming Model

321

 cvtss2sd %xmm0, %xmm0

 addsd %xmm2, %xmm0

 cvtsd2ss %xmm0, %xmm0

 popq %rbp

 ret

 .type sum_3,@function

 .size sum_3,.-sum_3

Win64/SUA64 Fortran Supplement

Sections A3.4.1 through A3.4.4 define the Fortran supplement to the AMD64 Software Conventions for
Win64. The register usage conventions set forth in that document remain the same for Fortran.

322

Fortran Fundamental Types

Table A-16: Win64/SUA64 Fortran Fundamental Types

Fortran Type Size
(bytes)

Alignment
(bytes)

INTEGER 4 4

INTEGER*1 1 1

INTEGER*2 2 2

INTEGER*4 4 4

INTEGER*8 8 8

LOGICAL 4 4

LOGICAL*1 1 1

LOGICAL*2 2 2

LOGICAL*4 4 4

LOGICAL*8 8 8

BYTE 1 1

CHARACTER*n n 1

REAL 4 4

REAL*4 4 4

REAL*8 8 8

DOUBLE PRECISION 8 8

COMPLEX 8 4

COMPLEX*8 8 4

COMPLEX*16 16 8

Win64/SUA64 Programming Model

323

A logical constant is one of:

• .TRUE.

• .FALSE.

The logical constants .TRUE. and .FALSE. are defined to be the four-byte values -1 and 0 respectively. A
logical expression is defined to be .TRUE. if its least significant bit is 1 and .FALSE. otherwise.

Note that the value of a character is not automatically NULL-terminated.

Fortran Naming Conventions

By default, all globally visible Fortran symbol names (subroutines, functions, common blocks) are
converted to lower-case. In addition, an underscore is appended to Fortran global names to distinguish
the Fortran name space from the C/C++ name space.

Fortran Argument Passing and Return Conventions

Arguments are passed by reference (i.e. the address of the argument is passed, rather than the argument
itself). In contrast, C/C++ arguments are passed by value.

When passing an argument declared as Fortran type CHARACTER, an argument representing the length
of the CHARACTER argument is also passed to the function. This length argument is a four-byte integer
passed by value, and is passed at the end of the parameter list following the other formal arguments. A
length argument is passed for each CHARACTER argument; the length arguments are passed in the same
order as their respective CHARACTER arguments.

A Fortran function, returning a value of type CHARACTER, adds two arguments to the beginning of its
argument list. The first additional argument is the address of the area created by the caller for the return
value; the second additional argument is the length of the return value. If a Fortran function is declared
to return a character value of constant length, for example CHARACTER*4 FUNCTION CHF(), the second
extra parameter representing the length of the return value must still be supplied.

DOUBLE COMPLEX 16 8

Fortran Type Size
(bytes)

Alignment
(bytes)

324

A Fortran complex function returns its value in memory. The caller provides space for the return value
and passes the address of this storage as if it were the first argument to the function.

Alternate return specifiers of a Fortran function are not passed as arguments by the caller. The alternate
return function passes the appropriate return value back to the caller in %rax.

The handling of the following Fortran 90 features is implementation-defined: internal procedures,
pointer arguments, assumed-shape arguments, functions returning arrays, and functions returning
derived types.

Interlanguage Calling

Inter-language calling between Fortran and C/C++ is possible if function/subroutine parameters and
return values match types. If a C/C++ function returns a value, call it from Fortran as a function,
otherwise, call it as a subroutine. If a Fortran function has type CHARACTER or COMPLEX, call it from C/
C++ as a void function. If a Fortran subroutine has alternate returns, call it from C/C++ as a function
returning int; the value of such a subroutine is the value of the integer expression specified in the
alternate RETURN statement. If a Fortran subroutine does not contain alternate returns, call it from C/
C++ as a void function.

The following table provides the C/C++ data type corresponding to each Fortran data type.

Win64/SUA64 Programming Model

325

Table A-17: Fortran and C/C++ Data Type Compatibility

Table A-18: Fortran and C/C++ Representation of the COMPLEX Type

Fortran Type C/C++ Type Size
(bytes)

CHARACTER*n x char x[n] n

REAL x float x 4

REAL*4 x float x 4

REAL*8 x double x 8

DOUBLE PRECISION x double x 8

INTEGER x int x 4

INTEGER*1 x signed char x 1

INTEGER*2 x short x 2

INTEGER*4 x int x 4

INTEGER*8 x long long x 8

LOGICAL x int x 4

LOGICAL*1 x char x 1

LOGICAL*2 x short x 2

LOGICAL*4 x int x 4

LOGICAL*8 x long long x 8

Fortran Type C/C++ Type Size
(bytes)

COMPLEX x struct {float r, I;} x; 8

COMPLEX*8 x struct {float r, I;} x; 8

326

Arrays

C/C++ arrays and Fortran arrays use different default initial array index values. By default, C/C++
arrays start at 0 and Fortran arrays start at 1. A Fortran array can be declared to start at zero.

Another difference between Fortran and C/C++ arrays is the storage method used. Fortran uses
column-major order and C/C++ use row-major order. For one-dimensional arrays, this poses no
problems. For two-dimensional arrays, where there are an equal number of rows and columns, row
and column indexes can simply be reversed. Inter-language function mixing is not recommended for
arrays other than single dimensional arrays and square two-dimensional arrays.

Structures, Unions, Maps, and Derived Types.

Fields within Fortran structures and derived types, and multiple map declarations within a Fortran
union, conform to the same alignment requirements used by C structures.

Common Blocks.

A named Fortran common block can be represented in C/C++ by a structure whose members
correspond to the members of the common block. The name of the structure in C/C++ must have the
added underscore. For example, the Fortran common block:

INTEGER I, J

COMPLEX C

DOUBLE COMPLEX CD

DOUBLE PRECISION D

COMMON /COM/ i, j, c, cd, d

is represented in C with the following equivalent:

COMPLEX*16 x struct {double dr,di;} x; 16

DOUBLE COMPLEX x struct {double dr,di;} x; 16

Fortran Type C/C++ Type Size
(bytes)

Win64/SUA64 Programming Model

327

extern struct {

 int i;

 int j;

 struct {float real, imag;} c;

 struct {double real, imag;} cd;

 double d;

} com_;

and in C++ with the following equivalent:

extern "C" struct {

 int i;

int j;

 struct {float real, imag;} c;

 struct {double real, imag;} cd;

 double d;

} com_;

Note that the compiler-provided name of the BLANK COMMON block is implementation specific.

Calling Fortran COMPLEX and CHARACTER functions from C/C++ is not as straightforward as calling
other types of Fortran functions. Additional arguments must be passed to the Fortran function by the
C/C++ caller. A Fortran COMPLEX function returns its value in memory; the first argument passed to
the function must contain the address of the storage for this value. A Fortran CHARACTER function
adds two arguments to the beginning of its argument list. The following example of calling a Fortran
CHARACTER function from C/C++ illustrates these caller-provided extra parameters:

CHARACTER*(*) FUNCTION CHF(C1, I)

CHARACTER*(*) C1

INTEGER I

END

extern void chf_();

char tmp[10];

char c1[9];

int i;

chf_(tmp, 10, c1, &i, 9);

The extra parameters tmp and 10 are supplied for the return value, while 9 is supplied as the length of
c1. Refer to “Argument Passing and Return Values” on page 244, for additional information.

328

Diagnostic Messages

329

Appendix B. Messages
This appendix describes the various messages that the compiler produces. These messages include the
sign-on message and diagnostic messages for remarks, warnings, and errors. The compiler always
displays any error messages, along with the erroneous source line, on the screen. If you specify the –
Mlist option, the compiler places any error messages in the listing file. You can also use the –v option to
display more information about the compiler, assembler, and linker invocations and about the host
system. For more information on the –Mlist and –v options, refer to 3, “Command Line Options”.

Diagnostic Messages

Diagnostic messages provide syntactic and semantic information about your source text. Syntactic
information includes information such as syntax errors. Semantic includes information includes such
as unreachable code.

You can specify that the compiler displays error messages at a certain level with the -Minform option.

The compiler messages refer to a severity level, a message number, and the line number where the error
occurs.

The compiler can also display internal error messages on standard errors. If your compilation produces
any internal errors, contact you’re The Portland Group’s technical reporting service by sending e-mail to
trs@pgroup.com.

If you use the listing file option –Mlist, the compiler places diagnostic messages after the source lines in
the listing file, in the following format:

PGFTN-etype-enum-message (filename: line)

Where:

etype is a character signifying the severity level

enum is the error number

message is the error message

filename is the source filename

line is the line number where the compiler detected an error.

330

Phase Invocation Messages

You can display compiler, assembler, and linker phase invocations by using the –v command line option.
For further information about this option, see 3, “Command Line Options”.

Fortran Compiler Error Messages

This section presents the error messages generated by the PGF77 and PGF95 compilers. The compilers
display error messages in the program listing and on standard output; and can also display internal
error messages on standard error.

Message Format

Each message is numbered. Each message also lists the line and column number where the error occurs.
A dollar sign ($) in a message represents information that is specific to each occurrence of the message.

Message List

Error message severities:

I informative

W warning

S severe error

F fatal error

V variable

V000 Internal compiler error. $ $

This message indicates an error in the compiler, rather than a user error – although it may be possi- ble
for a user error to cause an internal error. The severity may vary; if it is informative or warning, correct
object code was probably generated, but it is not safe to rely on this. Regardless of the severity or cause,
internal errors should be reported to trs@pgroup.com.

F001 Source input file name not specified

On the command line, source file name should be specified either before all the switches, or after them.

F002 Unable to open source input file: $

Fortran Compiler Error Messages

331

Source file name misspelled, file not in current working directory, or file is read protected.

F003 Unable to open listing file

Probably, user does not have write permission for the current working directory.

F004 $ $

Generic message for file errors.

F005 Unable to open temporary file

Compiler uses directory "/usr/tmp" or "/tmp" in which to create temporary files. If neither of these
directories is available on the node on which the compiler is being used, this error will occur.

S006 Input file empty

Source input file does not contain any Fortran statements other than comments or compiler directives.

F007 Subprogram too large to compile at this optimization
level $

Internal compiler data structure overflow, working storage exhausted, or some other non-recoverable
problem related to the size of the subprogram. If this error occurs at opt 2, reducing the opt level to 1
may work around the problem. Moving the subprogram being compiled to its own source file may
eliminate the problem. If this error occurs while compiling a subprogram of fewer than 2000 statements
it should be reported to the compiler maintenance group as a possible compiler problem.

F008 Error limit exceeded

The compiler gives up because too many severe errors were issued; the error limit can be reset on the
command line.

F009 Unable to open assembly file

Probably, user does not have write permission for the current working directory.

F010 File write error occurred $

Probably, file system is full.

S011 Unrecognized command line switch: $

332

Refer to PDS reference document for list of allowed compiler switches.

S012 Value required for command line switch: $

Certain switches require an immediately following value, such as "-opt 2".

V000 Internal compiler error. $ $

This message indicates an error in the compiler, rather than a user error – although it may be possi- ble
for a user error to cause an internal error. The severity may vary; if it is informative or warning, correct
object code was probably generated, but it is not safe to rely on this. Regardless of the severity or cause,
internal errors should be reported to trs@pgroup.com.

F001 Source input file name not specified

On the command line, source file name should be specified either before all the switches, or after them.

F002 Unable to open source input file: $

Source file name misspelled, file not in current working directory, or file is read protected.

F003 Unable to open listing file

Probably, user does not have write permission for the current working directory.

F004 $ $

Generic message for file errors.

F005 Unable to open temporary file

Compiler uses directory "/usr/tmp" or "/tmp" in which to create temporary files. If neither of these
directories is available on the node on which the compiler is being used, this error will occur.

S006 Input file empty

Source input file does not contain any Fortran statements other than comments or compiler directives.

F007 Subprogram too large to compile at this optimization
level $

Fortran Compiler Error Messages

333

Internal compiler data structure overflow, working storage exhausted, or some other non-recoverable
problem related to the size of the subprogram. If this error occurs at opt 2, reducing the opt level to 1
may work around the problem. Moving the subprogram being compiled to its own source file may
eliminate the problem. If this error occurs while compiling a subprogram of fewer than 2000 statements
it should be reported to the compiler maintenance group as a possible compiler problem.

F008 Error limit exceeded

The compiler gives up because too many severe errors were issued; the error limit can be reset on the
command line.

F009 Unable to open assembly file

Probably, user does not have write permission for the current working directory.

F010 File write error occurred $

Probably, file system is full.

S011 Unrecognized command line switch: $

Refer to PDS reference document for list of allowed compiler switches.

S012 Value required for command line switch: $

Certain switches require an immediately following value, such as "-opt 2".

S013 Unrecognized value specified for command line switch:
$

S014 Ambiguous command line switch: $

Too short an abbreviation was used for one of the switches.

W015 Hexadecimal or octal constant truncated to fit data
type

I016 Identifier, $, truncated to 31 chars

334

An identifier may be at most 31 characters in length; characters after the 31st are ignored.

S017 Unable to open include file: $

File is missing, read protected, or maximum include depth (10) exceeded. Remember that the file name
should be enclosed in quotes.

S018 Illegal label $ $

Used for label ’field’ errors or illegal values. E.g., in fixed source form, the label field (first five
characters) of the indicated line contains a non-numeric character.

S019 Illegally placed continuation line

A continuation line does not follow an initial line, or more than 99 continuation lines were specified.

S020 Unrecognized compiler directive

Refer to user’s manual for list of allowed compiler directives.

S021 Label field of continuation line is not blank

The first five characters of a continuation line must be blank.

S022 Unexpected end of file - missing END statement

S023 Syntax error - unbalanced $

Unbalanced parentheses or brackets.

W024 CHARACTER or Hollerith constant truncated to fit data
type

A character or hollerith constant was converted to a data type that was not large enough to contain all of
the characters in the constant. This type conversion occurs when the constant is used in an arithmetic
expression or is assigned to a non-character variable. The character or hollerith constant is truncated
on the right, that is, if 4 characters are needed then the first 4 are used and the remaining characters are
discarded.

W025 Illegal character ($) - ignored

Fortran Compiler Error Messages

335

The current line contains a character, possibly non-printing, which is not a legal Fortran character
(characters inside of character or Hollerith constants cannot cause this error). As a general rule, all
non-printing characters are treated as white space characters (blanks and tabs); no error message is
generated when this occurs. If for some reason, a non-printing character is not treated as a white space
character, its hex representation is printed in the form dd where each d is a hex digit.

S026 Unmatched quote

S027 Illegal integer constant: $

Integer constant is too large for 32 bit word.

S028 Illegal real or double precision constant: $

S029 Illegal $ constant: $

Illegal hexadecimal, octal, or binary constant. A hexadecimal constant consists of digits 0..9 and letters
A..F or a..f; any other character in a hexadecimal constant is illegal. An octal constant consists of digits
0..7; any other digit or character in an octal constant is illegal. A binary constant consists of digits 0 or 7;
any other digit or character in a binary constant is illegal.

S030 Explicit shape must be specified for $

S031 Illegal data type length specifier for $

The data type length specifier (e.g. 4 in INTEGER*4) is not a constant expression that is a member of the
set of allowed values for this particular data type.

W032 Data type length specifier not allowed for $

The data type length specifier (e.g. 4 in INTEGER*4) is not allowed in the given syntax (e.g. DIMENSION
A(10)*4).

S033 Illegal use of constant $

A constant was used in an illegal context, such as on the left side of an assignment statement or as the
target of a data initialization statement.

336

S034 Syntax error at or near $

I035 Predefined intrinsic $ loses intrinsic property

An intrinsic name was used in a manner inconsistent with the language definition for that intrinsic. The
compiler, based on the context, will treat the name as a variable or an external function.

S036 Illegal implicit character range

First character must alphabetically precede second.

S037 Contradictory data type specified for $

The indicated identifier appears in more than one type specification statement and different data types
are specified for it.

S038 Symbol, $, has not been explicitly declared

The indicated identifier must be declared in a type statement; this is required when the IMPLICIT NONE
statement occurs in the subprogram.

W039 Symbol, $, appears illegally in a SAVE statement $

An identifier appearing in a SAVE statement must be a local variable or array.

S040 Illegal common variable $

Indicated identifier is a dummy variable, is already in a common block, or has previously been defined
to be something other than a variable or array.

W041 Illegal use of dummy argument $

This error can occur in several situations. It can occur if dummy arguments were specified on a
PROGRAM statement. It can also occur if a dummy argument name occurs in a DATA, COMMON, SAVE,
or EQUIVALENCE statement. A program statement must have an empty argument list.

S042 $ is a duplicate dummy argument

S043 Illegal attempt to redefine $ $

Fortran Compiler Error Messages

337

An attempt was made to define a symbol in a manner inconsistent with an earlier definition of the same
symbol. This can happen for a number of reasons. The message attempts to indicate the situation that
occurred.

intrinsic - An attempt was made to redefine an intrinsic function. A symbol that represents an intrinsic
function may be redefined if that symbol has not been previously verified to be an intrinsic function. For
example, the intrinsic sin can be defined to be an integer array. If a symbol is verified to be an intrinsic
function via the INTRINSIC statement or via an intrinsic function reference then it must be referred to
as an intrinsic function for the remainder of the program unit.

symbol - An attempt was made to redefine a symbol that was previously defined. An example of this is to
declare a symbol to be a PARAMETER which was previously declared to be a subprogram argument.

S044 Multiple declaration for symbol $

A redundant declaration of a symbol has occurred. For example, an attempt was made to declare a
symbol as an ENTRY when that symbol was previously declared as an ENTRY.

S045 Data type of entry point $ disagrees with function $

The current function has entry points with data types inconsistent with the data type of the current
function. For example, the function returns type character and an entry point returns type complex.

S046 Data type length specifier in wrong position

The CHARACTER data type specifier has a different position for the length specifier from the other data
types. Suppose, we want to declare arrays ARRAYA and ARRAYB to have 8 elements each having an
element length of 4 bytes. The difference is that ARRAYA is character and ARRAYB is integer. The
declarations would be CHARACTER ARRAYA(8)*4 and INTEGER ARRAYB*4(8).

S047 More than seven dimensions specified for array

S048 Illegal use of ’*’ in declaration of array $

An asterisk may be used only as the upper bound of the last dimension.

S049 Illegal use of ’*’ in non-subroutine subprogram

The alternate return specifier ’*’ is legal only in the subroutine statement. Programs, functions, and
block data are not allowed to have alternate return specifiers.

338

S050 Assumed size array, $, is not a dummy argument

S051 Unrecognized built-in % function

The allowable built-in functions are %VAL, %REF, %LOC, and %FILL. One was encountered that did not
match one of these allowed forms.

S052 Illegal argument to %VAL or %LOC

S053 %REF or %VAL not legal in this context

The built-in functions %REF and %VAL can only be used as actual parameters in procedure calls.

W054 Implicit character $ used in a previous implicit
statement

An implicit character has been given an implied data type more than once. The implied data type for the
implicit character is changed anyway.

W055 Multiple implicit none statements

The IMPLICIT NONE statement can occur only once in a subprogram.

W056 Implicit type declaration

The -dclchk switch and an implicit declaration following an IMPLICIT NONE statement will produce a
warning message for IMPLICIT statements.

S057 Illegal equivalence of dummy variable, $

Dummy arguments may not appear in EQUIVALENCE statements.

S058 Equivalenced variables $ and $ not in same common
block

A common block variable must not be equivalenced with a variable in another common block.

S059 Conflicting equivalence between $ and $

The indicated equivalence implies a storage layout inconsistent with other equivalences.

Fortran Compiler Error Messages

339

S060 Illegal equivalence of structure variable, $

STRUCTURE and UNION variables may not appear in EQUIVALENCE statements.

S061 Equivalence of $ and $ extends common block backwards

W062 Equivalence forces $ to be unaligned

EQUIVALENCE statements have defined an address for the variable which has an alignment not optimal
for variables of its data type. This can occur when INTEGER and CHARACTER data are equivalenced, for
instance.

I063 Gap in common block $ before $

S064 Illegal use of $ in DATA statement implied DO loop

The indicated variable is referenced where it is not an active implied DO index variable.

S065 Repeat factor less than zero

S066 Too few data constants in initialization statement

S067 Too many data constants in initialization statement

S068 Numeric initializer for CHARACTER $ out of range 0
through 255

A CHARACTER*1 variable or character array element can be initialized to an integer, octal, or
hexadecimal constant if that constant is in the range 0 through 255.

S069 Illegal implied DO expression

The only operations allowed within an implied DO expression are integer +, -, *, and /.

340

S070 Incorrect sequence of statements $

The statement order is incorrect. For instance, an IMPLICIT NONE statement must precede a
specification statement which in turn must precede an executable statement.

S071 Executable statements not allowed in block data

S072 Assignment operation illegal to $ $

The destination of an assignment operation must be a variable, array reference, or vector reference. The
assignment operation may be by way of an assignment statement, a data statement, or the index
variable of an implied DO-loop. The compiler has determined that the identifier used as the destination,
is not a storage location. The error message attempts to indicate the type of entity used.

entry point - An assignment to an entry point that was not a function procedure was attempted.

external procedure - An assignment to an external procedure or a Fortran intrinsic name was attempted.
if the identifier is the name of an entry point that is not a function, an external procedure...

S073 Intrinsic or predeclared, $, cannot be passed as an
argument

S074 Illegal number or type of arguments to $ $

The indicated symbol is an intrinsic or generic function, or a predeclared subroutine or function,
requiring a certain number of arguments of a fixed data type.

S075 Subscript, substring, or argument illegal in this
context for $

This can happen if you try to doubly index an array such as ra(2)(3). This also applies to substring and
function references.

S076 Subscripts specified for non-array variable $

S077 Subscripts omitted from array $

Fortran Compiler Error Messages

341

S078 Wrong number of subscripts specified for $

S079 Keyword form of argument illegal in this context for
$$

S080 Subscript for array $ is out of bounds

S081 Illegal selector $ $

S082 Illegal substring expression for variable $

Substring expressions must be of type integer and if constant must be greater than zero.

S083 Vector expression used where scalar expression
required

A vector expression was used in an illegal context. For example, iscalar = iarray, where a scalar is
assigned the value of an array. Also, character and record references are not vectorizable.

S084 Illegal use of symbol $ $

This message is used for many different errors.

S085 Incorrect number of arguments to statement function $

S086 Dummy argument to statement function must be a
variable

S087 Non-constant expression where constant expression
required

342

S088 Recursive subroutine or function call of $

A function may not call itself.

S089 Illegal use of symbol, $, with character length = *

Symbols of type CHARACTER*(*) must be dummy variables and must not be used as statement function
dummy parameters and statement function names. Also, a dummy variable of type CHARACTER*(*)
cannot be used as a function.

S090 Hollerith constant more than 4 characters

In certain contexts, Hollerith constants may not be more than 4 characters long.

S091 Constant expression of wrong data type

S092 Illegal use of variable length character expression

A character expression used as an actual argument, or in certain contexts within I/O statements, must
not consist of a concatenation involving a passed length character variable.

W093 Type conversion of expression performed

An expression of some data type appears in a context which requires an expression of some other data
type. The compiler generates code to convert the expression into the required type.

S094 Variable $ is of wrong data type $

The indicated variable is used in a context which requires a variable of some other data type.

S095 Expression has wrong data type

An expression of some data type appears in a context which requires an expression of some other data
type.

S096 Illegal complex comparison

The relations .LT., .GT., .GE., and .LE. are not allowed for complex values.

S097 Statement label $ has been defined more than once

More than one statement with the indicated statement number occurs in the subprogram.

Fortran Compiler Error Messages

343

S098 Divide by zero

S099 Illegal use of $

Aggregate record references may only appear in aggregate assignment statements, unformatted I/O
statements, and as parameters to subprograms. They may not appear, for example, in expressions. Also,
records with differing structure types may not be assigned to one another.

S100 Expression cannot be promoted to a vector

An expression was used that required a scalar quantity to be promoted to a vector illegally. For example,
the assignment of a character constant string to a character array. Records, too, cannot be promoted to
vectors.

S101 Vector operation not allowed on $

Record and character typed entities may only be referenced as scalar quantities.

S102 Arithmetic IF expression has wrong data type

The parenthetical expression of an arithmetic if statement must be an integer, real, or double precision
scalar expression.

S103 Type conversion of subscript expression for $

The data type of a subscript expression must be integer. If it is not, it is converted.

S104 Illegal control structure $

This message is issued for a number of errors involving IF-THEN statements and DO loops. If the line
number specified is the last line (END statement) of the subprogram, the error is probably an
unterminated DO loop or IF-THEN statement.

S105 Unmatched ELSEIF, ELSE or ENDIF statement

An ELSEIF, ELSE, or ENDIF statement cannot be matched with a preceding IF-THEN statement.

S106 DO index variable must be a scalar variable

The DO index variable cannot be an array name, a subscripted variable, a PARAMETER name, a
function name, a structure name, etc.

344

S107 Illegal assigned goto variable $

S108 Illegal variable, $, in NAMELIST group $

A NAMELIST group can only consist of arrays and scalars which are not dummy arguments and pointer-
based variables.

I109 Overflow in $ constant $, constant truncated at left

A non-decimal (hexadecimal, octal, or binary) constant requiring more than 64-bits produces an
overflow. The constant is truncated at left (e.g. ’1234567890abcdef1’x will be ’234567890abcdef1’x).

I110 <reserved message number>

I111 Underflow of real or double precision constant

I112 Overflow of real or double precision constant

S113 Label $ is referenced but never defined

S114 Cannot initialize $

W115 Assignment to DO variable $ in loop

S116 Illegal use of pointer-based variable $ $

S117 Statement not allowed within a $ definition

The statement may not appear in a STRUCTURE or derived type definition.

Fortran Compiler Error Messages

345

S118 Statement not allowed in DO, IF, or WHERE block

I119 Redundant specification for $

Data type of indicated symbol specified more than once.

I120 Label $ is defined but never referenced

I121 Operation requires logical or integer data types

An operation in an expression was attempted on data having a data type incompatible with the
operation. For example, a logical expression can consist of only logical elements of type integer or
logical. Real data would be invalid.

I122 Character string truncated

Character string or Hollerith constant appearing in a DATA statement or PARAMETER statement has
been truncated to fit the declared size of the corresponding identifier.

W123 Hollerith length specification too big, reduced

The length specifier field of a hollerith constant specified more characters than were present in the
character field of the hollerith constant. The length specifier was reduced to agree with the number of
characters present.

S124 Relational expression mixes character with numeric
data

A relational expression is used to compare two arithmetic expressions or two character expressions. A
character expression cannot be compared to an arithmetic expression.

I125 Dummy procedure $ not declared EXTERNAL

A dummy argument which is not declared in an EXTERNAL statement is used as the subprogram name
in a CALL statement, or is called as a function, and is therefore assumed to be a dummy procedure. This
message can result from a failure to declare a dummy array.

I126 Name $ is not an intrinsic function

346

I127 Optimization level for $ changed to opt 1 $

W128 Integer constant truncated to fit data type: $

An integer constant will be truncated when assigned to data types smaller than 32-bits, such as a BYTE.

I129 Floating point overflow. Check constants and constant
expressions

I130 Floating point underflow. Check constants and constant
expressions

I131 Integer overflow. Check floating point expressions
cast to integer

I132 Floating pt. invalid oprnd. Check constants and
constant expressions

I133 Divide by 0.0. Check constants and constant
expressions

S134 Illegal attribute $ $

W135 Missing STRUCTURE name field

A STRUCTURE name field is required on the outermost structure.

Fortran Compiler Error Messages

347

W136 Field-namelist not allowed

The field-namelist field of the STRUCTURE statement is disallowed on the outermost structure.

W137 Field-namelist is required in nested structures

W138 Multiply defined STRUCTURE member name $

A member name was used more than once within a structure.

W139 Structure $ in RECORD statement not defined

A RECORD statement contains a reference to a STRUCTURE that has not yet been defined.

S140 Variable $ is not a RECORD

S141 RECORD required on left of $

S142 $ is not a member of this RECORD

S143 $ requires initializer

W144 NEED ERROR MESSAGE $ $

This is used as a temporary message for compiler development.

W145 %FILL only valid within STRUCTURE block

The %FILL special name was used outside of a STRUCTURE multiline statement. It is only valid when
used within a STRUCTURE multiline statement even though it is ignored.

S146 Expression must be character type

348

S147 Character expression not allowed in this context

S148 Reference to $ required

An aggregate reference to a record was expected during statement compilation but another data type was
found instead.

S149 Record where arithmetic value required

An aggregate record reference was encountered when an arithmetic expression was expected.

S150 Structure, Record, derived type, or member $ not
allowed in this context

A structure, record, or member reference was found in a context which is not supported. For example,
the use of structures, records, or members within a data statement is disallowed.

S151 Empty TYPE, STRUCTURE, UNION, or MAP

TYPE - ENDTYPE, STRUCTURE - ENDSTRUCTURE, UNION - ENDUNION MAP - ENDMAP declaration
contains no members.

S152 All dimension specifiers must be ’:’

S153 Array objects are not conformable $

S154 DISTRIBUTE target, $, must be a processor

S155 $ $

S156 Number of colons and triplets must be equal in ALIGN $
with $

Fortran Compiler Error Messages

349

S157 Illegal subscript use of ALIGN dummy $ - $

S158 Alternate return not specified in SUBROUTINE or ENTRY

An alternate return can only be used if alternate return specifiers appeared in the SUBROUTINE or
ENTRY statements.

S159 Alternate return illegal in FUNCTION subprogram

An alternate return cannot be used in a FUNCTION.

S160 ENDSTRUCTURE, ENDUNION, or ENDMAP does not match top

S161 Vector subscript must be rank-one array

W162 Not equal test of loop control variable $ replaced
with < or > test.

S163 <reserved message number>

S164 Overlapping data initializations of $

An attempt was made to data initialize a variable or array element already initialized.

S165 $ appeared more than once as a subprogram

A subprogram name appeared more than once in the source file. The message is applicable only when
an assembly file is the output of the compiler.

S166 $ cannot be a common block and a subprogram

A name appeared as a common block name and a subprogram name. The message is applicable only
when an assembly file is the output of the compiler.

350

I167 Inconsistent size of common block $

A common block occurs in more than one subprogram of a source file and its size is not identical. The
maximum size is chosen. The message is applicable only when an assembly file is the output of the
compiler.

S168 Incompatible size of common block $

A common block occurs in more than one subprogram of a source file and is initialized in one
subprogram. Its initialized size was found to be less than its size in the other subprogram(s). The
message is applicable only when an assembly file is the output of the compiler.

W169 Multiple data initializations of common block $

A common block is initialized in more than one subprogram of a source file. Only the first set of
initializations apply. The message is applicable only when an assembly file is the output of the compiler.

W170 F90 extension: $ $

Use of a nonstandard feature. A description of the feature is provided.

W171 F90 extension: nonstandard statement type $

W172 F90 extension: numeric initialization of CHARACTER $

A CHARACTER*1 variable or array element was initialized with a numeric value.

W173 F90 extension: nonstandard use of data type length
specifier

W174 F90 extension: type declaration contains data
initialization

W175 F90 extension: IMPLICIT range contains nonalpha
characters

Fortran Compiler Error Messages

351

W176 F90 extension: nonstandard operator $

W177 F90 extension: nonstandard use of keyword argument $

W178 <reserved message number>

W179 F90 extension: use of structure field reference $

W180 F90 extension: nonstandard form of constant

W181 F90 extension: & alternate return

W182 F90 extension: mixed non-character and character
elements in COMMON $

W183 F90 extension: mixed non-character and character
EQUIVALENCE ($,$)

W184 Mixed type elements (numeric and/or character types)
in COMMON $

W185 Mixed numeric and/or character type EQUIVALENCE ($,$)

S186 Argument missing for formal argument $

352

S187 Too many arguments specified for $

S188 Argument number $ to $: type mismatch

S189 Argument number $ to $: association of scalar actual
argument to array dummy argument

S190 Argument number $ to $: non-conformable arrays

S191 Argument number $ to $ cannot be an assumed-size array

S192 Argument number $ to $ must be a label

W193 Argument number $ to $ does not match INTENT (OUT)

W194 INTENT(IN) argument cannot be defined - $

S195 Statement may not appear in an INTERFACE block $

S196 Deferred-shape specifiers are required for $

Fortran Compiler Error Messages

353

S197 Invalid qualifier or qualifier value (/$) in OPTIONS
statement

An illegal qualifier was found or a value was specified for a qualifier which does not expect a value. In
either case, the qualifier for which the error occurred is indicated in the error message.

S198 $ $ in ALLOCATE/DEALLOCATE

W199 Unaligned memory reference

A memory reference occurred whose address does not meet its data alignment requirement.

S200 Missing UNIT/FILE specifier

S201 Illegal I/O specifier - $

S202 Repeated I/O specifier - $

S203 FORMAT statement has no label

S204 $ $

Miscellaneous I/O error.

S205 Illegal specification of scale factor

The integer following + or - has been omitted, or P does not follow the integer value.

S206 Repeat count is zero

S207 Integer constant expected in edit descriptor

354

S208 Period expected in edit descriptor

S209 Illegal edit descriptor

S210 Exponent width not used in the Ew.dEe or Gw.dEe edit
descriptors

S211 Internal I/O not allowed in this I/O statement

S212 Illegal NAMELIST I/O

Namelist I/O cannot be performed with internal, unformatted, formatted, and list-directed I/O. Also, I/O
lists must not be present.

S213 $ is not a NAMELIST group name

S214 Input item is not a variable reference

S215 Assumed sized array name cannot be used as an I/O item
or specifier

An assumed sized array was used as an item to be read or written or as an I/O specifier (i.e., FMT =
array-name). In these contexts the size of the array must be known.

S216 STRUCTURE/UNION cannot be used as an I/O item

S217 ENCODE/DECODE buffer must be a variable, array, or
array element

Fortran Compiler Error Messages

355

S218 Statement labeled $ $

S219 <reserved message number>

S220 Redefining predefined macro $

S221 #elif after #else

A preprocessor #elif directive was found after a #else directive; only #endif is allowed in this context.

S222 #else after #else

A preprocessor #else directive was found after a #else directive; only #endif is allowed in this context.

S223 #if-directives too deeply nested

Preprocessor #if directive nesting exceeded the maximum allowed (currently 10).

S224 Actual parameters too long for $

The total length of the parameters in a macro call to the indicated macro exceeded the maximum
allowed (currently 2048).

W225 Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with the number of
parameters in the macro’s definition.

F226 Can’t find include file $

The indicated include file could not be opened.

S227 Definition too long for $

The length of the macro definition of the indicated macro exceeded the maximum allowed (currently
2048).

S228 EOF in comment

356

The end of a file was encountered while processing a comment.

S229 EOF in macro call to $

The end of a file was encountered while processing a call to the indicated macro.

S230 EOF in string

The end of a file was encountered while processing a quoted string.

S231 Formal parameters too long for $

The total length of the parameters in the definition of the indicated macro exceeded the maximum
allowed (currently 2048).

S232 Identifier too long

The length of an identifier exceeded the maximum allowed (currently 2048).

S233 <reserved message number>

W234 Illegal directive name

The sequence of characters following a # sign was not an identifier.

W235 Illegal macro name

A macro name was not an identifier.

S236 Illegal number $

The indicated number contained a syntax error.

F237 Line too long

The input source line length exceeded the maximum allowed (currently 2048).

W238 Missing #endif

End of file was encountered before a required #endif directive was found.

W239 Missing argument list for $

Fortran Compiler Error Messages

357

A call of the indicated macro had no argument list.

S240 Number too long

The length of a number exceeded the maximum allowed (currently 2048).

W241 Redefinition of symbol $

The indicated macro name was redefined.

I242 Redundant definition for symbol $

A definition for the indicated macro name was found that was the same as a previous definition.

F243 String too long

The length of a quoted string exceeded the maximum allowed (currently 2048).

S244 Syntax error in #define, formal $ not identifier

A formal parameter that was not an identifier was used in a macro definition.

W245 Syntax error in #define, missing blank after name or
arglist

There was no space or tab between a macro name or argument list and the macro’s definition.

S246 Syntax error in #if

A syntax error was found while parsing the expression following a #if or #elif directive.

S247 Syntax error in #include

The #include directive was not correctly formed.

W248 Syntax error in #line

A #line directive was not correctly formed.

W249 Syntax error in #module

A #module directive was not correctly formed.

W250 Syntax error in #undef

358

A #undef directive was not correctly formed.

W251 Token after #ifdef must be identifier

The #ifdef directive was not followed by an identifier.

W252 Token after #ifndef must be identifier

The #ifndef directive was not followed by an identifier.

S253 Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed (currently 31).

S254 Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum allowed (currently
31).

F255 Too much pushback

The preprocessor ran out of space while processing a macro expansion. The macro may be recursive.

W256 Undefined directive $

The identifier following a # was not a directive name.

S257 EOF in #include directive

End of file was encountered while processing a #include directive.

S258 Unmatched #elif

A #elif directive was encountered with no preceding #if or #elif directive.

S259 Unmatched #else

A #else directive was encountered with no preceding #if or #elif directive.

S260 Unmatched #endif

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.

S261 Include files nested too deeply

Fortran Compiler Error Messages

359

The nesting depth of #include directives exceeded the maximum (currently 20).

S262 Unterminated macro definition for $

A newline was encountered in the formal parameter list for the indicated macro.

S263 Unterminated string or character constant

A newline with no preceding backslash was found in a quoted string.

I264 Possible nested comment

The characters /* were found within a comment.

S265 <reserved message number>

S266 <reserved message number>

S267 <reserved message number>

W268 Cannot inline subprogram; common block mismatch

W269 Cannot inline subprogram; argument type mismatch

This message may be Severe if have gone too far to undo inlining process.

F270 Missing -exlib option

W271 Can’t inline $ - wrong number of arguments

I272 Argument of inlined function not used

360

S273 Inline library not specified on command line (-inlib
switch)

F274 Unable to access file $/TOC

S275 Unable to open file $ while extracting or inlining

F276 Assignment to constant actual parameter in inlined
subprogram

I277 Inlining of function $ may result in recursion

S278 <reserved message number>

W279 Possible use of $ before definition in $

The optimizer has detected the possibility that a variable is used before it has been assigned a value. The
names of the variable and the function in which the use occurred are listed. The line number, if
specified, is the line number of the basic block containing the use of the variable.

W280 Syntax error in directive $

messages 280-300 rsvd for directive handling

W281 Directive ignored - $ $

S300 Too few data constants in initialization of derived
type $

Fortran Compiler Error Messages

361

S301 $ must be TEMPLATE or PROCESSOR

S302 Unmatched END$ statement

S303 END statement for $ required in an interface block

S304 EXIT/CYCLE statement must appear in a DO/DOWHILE
loop$$

S305 $ cannot be named, $

S306 $ names more than one construct

S307 $ must have the construct name $

S308 DO may not terminate at an EXIT, CYCLE, RETURN, STOP,
GOTO, or arithmetic IF

S309 Incorrect name, $, specified in END statement

S310 $ $

Generic message for MODULE errors.

W311 Non-replicated mapping for $ array, $, ignored

362

W312 Array $ should be declared SEQUENCE

W313 Subprogram $ called within INDEPENDENT loop not PURE

E314 IPA: actual argument $ is a label, but dummy argument
$ is not an asterisk

The call passes a label to the subprogram; the corresponding dummy argument in the subprogram
should be an asterisk to declare this as the alternate return.

I315 IPA: routine $, $ constant dummy arguments

This many dummy arguments are being replaced by constants due to interprocedural analysis.

I316 IPA: routine $, $ INTENT(IN) dummy arguments

This many dummy arguments are being marked as INTENT(IN) due to interprocedural analysis.

I317 IPA: routine $, $ array alignments propagated

This many array alignments were propagated by interprocedural analysis.

I318 IPA: routine $, $ distribution formats propagated

This many array distribution formats were propagated by interprocedural analysis.

I319 IPA: routine $, $ distribution targets propagated

This many array distribution targets were propagated by interprocedural analysis.

I320 IPA: routine $, $ common blocks optimized

This many mapped common blocks were optimized by interprocedural analysis.

I321 IPA: routine $, $ common blocks not optimized

This many mapped common blocks were not optimized by interprocedural analysis, either because they
were declared differently in different routines, or they did not appear in the main program.

I322 IPA: analyzing main program $

Fortran Compiler Error Messages

363

Interprocedural analysis is building the call graph and propagating information with the named main
program.

I323 IPA: collecting information for $

Interprocedural analysis is saving information for the current subprogram for subsequent analysis and
propagation.

W324 IPA file $ appears to be out of date

W325 IPA file $ is for wrong subprogram: $

W326 Unable to open file $ to propagate IPA information to
$

I327 IPA: $ subprograms analyzed

I328 IPA: $ dummy arguments replaced by constants

I329 IPA: $ INTENT(IN) dummy arguments should be
INTENT(INOUT)

I330 IPA: $ dummy arguments changed to INTENT(IN)

I331 IPA: $ inherited array alignments replaced

I332 IPA: $ transcriptive distribution formats replaced

364

I333 IPA: $ transcriptive distribution targets replaced

I334 IPA: $ descriptive/prescriptive array alignments
verified

I335 IPA: $ descriptive/prescriptive distribution formats
verified

I336 IPA: $ descriptive/prescriptive distribution targets
verified

I337 IPA: $ common blocks optimized

I338 IPA: $ common blocks not optimized

S339 Bad IPA contents file: $

S340 Bad IPA file format: $

S341 Unable to create file $ while analyzing IPA
information

S342 Unable to open file $ while analyzing IPA information

Fortran Compiler Error Messages

365

S343 Unable to open IPA contents file $

S344 Unable to create file $ while collecting IPA
information

F345 Internal error in $: table overflow

Analysis failed due to a table overflowing its maximum size.

W346 Subprogram $ appears twice

The subprogram appears twice in the same source file; IPA will ignore the first appearance.

F347 Missing -ipalib option

Interprocedural analysis, enabled with the -ipacollect, -ipaanalyze, or -ipapropagate options, requires
the -ipalib option to specify the library directory.

W348 Common /$/ $ has different distribution target

The array was declared in a common block with a different distribution target in another subprogram.

W349 Common /$/ $ has different distribution format

The array was declared in a common block with a different distribution format in another subprogram.

W350 Common /$/ $ has different alignment

The array was declared in a common block with a different alignment in another subprogram.

W351 Wrong number of arguments passed to $

The subroutine or function statement for the given subprogram has a different number of dummy
arguments than appear in the call.

W352 Wrong number of arguments passed to $ when bound to $

366

The subroutine or function statement for the given subprogram has a different number of dummy
arguments than appear in the call to the EXTERNAL name given.

W353 Subprogram $ is missing

A call to a subroutine or function with this name appears, but it could not be found or analyzed.

I354 Subprogram $ is not called

No calls to the given subroutine or function appear anywhere in the program.

W355 Missing argument in call to $

A nonoptional argument is missing in a call to the given subprogram.

I356 Array section analysis incomplete

Interprocedural analysis for array section arguments is incomplete; some information may not be
available for optimization.

I357 Expression analysis incomplete

Interprocedural analysis for expression arguments is incomplete; some information may not be
available for optimization.

W358 Dummy argument $ is EXTERNAL, but actual is not
subprogram

The call statement passes a scalar or array to a dummy argument that is declared EXTERNAL.

W359 SUBROUTINE $ passed to FUNCTION dummy argument $

The call statement passes a subroutine name to a dummy argument that is used as a function.

W360 FUNCTION $ passed to FUNCTION dummy argument $ with
different result type

The call statement passes a function argument to a function dummy argument, but the dummy has a
different result type.

W361 FUNCTION $ passed to SUBROUTINE dummy argument $

The call statement passes a function name to a dummy argument that is used as a subroutine.

Fortran Compiler Error Messages

367

W362 Argument $ has a different type than dummy argument $

The type of the actual argument is different than the type of the corresponding dummy argument.

W363 Dummy argument $ is a POINTER but actual argument $ is
not

The dummy argument is a pointer, so the actual argument must be also.

W364 Array or array expression passed to scalar dummy
argument $

The actual argument is an array, but the dummy argument is a scalar variable.

W365 Scalar or scalar expression passed to array dummy
argument $

The actual argument is a scalar variable, but the dummy argument is an array.

F366 Internal error: interprocedural analysis fails

An internal error occurred during interprocedural analysis; please report this to the compiler
maintenance group. If user errors were reported when collecting IPA information or during IPA analysis,
correcting them may avoid this error.

I367 Array $ bounds cannot be matched to formal argument

Passing a nonsequential array to a sequential dummy argument may require copying the array to
sequential storage. The most common cause is passing an ALLOCATABLE array or array expression to a
dummy argument that is declared with explicit bounds. Declaring the dummy argument as assumed
shape, with bounds (:,:,:), will remove this warning.

W368 Array-valued expression passed to scalar dummy
argument $

The actual argument is an array-valued expression, but the dummy argument is a scalar variable.

W369 Dummy argument $ has different rank than actual
argument

The actual argument is an array or array-valued expression with a different rank than the dummy
argument.

368

W370 Dummy argument $ has different shape than actual
argument

The actual argument is an array or array-valued expression with a different shape than the dummy
argument; this may require copying the actual argument into sequential storage.

W371 Dummy argument $ is INTENT(IN) but may be modified

The dummy argument was declared as INTENT(IN), but analysis has found that the argument may be
modified; the INTENT(IN) declaration should be changed.

W372 Cannot propagate alignment from $ to $

The most common cause is when passing an array with an inherited alignment to a dummy argument
with non- inherited alignment.

I373 Cannot propagate distribution format from $ to $

The most common cause is when passing an array with a transcriptive distribution format to a dummy
argument with prescriptive or descriptive distribution format.

I374 Cannot propagate distribution target from $ to $

The most common cause is when passing an array with a transcriptive distribution target to a dummy
argument with prescriptive or descriptive distribution target.

I375 Distribution format mismatch between $ and $

Usually this arises when the actual and dummy arguments are distributed in different dimensions.

I376 Alignment stride mismatch between $ and $

This may arise when the actual argument has a different stride in its alignment to its template than does
the dummy argument.

I377 Alignment offset mismatch between $ and $

This may arise when the actual argument has a different offset in its alignment to its template than does
the dummy argument.

I378 Distribution target mismatch between $ and $

This may arise when the actual and dummy arguments have different distribution target sizes.

Fortran Compiler Error Messages

369

I379 Alignment of $ is too complex

The alignment specification of the array is too complex for interprocedural analysis to verify or
propagate; the program will work correctly, but without the benefit of IPA.

I380 Distribution format of $ is too complex

The distribution format specification of the array is too complex for interprocedural analysis to verify or
propagate; the program will work correctly, but without the benefit of IPA.

I381 Distribution target of $ is too complex

The distribution target specification of the array is too complex for interprocedural analysis to verify or
propagate; the program will work correctly, but without the benefit of IPA.

I382 IPA: $ subprograms analyzed

Interprocedural analysis succeeded in finding and analyzing this many subprograms in the whole
program.

I383 IPA: $ dummy arguments replaced by constants

Interprocedural analysis has found this many dummy arguments in the whole program that can be
replaced by constants.

I384 IPA: $ dummy arguments changed to INTENT(IN)

Interprocedural analysis has found this many dummy arguments in the whole program that are not
modified and can be declared as INTENT(IN).

W385 IPA: $ INTENT(IN) dummy arguments should be
INTENT(INOUT)

Interprocedural analysis has found this many dummy arguments in the whole program that were
declared as INTENT(IN) but should be INTENT(INOUT).

I386 IPA: $ array alignments propagated

Interprocedural analysis has found this many array dummy arguments that could have the inherited
array alignment replaced by a descriptive alignment.

I387 IPA: $ array alignments verified

370

Interprocedural analysis has verified that the prescriptive or descriptive alignments of this many array
dummy arguments match the alignments of the actual argument.

I388 IPA: $ array distribution formats propagated

Interprocedural analysis has found this many array dummy arguments that could have the transcriptive
distribution format replaced by a descriptive format.

I389 IPA: $ array distribution formats verified

Interprocedural analysis has verified that the prescriptive or descriptive distribution formats of this
many array dummy arguments match the formats of the actual argument.

I390 IPA: $ array distribution targets propagated

Interprocedural analysis has found this many array dummy arguments that could have the transcriptive
distribution target replaced by a descriptive target.

I391 IPA: $ array distribution targets verified

Interprocedural analysis has verified that the prescriptive or descriptive distribution targets of this many
array dummy arguments match the targets of the actual argument.

I392 IPA: $ common blocks optimized

Interprocedural analysis has found this many common blocks that could be optimized.

I393 IPA: $ common blocks not optimized

Interprocedural analysis has found this many common blocks that could not be optimized, either
because the common block was not declared in the main program, or because it was declared differently
in different subprograms.

I394 IPA: $ replaced by constant value

The dummy argument was replaced by a constant as per interprocedural analysis.

I395 IPA: $ changed to INTENT(IN)

The dummy argument was changed to INTENT(IN) as per interprocedural analysis.

I396 IPA: array alignment propagated to $

Fortran Compiler Error Messages

371

The template alignment for the dummy argument was changed as per interprocedural analysis.

I397 IPA: distribution format propagated to $

The distribution format for the dummy argument was changed as per interprocedural analysis.

I398 IPA: distribution target propagated to $

The distribution target for the dummy argument was changed as per interprocedural analysis.

I399 IPA: common block $ not optimized

The given common block was not optimized by interprocedural analysis either because it was not
declared in the main program, or because it was declared differently in different subprograms.

E400 IPA: dummy argument $ is an asterisk, but actual
argument is not a label

The subprogram expects an alternate return label for this argument.

E401 Actual argument $ is a subprogram, but Dummy argument
$ is not declared EXTERNAL

The call statement passes a function or subroutine name to a dummy argument that is a scalar variable
or array.

E402 Actual argument $ is illegal

E403 Actual argument $ and formal argument $ have different
ranks

The actual and formal array arguments differ in rank, which is allowed only if both arrays are declared
with the HPF SEQUENCE attribute.

E404 Sequential array section of $ in argument $ is not
contiguous

When passing an array section to a formal argument that has the HPF SEQUENCE attribute, the actual
argument must be a whole array with the HPF SEQUENCE attribute, or an array section of such an array
where the section is a contiguous sequence of elements.

372

E405 Array expression argument $ may not be passed to
sequential dummy argument $

When the dummy argument has the HPF SEQUENCE attribute, the actual argument must be a whole
array with the HPF SEQUENCE attribute or a contiguous array section of such an array, unless an
INTERFACE block is used.

E406 Actual argument $ and formal argument $ have different
character lengths

The actual and formal array character arguments have different character lengths, which is allowed
only if both character arrays are declared with the HPF SEQUENCE attribute, unless an INTERFACE block
is used.

W407 Argument $ has a different character length than dummy
argument $

The character length of the actual argument is different than the length specified for the corresponding
dummy argument.

W408 Specified main program $ is not a PROGRAM

The main program specified on the command line is a subroutine, function, or block data subprogram.

W409 More than one main program in IPA directory: $ and $

There is more than one main program analyzed in the IPA directory shown. The first one found is used.

W410 No main program found; IPA analysis fails.

The main program must appear in the IPA directory for analysis to proceed.

W411 Formal argument $ is DYNAMIC but actual argument is an
expression

W412 Formal argument $ is DYNAMIC but actual argument $ is
not

Fortran Compiler Error Messages

373

I413 Formal argument $ has two reaching distributions and
may be a candidate for cloning

I414 $ and $ may be aliased and one of them is assigned

Interprocedural analysis has determined that two formal arguments because the same variable is passed
in both argument positions, or one formal argument and a global or COMMON variable may be aliased,
because the global or COMMON variable is passed as an actual argument. If either alias is assigned in
the subroutine, unexpected results may occur; this message alerts the user that this situation is
disallowed by the Fortran standard.

F415 IPA fails: incorrect IPA file

Interprocedural analysis saves its information in special IPA files in the specified IPA directory. One of
these files has been renamed or corrupted. This can arise when there are two files with the same prefix,
such as ’a.hpf’ and ’a.f90’.

E416 Argument $ has the SEQUENCE attribute, but the dummy
parameter $ does not

When an actual argument is an array with the SEQUENCE attribute, the dummy parameter must have
the SEQUENCE attribute or an INTERFACE block must be used.

E417 Interface block for $ is a SUBROUTINE but should be a
FUNCTION

E418 Interface block for $ is a FUNCTION but should be a
SUBROUTINE

E419 Interface block for $ is a FUNCTION has wrong result
type

W420 Earlier $ directive overrides $ directive

374

W421 $ directive can only appear in a function or
subroutine

E422 Nonconstant DIM= argument is not supported

E423 Constant DIM= argument is out of range

E424 Equivalence using substring or vector triplets is not
allowed

E425 A record is not allowed in this context

E426 WORD type cannot be converted

E427 Interface block for $ has wrong number of arguments

E428 Interface block for $ should have $

E429 Interface block for $ should not have $

E430 Interface block for $ has wrong $

W431 Program is too large for Interprocedural Analysis to
complete

Fortran Compiler Error Messages

375

W432 Illegal type conversion $

E433 Subprogram $ called within INDEPENDENT loop not LOCAL

W434 Incorrect home array specification ignored

S435 Array declared with zero size

An array was declared with a zero or negative dimension bound, as ’real a(-1)’, or an upper bound less
than the lower bound, as ’real a(4:2)’.

W436 Independent loop not parallelized$

W437 Type $ will be mapped to $

Where DOUBLE PRECISION is not supported, it is mapped to REAL, and similarly for COMPLEX(16) or
COMPLEX*32.

E438 $ $ not supported on this platform

This construct is not supported by the compiler for this target.

S439 An internal subprogram cannot be passed as argument -
$

S440 Defined assignment statements may not appear in WHERE
statement or WHERE block

S441 $ may not appear in a FORALL block

376

E442 Adjustable-length character type not supported on this
host - $ $

S443 EQUIVALENCE of derived types not supported on this
host - $

S444 Derived type in EQUIVALENCE statement must have
SEQUENCE attribute - $

A variable or array with derived type appears in an EQUIVALENCE statement. The derived type must have
the SEQUENCE attribute, but does not.

E445 Array bounds must be integer $ $

The expressions in the array bounds must be integer.

S446 Argument number $ to $: rank mismatch

The number of dimensions in the array or array expression does not match the number of dimensions in
the dummy argument.

S447 Argument number $ to $ must be a subroutine or
function name

S448 Argument number $ to $ must be a subroutine name

S449 Argument number $ to $ must be a function name

S450 Argument number $ to $: kind mismatch

Fortran Compiler Error Messages

377

S451 Arrays of derived type with a distributed member are
not supported

S452 Assumed length character, $, is not a dummy argument

S453 Derived type variable with pointer member not allowed
in IO - $ $

S454 Subprogram $ is not a module procedure

Only names of module procedures declared in this module or accessed through USE association can
appear in a MODULE PROCEDURE statement.

S455 A derived type array section cannot appear with a
member array section - $

A reference like A(:)%B(:), where ’A’ is a derived type array and ’B’ is a member array, is not allowed; a
section subscript may appear after ’A’ or after ’B’, but not both.

S456 Unimplemented for data type for MATMUL

S457 Illegal expression in initialization

S458 Argument to NULL() must be a pointer

S459 Target of NULL() assignment must be a pointer

S460 ELEMENTAL procedures cannot be RECURSIVE

378

S461 Dummy arguements of ELEMENATAL procedures must be
scalar

S462 Arguments and return values of ELEMENATAL procedures
cannot have the POINTER attribute

S463 Arguments of ELEMENATAL procedures cannot be
procedures

S464 An ELEMENTAL procedure cannot be passed as argument -
$

Fortran Runtime Error Messages

This section presents the error messages generated by the runtime system. The runtime system displays
error messages on standard output.

Message Format

The messages are numbered but have no severity indicators because they all terminate program
execution.

Message List

Here are the runtime error messages:

201 illegal value for specifier

An improper specifier value has been passed to an I/O runtime routine. Example: within an OPEN
statement, form='unknown'.

Fortran Runtime Error Messages

379

202 conflicting specifiers

Conflicting specifiers have been passed to an I/O runtime routine. Example: within an OPEN statement,
form='unformatted', blank='null'.

203 record length must be specified

A recl specifier required for an I/O runtime routine has not been passed. Example: within an OPEN
statement, access='direct' has been passed, but the record length has not been specified (recl=specifier).

204 illegal use of a readonly file

Self explanatory. Check file and directory modes for readonly status.

205 'SCRATCH' and 'SAVE'/'KEEP' both specified

In an OPEN statement, a file disposition conflict has occurred. Example: within an OPEN statement,
status='scratch' and dispose='keep' have been passed.

206 attempt to open a named file as 'SCRATCH'

207 file is already connected to another unit

208 'NEW' specified for file that already exists

209 'OLD' specified for file that does not exist

210 dynamic memory allocation failed

Memory allocation operations occur only in conjunction with namelist I/O. The most probable cause of
fixed buffer overflow is exceeding the maximum number of simultaneously open file units.

211 invalid file name

380

212 invalid unit number

A file unit number less than or equal to zero has been specified.

215 formatted/unformatted file conflict

Formatted/unformatted file operation conflict.

217 attempt to read past end of file

219 attempt to read/write past end of record

For direct access, the record to be read/written exceeds the specified record length.

220 write after last internal record

221 syntax error in format string

A runtime encoded format contains a lexical or syntax error.

222 unbalanced parentheses in format string

223 illegal P or T edit descriptor - value missing

224 illegal Hollerith or character string in format

An unknown token type has been found in a format encoded at run-time.

225 lexical error -- unknown token type

226 unrecognized edit descriptor letter in format

An unexpected Fortran edit descriptor (FED) was found in a runtime format item.

228 end of file reached without finding group

Fortran Runtime Error Messages

381

229 end of file reached while processing group

230 scale factor out of range -128 to 127

Fortran P edit descriptor scale factor not within range of -128 to 127.

231 error on data conversion

233 too many constants to initialize group item

234 invalid edit descriptor

An invalid edit descriptor has been found in a format statement.

235 edit descriptor does not match item type

Data types specified by I/O list item and corresponding edit descriptor conflict.

236 formatted record longer than 2000 characters

237 quad precision type unsupported

238 tab value out of range

A tab value of less than one has been specified.

239 entity name is not member of group

242 illegal operation on direct access file

382

243 format parentheses nesting depth too great

244 syntax error - entity name expected

245 syntax error within group definition

246 infinite format scan for edit descriptor

248 illegal subscript or substring specification

249 error in format - illegal E, F, G or D descriptor

250 error in format - number missing after '.', '-', or '+'

251 illegal character in format string

252 operation attempted after end of file

253 attempt to read non-existent record (direct access)

254 illegal repeat count in format

Anachronisms Accepted

383

Appendix C. C++ Dialect
Supported

The PGC++ compiler accepts the C++ language as defined by The Annotated C++ Reference Manual
(ARM) by Ellis and Stroustrup, Addison-Wesley, 1990, including templates, exceptions, and support for
the anachronisms described in section 18 of the ARM. This is the same language defined by the language
reference for ATT’s cfront version 3.0.1, with the addition of exceptions. PGC++ optionally accepts a
number of features erroneously accepted by cfront version 2.1. Using the –b option, PGC++ accepts
these features, which may never have been legal C++ but have found their way into some user’s code.

Command-line options provide full support of many C++ variants, including strict standard
conformance. PGC++ provides command line options that enable the user to specify whether
anachronisms and/or cfront 2.1 compatibility features should be accepted. Refer to Section C.4 for
details on features that are not part of the ARM but are part of the ANSI C++ working draft X3J16/WG21.

Anachronisms Accepted

The following anachronisms are accepted when anachronisms are enabled (when the +p option is not
used):

• overload is allowed in function declarations. It is accepted and ignored.

• Definitions are not required for static data members that can be initialized using default
initialization. This anachronism does not apply to static data members of template classes; they
must always be defined.

• The number of elements in an array may be specified in an array delete operation. The value is
ignored.

• A single operator++() and operator--() function can be used to overload both prefix and postfix
operations.

• The base class name may be omitted in a base class initializer if there is only one immediate base
class.

384

• Assignment to this in constructors and destructors is allowed. This is allowed only if anachronisms
are enabled and the assignment to this configuration parameter is enabled.

• A bound function pointer (a pointer to a member function for a given object) can be cast to a
pointer to a function.

• A nested class name may be used as a non-nested class name provided no other class of that name
has been declared. This anachronism is not applied to template classes.

• A reference to a non-const type may be initialized from a value of a different type. A temporary is
created, it is initialized from the (converted) initial value, and the reference is set to the temporary.

• A reference to a non-const class type may be initialized from an rvalue of the class type or a derived
class thereof. No (additional) temporary is used.

• A function with old-style parameter declarations is allowed and may participate in function
overloading as though it was prototyped. Default argument promotion is not applied to parameter
types of such functions when the check for compatibility is done, so that the following declares the
overloading of two functions named f:

int f(int);

int f(x) char x; return x;

• It will be noted that in C, this code is legal but has a different meaning: a tentative declaration of f
is followed by its definition.

• When --nonconst_ref_anachronism is enabled, a reference to a nonconst class can be bound to a
class rvalue of the same type or a derived type thereof.

struct A {

 A(int);

 A operator=(A&);

 A operator+(const A&);

};main () {

 A b(1);

 b = A(1) + A(2); // Allowed

as anachronism

}

New Language Features Accepted

The following features not in the ARM but in the X3J16/WG21 Working paper are accepted:

New Language Features Accepted

385

• The dependent statement of an if, while, do-while, or for is considered to be a scope, and the
restriction on having such a dependent statement be a declaration is removed.

• The expression tested in an if, while, do-while, or for, as the first operand of a ''?'' operator, or as
an operand of the "&&", "::", or "!" operators may have a pointer-to-member type or a class type
that can be converted to a pointer-to-member type in addition to the scalar cases permitted by the
ARM.

• Qualified names are allowed in elaborated type specifiers.

• Use of a global-scope qualifier in member references of the form x.::A::B and p->::A::B.

• The precedence of the third operand of the ``?'' operator is changed.

• If control reaches the end of the main() routine, and main() has an integral return type, it is
treated as if a return 0; statement were executed.

• Pointers to arrays with unknown bounds as parameter types are diagnosed as errors.

• A functional-notation cast of the form A() can be used even if A is a class without a (nontrivial)
constructor. The temporary created gets the same default initialization to zero as a static object of
the class type.

• A cast can be used to select one out of a set of overloaded functions when taking the address of a
function.

• Template friend declarations and definitions are permitted in class definitions and class template
definitions.

• Type template parameters are permitted to have default arguments.

• Function templates may have nontype template parameters.

• A reference to const volatile cannot be bound to an rvalue.

• Qualification conversions, such as conversion from T** to T const * const * are allowed.

• Digraphs are recognized.

• Operator keywords (e.g., and, bitand, etc.) are recognized.

• Static data member declarations can be used to declare member constants.

386

• wchar_t is recognized as a keyword and a distinct type.

• bool is recognized.

• RTTI (runtime type identification), including dynamic_cast and the typeid operator, are
implemented.

• Declarations in tested conditions (in if, switch, for, and while statements) are supported.

• Array new and delete are implemented.

• New-style casts (static_cast, reinterpret_cast, and const_cast) are implemented.

• Definition of a nested class outside its enclosing class is allowed.

• mutable is accepted on nonstatic data member declarations.

• Namespaces are implemented, including using declarations and directives. Access declarations are
broadened to match the corresponding using declarations.

• Explicit instantiation of templates is implemented.

• typename keyword is implemented.

• explicit is accepted to declare Non-converting constructors .

• The scope of a variable declared in a for-init-statement of a loop is the scope of the loop, not the
surrounding scope.

• Member templates are implemented.

• The new specialization syntax (using "template<>") is implemented.

• Cv-qualifiers are retained on rvalues (in particular, on function return values).

• The distinction between trivial and nontrivial constructors has been implemented, as has the
distinction between PODs and non-PODs with trivial constructors.

• The linkage specification is treated as part of the function type (affecting function overloading and
implicit conversions).

• extern inline functions are supported, and the default linkage for inline functions is external.

• A typedef name may be used in an explicit destructor call.

The following language features are not accepted

387

• Placement delete is implemented.

• An array allocated via a placement new can be deallocated via delete.

• Covariant return types on overriding virtual functions are supported.

• enum types are considered to be non-integral types.

• Partial specialization of class templates is implemented.

• Partial ordering of function templates is implemented.

• Function declarations that match a function template are regarded as independent functions, not
as “guiding declarations” that are instances of the template.

• It is possible to overload operators using functions that take enum types and no class types.

• Explicit specification of function template arguments is supported.

• Unnamed template parameters are supported.

• The new lookup rules for member references of the form x.A::PB and p->A::B are supported.

• The notation :: template (and ->template, etc.) is supported.

The following language features are not accepted

The following feature of the ISO/IEC 14882:1998 C++ standard is not supported:

• Exported templates are not implemented

Extensions Accepted in Normal C++ Mode

The following extensions are accepted in all modes (except when strict ANSI violations are diagnosed as
errors, see the –A option):

• A friend declaration for a class may omit the class keyword:

 class A {

 friend B; // Should be "friend class B"

 };

388

• Constants of scalar type may be defined within classes:

 class A {

 const int size = 10;

 int a[size];

 };

• In the declaration of a class member, a qualified name may be used:

 struct A{

 int A::f(); // Should be int f();

 }

• The preprocessing symbol c_plusplus is defined in addition to the standard __cplusplus.

• An assignment operator declared in a derived class with a parameter type matching one of its base
classes is treated as a "default'' assignment operator --- that is, such a declaration blocks the
implicit generation of a copy assignment operator. (This is cfront behavior that is known to be
relied upon in at least one widely used library.) Here's an example:

 struct A { } ;

 struct B : public A {

 B& operator=(A&);

 };

• By default, as well as in cfront-compatibility mode, there will be no implicit declaration of
B::operator=(const B&), whereas in strict-ANSI mode B::operator=(A&) is not a copy assignment
operator and B::operator=(const B&) is implicitly declared.

• Implicit type conversion between a pointer to an extern “C” function and a pointer to an extern
“C++” function is permitted. Here’s an example:

extern "C" void

f();// f’s type has extern "C" linkage

void (*pf) ()// pf points to an extern

"C++" function

 = &f;// error unless

implicit conv is allowed

This extension is allowed in environments where C and C++ functions share the same calling
conventions (though it is pointless unless
DEFAULT_C_AND_CPP_FUNTION_TYPES_ARE_DISTINCT is TRUE). When

cfront 2.1 Compatibility Mode

389

DEFAULT_IMPL_CONV_BETWEEN_C_AND_CPP_FUNCTION_PTRS_ALLOWED is set, it is enabled
by default; it can also be enabled in cfront-compatibility mode or with command-line option –
implicit_extern_c_type_conversion. It is disabled in strict-ANSI mode.

cfront 2.1 Compatibility Mode

The following extensions are accepted in cfront 2.1 compatibility mode in addition to the extensions
listed in the following 2.1/3.0 section (i.e., these are things that were corrected in the 3.0 release of
cfront):

• The dependent statement of an if, while, do-while, or for is not considered to define a scope. The
dependent statement may not be a declaration. Any objects constructed within the dependent
statement are destroyed at exit from the dependent statement.

• Implicit conversion from integral types to enumeration types is allowed.

• A non-const member function may be called for a const object. A warning is issued.

• A const void * value may be implicitly converted to a void * value, e.g., when passed as an
argument.

• When, in determining the level of argument match for overloading, a reference parameter is
initialized from an argument that requires a non-class standard conversion, the conversion
counts as a user-defined conversion. (This is an outright bug, which unfortunately happens to be
exploited in the NIH class libraries.)

• When a builtin operator is considered alongside overloaded operators in overload resolution, the
match of an operand of a builtin type against the builtin type required by the builtin operator is
considered a standard conversion in all cases (e.g., even when the type is exactly right without
conversion).

• A reference to a non-const type may be initialized from a value that is a const-qualified version of
the same type, but only if the value is the result of selecting a member from a const class object or
a pointer to such an object.

• A cast to an array type is allowed; it is treated like a cast to a pointer to the array element type. A
warning is issued.

390

• When an array is selected from a class, the type qualifiers on the class object (if any) are not
preserved in the selected array. (In the normal mode, any type qualifiers on the object are
preserved in the element type of the resultant array.)

• An identifier in a function is allowed to have the same name as a parameter of the function. A
warning is issued.

• An expression of type void may be supplied on the return statement in a function with a void
return type. A warning is issued.

• cfront has a bug that causes a global identifier to be found when a member of a class or one of its
base classes should actually be found. This bug is not emulated in cfront compatibility mode.

• A parameter of type "const void *'' is allowed on operator delete; it is treated as equivalent to "void
*".

• A period (".") may be used for qualification where "::" should be used. Only "::'' may be used as a
global qualifier. Except for the global qualifier, the two kinds of qualifier operators may not be
mixed in a given name (i.e., you may say A::B::C or A.B.C but not A::B.C or A.B::C). A period may not
be used in a vacuous destructor reference nor in a qualifier that follows a template reference such
as A<T>::B.

• cfront 2.1 does not correctly look up names in friend functions that are inside class definitions. In
this example function f should refer to the functions and variables (e.g., f1 and a1) from the class
declaration. Instead, the global definitions are used.

int a1;

int e1;

void f1();

class A {

 int a1;

 void f1();

 friend void f()

 {

 int i1 = a1; // cfront uses global

a1

 f1(); // cfront uses global f1

 }

};

• Only the innermost class scope is (incorrectly) skipped by cfront as illustrated in the following
example.

cfront 2.1/3.0 Compatibility Mode

391

int a1;

int b1;

struct A {

 static int a1;

 class B {

 static int b1;

 friend void f()

 {

 int i1 = a1; // cfront uses A::a1

 int j1 = b1; // cfront uses global

b1

 }

 };

};

• operator= may be declared as a nonmember function. (This is flagged as an anachronism by
cfront 2.1)

• A type qualifier is allowed (but ignored) on the declaration of a constructor or destructor. For
example:

class A {

 A() const; // No error in cfront 2.1 mode

};

cfront 2.1/3.0 Compatibility Mode

The following extensions are accepted in both cfront 2.1 and cfront 3.0 compatibility mode (i.e., these
are features or problems that exist in both cfront 2.1 and 3.0):

• Type qualifiers on the this parameter may to be dropped in contexts such as this example:

struct

A {

 void f() const;

};

void (A::*fp)() = &A::f;

This is actually a safe operation. A pointer to a const function may be put into a pointer to non-
const, because a call using the pointer is permitted to modify the object and the function pointed
to will actually not modify the object. The opposite assignment would not be safe.

392

• Conversion operators specifying conversion to void are allowed.

• A nonstandard friend declaration may introduce a new type. A friend declaration that omits the
elaborated type specifier is allowed in default mode, but in cfront mode the declaration is also
allowed to introduce a new type name.

struct A {

 friend B;

};

• The third operator of the ? operator is a conditional expression instead of an assignment
expression as it is in the current X3J16/WG21 Working Paper.

• A reference to a pointer type may be initialized from a pointer value without use of a temporary
even when the reference pointer type has additional type qualifiers above those present in the
pointer value. For example,

 int *p;

 const int *&r = p; // No

temporary used

• A reference may be initialized with a null.

393

Appendix D. C/C++ MMX/SSE
Inline Intrinsics

Table D-1: MMX Intrinsics (mmintrin.h)

_mm_empty _m_paddd _m_psllw _m_pand

_m_empty _mm_add_si64 _mm_slli_pi16 _mm_andnot_si64

_mm_cvtsi32_si64 _mm_adds_pi8 _m_psllwi _m_pandn

_m_from_int _m_paddsb _mm_sll_pi32 _mm_or_si64

_mm_cvtsi64x_si64 _mm_adds_pi16 _m_pslld _m_por

_mm_set_pi64x _m_paddsw _mm_slli_pi32 _mm_xor_si64

_mm_cvtsi64_si32 _mm_adds_pu8 _m_pslldi _m_pxor

_m_to_int _m_paddusb _mm_sll_si64 _mm_cmpeq_pi8

_mm_cvtsi64_si64x _mm_adds_pu16 _m_psllq _m_pcmpeqb

_mm_packs_pi16 _m_paddusw _mm_slli_si64 _mm_cmpgt_pi8

_m_packsswb _mm_sub_pi8 _m_psllqi _m_pcmpgtb

_mm_packs_pi32 _m_psubb _mm_sra_pi16 _mm_cmpeq_pi16

_m_packssdw _mm_sub_pi16 _m_psraw _m_pcmpeqw

_mm_packs_pu16 _m_psubw _mm_srai_pi16 _mm_cmpgt_pi16

_m_packuswb _mm_sub_pi32 _m_psrawi _m_pcmpgtw

_mm_unpackhi_pi8 _m_psubd _mm_sra_pi32 _mm_cmpeq_pi32

_m_punpckhbw _mm_sub_si64 _m_psrad _m_pcmpeqd

_mm_unpackhi_pi16 _mm_subs_pi8 _mm_srai_pi32 _mm_cmpgt_pi32

394

_m_punpckhwd _m_psubsb _m_psradi _m_pcmpgtd

_mm_unpackhi_pi32 _mm_subs_pi16 _mm_srl_pi16 _mm_setzero_si64

_m_punpckhdq _m_psubsw _m_psrlw _mm_set_pi32

_mm_unpacklo_pi8 _mm_subs_pu8 _mm_srli_pi16 _mm_set_pi16

_m_punpcklbw _m_psubusb _m_psrlwi _mm_set_pi8

_mm_unpacklo_pi16 _mm_subs_pu16 _mm_srl_pi32 _mm_setr_pi32

_m_punpcklwd _m_psubusw _m_psrld _mm_setr_pi16

_mm_unpacklo_pi32 _mm_madd_pi16 _mm_srli_pi32 _mm_setr_pi8

_m_punpckldq _m_pmaddwd _m_psrldi _mm_set1_pi32

_mm_add_pi8 _mm_mulhi_pi16 _mm_srl_si64 _mm_set1_pi16

_m_paddb _m_pmulhw _m_psrlq _mm_set1_pi8

_mm_add_pi16 _mm_mullo_pi16 _mm_srli_si64 _m_pand

_m_paddw _m_pmullw _m_psrlqi

_mm_add_pi32 _mm_sll_pi16 _mm_and_si64

395

Table D-2: SSE Intrinsics (xmmintrin.h)

_mm_add_ss _mm_comige_ss _MM_SET_FLUSH_ZERO_MODE

_mm_sub_ss _mm_comineq_ss _mm_load_ss

_mm_mul_ss _mm_ucomieq_ss _mm_load1_ps

_mm_div_ss _mm_ucomilt_ss _mm_load_ps1

_mm_sqrt_ss _mm_ucomile_ss _mm_load_ps

_mm_rcp_ss _mm_ucomigt_ss _mm_loadu_ps

_mm_rsqrt_ss _mm_ucomige_ss _mm_loadr_ps

_mm_min_ss _mm_ucomineq_ss _mm_set_ss

_mm_max_ss _mm_cvtss_si32 _mm_set1_ps

_mm_add_ps _mm_cvt_ss2si _mm_set_ps1

_mm_sub_ps _mm_cvtss_si64x _mm_set_ps

_mm_mul_ps _mm_cvtps_pi32 _mm_setr_ps

_mm_div_ps _mm_cvt_ps2pi _mm_store_ss

_mm_sqrt_ps _mm_cvttss_si32 _mm_store_ps

_mm_rcp_ps _mm_cvtt_ss2si _mm_store1_ps

_mm_rsqrt_ps _mm_cvttss_si64x _mm_store_ps1

_mm_min_ps _mm_cvttps_pi32 _mm_storeu_ps

_mm_max_ps _mm_cvtt_ps2pi _mm_storer_ps

_mm_and_ps _mm_cvtsi32_ss _mm_move_ss

_mm_andnot_ps _mm_cvt_si2ss _mm_extract_pi16

_mm_or_ps _mm_cvtsi64x_ss _m_pextrw

_mm_xor_ps _mm_cvtpi32_ps _mm_insert_pi16

396

_mm_cmpeq_ss _mm_cvt_pi2ps _m_pinsrw

_mm_cmplt_ss _mm_movelh_ps _mm_max_pi16

_mm_cmple_ss _mm_setzero_ps _m_pmaxsw

_mm_cmpgt_ss _mm_cvtpi16_ps _mm_max_pu8

_mm_cmpge_ss _mm_cvtpu16_ps _m_pmaxub

_mm_cmpneq_ss _mm_cvtpi8_ps _mm_min_pi16

_mm_cmpnlt_ss _mm_cvtpu8_ps _m_pminsw

_mm_cmpnle_ss _mm_cvtpi32x2_ps _mm_min_pu8

_mm_cmpngt_ss _mm_movehl_ps _m_pminub

_mm_cmpnge_ss _mm_cvtps_pi16 _mm_movemask_pi8

_mm_cmpord_ss _mm_cvtps_pi8 _m_pmovmskb

_mm_cmpunord_ss _mm_shuffle_ps _mm_mulhi_pu16

_mm_cmpeq_ps _mm_unpackhi_ps _m_pmulhuw

_mm_cmplt_ps _mm_unpacklo_ps _mm_shuffle_pi16

_mm_cmple_ps _mm_loadh_pi _m_pshufw

_mm_cmpgt_ps _mm_storeh_pi _mm_maskmove_si64

_mm_cmpge_ps _mm_loadl_pi _m_maskmovq

_mm_cmpneq_ps _mm_storel_pi _mm_avg_pu8

_mm_cmpnlt_ps _mm_movemask_ps _m_pavgb

_mm_cmpnle_ps _mm_getcsr _mm_avg_pu16

_mm_cmpngt_ps _MM_GET_EXCEPTION_STATE _m_pavgw

_mm_cmpnge_ps _MM_GET_EXCEPTION_MASK _mm_sad_pu8

_mm_cmpord_ps _MM_GET_ROUNDING_MODE _m_psadbw

397

_mm_cmpunord_ps _MM_GET_FLUSH_ZERO_MODE _mm_prefetch

_mm_comieq_ss _mm_setcsr _mm_stream_pi

_mm_comilt_ss _MM_SET_EXCEPTION_STATE _mm_stream_ps

_mm_comile_ss _MM_SET_EXCEPTION_MASK _mm_sfence

_mm_comigt_ss _MM_SET_ROUNDING_MODE _mm_pause

_MM_TRANSPOSE4_PS

398

Table D-3: SSE2 Intrinsics (emmintrin.h)

_mm_load_sd _mm_cmpge_sd _mm_cvtps_pd _mm_srl_epi32

_mm_load1_pd _mm_cmpneq_sd _mm_cvtsd_si32 _mm_srl_epi64

_mm_load_pd1 _mm_cmpnlt_sd _mm_cvtsd_si64x _mm_slli_epi16

_mm_load_pd _mm_cmpnle_sd _mm_cvttsd_si32 _mm_slli_epi32

_mm_loadu_pd _mm_cmpngt_sd _mm_cvttsd_si64x _mm_slli_epi64

_mm_loadr_pd _mm_cmpnge_sd _mm_cvtsd_ss _mm_srai_epi16

_mm_set_sd _mm_cmpord_sd _mm_cvtsi32_sd _mm_srai_epi32

_mm_set1_pd _mm_cmpunord_sd _mm_cvtsi64x_sd _mm_srli_epi16

_mm_set_pd1 _mm_comieq_sd _mm_cvtss_sd _mm_srli_epi32

_mm_set_pd _mm_comilt_sd _mm_unpackhi_pd _mm_srli_epi64

_mm_setr_pd _mm_comile_sd _mm_unpacklo_pd _mm_and_si128

_mm_setzero_pd _mm_comigt_sd _mm_loadh_pd _mm_andnot_si128

_mm_store_sd _mm_comige_sd _mm_storeh_pd _mm_or_si128

_mm_store_pd _mm_comineq_sd _mm_loadl_pd _mm_xor_si128

_mm_store1_pd _mm_ucomieq_sd _mm_storel_pd _mm_cmpeq_epi8

_mm_store_pd1 _mm_ucomilt_sd _mm_movemask_pd _mm_cmpeq_epi16

_mm_storeu_pd _mm_ucomile_sd _mm_packs_epi16 _mm_cmpeq_epi32

_mm_storer_pd _mm_ucomigt_sd _mm_packs_epi32 _mm_cmplt_epi8

_mm_move_sd _mm_ucomige_sd _mm_packus_epi16 _mm_cmplt_epi16

_mm_add_pd _mm_ucomineq_sd _mm_unpackhi_epi8 _mm_cmplt_epi32

_mm_add_sd _mm_load_si128 _mm_unpackhi_epi16 _mm_cmpgt_epi8

_mm_sub_pd _mm_loadu_si128 _mm_unpackhi_epi32 _mm_cmpgt_epi16

399

_mm_sub_sd _mm_loadl_epi64 _mm_unpackhi_epi64 _mm_srl_epi16

_mm_mul_pd _mm_store_si128 _mm_unpacklo_epi8 _mm_cmpgt_epi32

_mm_mul_sd _mm_storeu_si128 _mm_unpacklo_epi16 _mm_max_epi16

_mm_div_pd _mm_storel_epi64 _mm_unpacklo_epi32 _mm_max_epu8

_mm_div_sd _mm_movepi64_pi64 _mm_unpacklo_epi64 _mm_min_epi16

_mm_sqrt_pd _mm_move_epi64 _mm_add_epi8 _mm_min_epu8

_mm_sqrt_sd _mm_setzero_si128 _mm_add_epi16 _mm_movemask_epi8

_mm_min_pd _mm_set_epi64 _mm_add_epi32 _mm_mulhi_epu16

_mm_min_sd _mm_set_epi32 _mm_add_epi64 _mm_maskmoveu_si128

_mm_max_pd _mm_set_epi64x _mm_adds_epi8 _mm_avg_epu8

_mm_max_sd _mm_set_epi16 _mm_adds_epi16 _mm_avg_epu16

_mm_and_pd _mm_set_epi8 _mm_adds_epu8 _mm_sad_epu8

_mm_andnot_pd _mm_set1_epi64 _mm_adds_epu16 _mm_stream_si32

_mm_or_pd _mm_set1_epi32 _mm_sub_epi8 _mm_stream_si128

_mm_xor_pd _mm_set1_epi64x _mm_sub_epi16 _mm_stream_pd

_mm_cmpeq_pd _mm_set1_epi16 _mm_sub_epi32 _mm_movpi64_epi64

_mm_cmplt_pd _mm_set1_epi8 _mm_sub_epi64 _mm_lfence

_mm_cmple_pd _mm_setr_epi64 _mm_subs_epi8 _mm_mfence

_mm_cmpgt_pd _mm_setr_epi32 _mm_subs_epi16 _mm_cvtsi32_si128

_mm_cmpge_pd _mm_setr_epi16 _mm_subs_epu8 _mm_cvtsi64x_si128

_mm_cmpneq_pd _mm_setr_epi8 _mm_subs_epu16 _mm_cvtsi128_si32

_mm_cmpnlt_pd _mm_cvtepi32_pd _mm_madd_epi16 _mm_cvtsi128_si64x

_mm_cmpnle_pd _mm_cvtepi32_ps _mm_mulhi_epi16 _mm_srli_si128

400

Table D-4: SSE3 Intrinsics (pmmintrin.h)

_mm_cmpngt_pd _mm_cvtpd_epi32 _mm_mullo_epi16 _mm_slli_si128

_mm_cmpnge_pd _mm_cvtpd_pi32 _mm_mul_su32 _mm_shuffle_pd

_mm_cmpord_pd _mm_cvtpd_ps _mm_mul_epu32 _mm_shufflehi_epi16

_mm_cmpunord_pd _mm_cvttpd_epi32 _mm_sll_epi16 _mm_shufflelo_epi16

_mm_cmpeq_sd _mm_cvttpd_pi32 _mm_sll_epi32 _mm_shuffle_epi32

_mm_cmplt_sd _mm_cvtpi32_pd _mm_sll_epi64 _mm_extract_epi16

_mm_cmple_sd _mm_cvtps_epi32 _mm_sra_epi16 _mm_insert_epi16

_mm_cmpgt_sd _mm_cvttps_epi32 _mm_sra_epi32

_mm_addsub_ps _mm_moveldup_ps _mm_loaddup_pd _mm_mwait

_mm_hadd_ps _mm_addsub_pd _mm_movedup_pd

_mm_hsub_ps _mm_hadd_pd _mm_lddqu_si128

_mm_movehdup_ps _mm_hsub_pd _mm_monitor

401

Index
Numerics
64-Bit Programming 229

A
Auto-parallelization 30

B
Basic block 15
Bounds checking 96

C
C++ Name Mangling 283
C++ Standard Template Library 207
C/C++ Builtin Functions 197
C/C++ Math Header File 197
Cache tiling

failed cache tiling 99
with -Mvect 93

Command-line Options 3, 47, 65
-# 55
-### 55
-A 115
-b 116
-b3 116
-byteswapio 55
-C 56
-c 56
--cfront_2.1 117
--cfront_3.0 117
--create_pch 118
-D 57

-d 56
--diag_error 118
--diag_remark 118
--diag_suppress 118
--diag_warning 118
--display_error_number 118
-dryrun 58
-E 58
-F 58
-fast 59
-fastsse 59
-flagcheck 59
-flags 59
-fPIC 60
-fpic 59
-G 60
-g 60
-g77libs 61
-gopt 60
-help 61
-I 62
-i2, -i4 and -i8 63
--keeplnk 64
-Kflag 63
-L 64
-l 65
-M 119
-Manno 96
-Masmkeyword 83
-Mbackslash 80
-Mbounds 96
-Mbyteswapio 96
-Mcache_align 85
-Mchkfpstk 96
-Mchkptr 97
-Mchkstk 97
-mcmodel=medium 101, 230

-Mconcur 85
-Mcray 86
-MD 119
-Mdaz 74
-Mdclchk 81
-Mdefaultunit 81
-Mdepchk 87
-Mdlines 81
-Mdll 98
-Mdollar 81, 83
-Mdse 87
-Mdwarf1 74
-Mdwarf2 74
-Mdwarf3 74
-Mextend 81
-Mextract 78
-Mfcon 83
-Mfixed 81
-Mflushz 75
-Mfprelaxed 87
-Mfree 81
-Mfunc32 75
-Mgccbugs 98
-Mi4 87
-Minform 99
-Minline 79
-Miomutex 81
-Mipa 87
-Mkeepasm 99
-Mlarge_arrays 75, 231
-Mlfs 78
-Mlist 100
-Mlre 90
-Mmakedll 100
-Mneginfo 99
-Mnoasmkeyword 83
-Mnobackslash 80

402

Index

-Mnobounds 96
-Mnodaz 74
-Mnodclchk 81
-Mnodefaultunit 81
-Mnodepchk 87
-Mnodlines 81
-Mnodse 87
-Mnoflushz 75
-Mnofprelaxed 87
-Mnoframe 90
-Mnoi4 91
-Mnoiomutex 81
-Mnolarge_arrays 75
-Mnolist 100
-Mnolre 90
-Mnomain 75
-Mnontemporal 75
-Mnoonetrip 81
-Mnoopenmp 100
-Mnopgdllmain 100
-Mnoprefetch 91
-Mnor8 92
-Mnor8intrinsics 92
-Mnorecursive 76
-Mnoreentrant 76
-Mnoref_externals 76
-Mnosave 82
-Mnoscalarsse 93
-Mnosecond_underscore 76
-Mnosgimp 100
-Mnosignextend 77
-Mnosingle 83
-Mnosmart 93
-Mnostartup 78
-Mnostddef 78
-Mnostdlib 78
-Mnostride0 77
-Mnounixlogical 82
-Mnounroll 93
-Mnoupcase 82
-Mnovect 95
-Mnovintr 95
-module 102

-Monetrip 81
-mp 102
-Mpfi 91
-Mpfo 91
-Mprefetch 91
-Mpreprocess 100
-Mprof 75
-Mr8 92
-Mr8intrinsics 92
-Mrecursive 76
-Mreentrant 76
-Mref_externals 76
-Msafe_lastval 77
-Msafeptr 92
-Msave 81
-Mscalarsse 93
-Mschar 83
-Msecond_underscore 76
-Msignextend 77
-Msingle 83
-Msmart 93
-Mstandard 82
-Mstride0 77
-Muchar 84
-Munix 77
-Munixlogical 82
-Mupcase 82
-Mvarargs 77
-Mvect 93
-nfast 103
-O 103
-o 105, 108
--optk_allow_dollar_in_id_chars
119
-P 119
-pc 105
--pch 119
--pch_dir 119
--preinclude 120
-Q 108
-R 109
-r4 and -r8 109
-rc 109

-S 110
-shared 110
-show 110
-silent 110
-soname 111
-t 120
-time 111
-tp 111
-U 113
--use_pch 120
-V 114
-v 114
-W 114
-w 115

Commandline Options
syntax 2

Compilation driver 1
Compilers

Invoke at command level 1
PGC++ xx
PGF77 xx
PGF95 xx
PGHPF xx

cpp 5

D
Data Types 215

bitfields 226
C++ class and object layout 224
C++ classes 223
C/C++ aggregate alignment 224
C/C++ scalar data types 220
C/C++ struct 223
C/C++ void 226
DEC structures 219
DEC Unions 219
F90 derived types 220
Fortran 215
internal padding 225
tail padding 225

Directives
Fortran 4
optimization 175

Index

403

Parallelization 131
prefetch 194
scope 183

E
Environment variables 207

MP_BIND 208
MP_BLIST 208
MP_SPIN 208
MP_WARN 208
MPSTKZ 10, 13
NCPUS 209
NCPUS_MAX 209
NO_STOP_MESSAGE 209
OMP_STACK_SIZE 153, 173, 209
OMP_WAIT_POLICY 152, 173, 209
PGI 210
PGI_CONTINUE 210, 211
STATIC_RANDOM_SEED 210
TMPDIR 211
TZ 211

F
Filename Conventions 4

extensions 4
Input Files 4
Output Files 6

Floating-point stack 105
Fortran

directive summary 176
named common blocks 243

Fortran Parallelization Directives
ATOMIC 146
DOACROSS 142

Function Inlining
inlining and makefiles 126
inlining examples 127
inlining restrictions 128

I
Inter-language Calling 239

%VAL 244

arguments and return values 244
array indices 246
C calling C++ 249
C++ calling C 248
C++ calling Fortran 251
character case conventions 241
character return values 244
compatible data types 241
Fortran calling C 246
Fortran calling C++ 250
underscores 241

L
Language options 83
Libraries

BLAS 207
FFTs 207
LAPACK 207
LIB3F 206
shared object files 198

Linux 10, 13
Header Files 10, 13
Parallelization 10, 13

Listing Files 96, 99, 100
Loop unrolling 22
Loops

failed auto-parallelization 32
innermost 32
scalars 33
timing 32

N
Command-line Options

--llalign 118
--alternative_tokens 116
--bool 117
--exceptions 118
--pch_messages 120
--using_std 120

O
OpenMP C/C++ Pragmas 155

atomic 167
barrier 164
critical 159
flush 168
for 161
master 160
ordered 167
parallel 156
parallel for 164
parallel sections 166
sections 165
single 161
threadprivate 168

OpenMP C/C++ Support Routines
omp_destroy_lock() 171
omp_get _thread_num() 169
omp_get_dynamic() 170
omp_get_max_threads() 169
omp_get_nested() 171
omp_get_num_procs() 170
omp_get_num_threads() 169
omp_get_stack_size() 170
omp_get_wtick() 171
omp_get_wtime() 171
omp_in_parallel() 170
omp_init_lock() 171
omp_set_dynamic() 170
omp_set_lock() 171
omp_set_nested() 170
omp_set_num_threads() 169
omp_set_stack_size() 170
omp_test_lock() 172
omp_unset_lock() 172

OpenMP environment variables
MPSTKZ 152, 173, 208
OMP_DYNAMIC 152, 172, 173
OMP_NESTED 152, 173
OMP_NUM_THREADS 151, 172
OMP_SCHEDULE 152

OpenMP Fortran Directives 131
ATOMIC 147
BARRIER 142
CRITICAL 136

404

Index

DO 139
FLUSH 147
MASTER 137
ORDERED 146
PARALLEL 132
PARALLEL DO 143
PARALLEL SECTIONS 145
PARALLEL WORKSHARE 144
SECTIONS 145
SINGLE 138
THREADPRIVATE 148
WORKSHARE 141

OpenMP Fortran Support Routines
omp_destroy_lock() 151
omp_get_dynamic() 150
omp_get_max_threads() 149
omp_get_nested() 150
omp_get_num_procs() 149
omp_get_num_threads() 148
omp_get_stack_size() 149
omp_get_thread_num() 149
omp_get_wtick() 151
omp_get_wtime() 150
omp_in_parallel() 150
omp_init_lock() 151
omp_set_dynamic() 150
omp_set_lock() 151
omp_set_nested() 150
omp_set_num_threads() 149
omp_set_stack_size() 150
omp_test_lock() 151
omp_unset_lock() 151

Optimization 175
C/C++ pragmas 43, 187
C/C++ pragmas scope 191
cache tiling 93
Fortran directives 43, 175
Fortran directives scope 183
function inlining 16, 123
global optimization 16, 20
inline libraries 124
Inter-Procedural Analysis 16
IPA 16

local optimization 15
loop optimization 16
loop unrolling 16, 22
loops 90
-O 103
-O0 19
-O1 19
-O2 19
-O3 19
-Olevel 19
parallelization 16, 30
PFO 17
pointers 92
prefetching 91
profile-feedback (PFO) 42
Profile-Feedback Optimization 17
vectorization 16, 24

P
Parallelization 30

auto-parallelization 30
failed auto-parallelization 32, 99
-Mconcur auto-parallelization 85
NCPUS environment variable 31
safe_lastval 34
user-directed 102

Parallelization Directives 131
Parallelization Pragmas 155
Pragmas

C/C++ 4
optimization 187
scope 191

Prefetch directives 194
Preprocessor

cpp 5
Fortran 5

R
Run-time Environment 287

S
Shared object files 198

T
Timing

CPU_CLOCK 44
execution 44
SYSTEM_CLOCK 44

Tools
PGDBG xx
PGPROF xx

V
Vectorization 24, 93

SSE instructions 95

W
Win32 Calling Conventions

C 253, 256
Default 253, 255
STDCALL 253, 255
symbol name construction 255
UNIX-style 253, 256

	PGI®
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Related Publications

	1 Getting Started
	Overview
	Invoking the Command-level PGI Compilers
	Command-line Syntax
	Command-line Options
	Fortran Directives

	Filename Conventions
	Input Files
	Output Files

	Parallel Programming Using the PGI Compilers
	Running SMP Parallel Programs
	Running Data Parallel HPF Programs

	Using the PGI Compilers on Linux
	Linux Header Files
	Running Parallel Programs on Linux

	Using the PGI Compilers on Windows
	BASH Shell Environment
	Windows Command Prompt

	Using the PGI Compilers on SUA and SFU
	Subsystem for Unix Applications (SUA and SFU)
	SUA/SFU Header Files
	Running Parallel Programs on SUA and SFU

	Customizing the Compilers with siterc and User rc Files

	2 Optimization & Parallelization
	Overview of Optimization
	Getting Started with Optimizations
	Local and Global Optimization using -O
	Scalar SSE Code Generation

	Loop Unrolling using -Munroll
	Vectorization using -Mvect
	Vectorization Sub-options
	Assoc Option
	Cachesize Option
	SSE Option
	Prefetch Option

	Vectorization Example Using SSE/SSE2 Instructions

	Auto-Parallelization using -Mconcur
	Auto-parallelization Sub-options
	Altcode Option
	Dist Option
	Cncall Option

	Loops That Fail to Parallelize
	Innermost Loops
	Timing Loops
	Scalars
	Scalar Last Values

	Processor-Specific Optimization and the Unified Binary
	Inter-Procedural Analysis and Optimization using -Mipa
	Building a Program Without IPA - Single Step
	Building a Program Without IPA - Several Steps
	Building a Program Without IPA Using Make
	Building a Program with IPA
	Building a Program with IPA - Single Step
	Building a Program with IPA - Several Steps
	Building a Program with IPA Using Make
	Questions about IPA

	Profile-Feedback Optimization using -Mpfi/-Mpfo
	Default Optimization Levels
	Local Optimization Using Directives and Pragmas
	Execution Timing and Instruction Counting
	Portability of Multi-Threaded Programs on Linux
	libpgbind
	libnuma

	3 Command Line Options
	Generic PGI Compiler Options
	C and C++ -specific Compiler Options

	4 Function Inlining
	Invoking Function Inlining
	Using an Inline Library

	Creating an Inline Library
	Working with Inline Libraries
	Updating Inline Libraries - Makefiles

	Error Detection during Inlining
	Examples
	Restrictions on Inlining

	5 OpenMP Directives for Fortran
	Parallelization Directives
	PARALLEL ... END PARALLEL
	CRITICAL ... END CRITICAL
	MASTER ... END MASTER
	SINGLE ... END SINGLE
	DO ... END DO
	WORKSHARE ... END WORKSHARE
	BARRIER
	DOACROSS
	PARALLEL DO
	PARALLEL WORKSHARE
	SECTIONS … END SECTIONS
	PARALLEL SECTIONS
	ORDERED
	ATOMIC
	FLUSH
	THREADPRIVATE
	Run-time Library Routines
	Environment Variables

	6 OpenMP Pragmas for C and C++
	Parallelization Pragmas
	omp parallel
	omp critical
	omp master
	omp single
	omp for
	omp barrier
	omp parallel for
	omp sections
	omp parallel sections
	omp ordered
	omp atomic
	omp flush
	omp threadprivate
	Run-time Library Routines
	Environment Variables

	7 Directives and Pragmas
	PGI Proprietary Fortran Directives
	PGI Proprietary Fortran Directive Summary
	Scope of Directives and Command Line options
	!DEC$ Directives for Windows Fortran
	Adding Pragmas to C and C++
	C/C++ Pragma Summary
	Scope of C/C++ Pragmas and Command Line Options
	Prefetch Directives

	8 Libraries and Environment Variables
	Using builtin Math Functions in C/C++
	Creating and Using Shared Object Files on Linux
	Creating and Using Dynamic-Link Libraries on Windows
	Using LIB3F
	LAPACK, the BLAS and FFTs
	The C++ Standard Template Library
	Environment Variables
	Stack Traceback and JIT Debugging

	9 Fortran, C and C++ Data Types
	Fortran Data Types
	Fortran Scalars
	FORTRAN 77 Aggregate Data Type Extensions
	Fortran 90 Aggregate Data Types (Derived Types)

	C and C++ Data Types
	C and C++ Scalars
	C and C++ Aggregate Data Types
	Class and Object Data Layout
	Aggregate Alignment
	Bit-field Alignment
	Other Type Keywords in C and C++

	10 Programming Considerations for 64-Bit Environments
	Data Types in the 64-Bit Environment
	C/C++ Data Types
	Fortran Data Types

	Large Static Data in Linux
	Large Dynamically Allocated Data
	64-Bit Array Indexing
	Compiler Options for 64-bit Programming
	Practical Limitations of Large Array Programming
	Example: Medium Memory Model and Large Array in C
	Example: Medium Memory Model and Large Array in Fortran
	Example: Large Array and Small Memory Model in Fortran

	11 Inter-language Calling
	Overview of Calling Conventions
	Inter-language Calling Considerations
	Functions and Subroutines
	Upper and Lower Case Conventions, Underscores
	Compatible Data Types
	Fortran Named Common Blocks

	Argument Passing and Return Values
	Passing by Value (%VAL)
	Character Return Values
	Complex Return Values

	Array Indices
	Example - Fortran Calling C
	Example - C Calling Fortran
	Example - C ++ Calling C
	Example - C Calling C++
	Example - Fortran Calling C++
	Example - C++ Calling Fortran
	Win32 Calling Conventions
	Win32 Fortran Calling Conventions
	Symbol Name Construction and Calling Example
	Using the Default Calling Convention
	Using the STDCALL Calling Convention
	Using the C Calling Convention
	Using the UNIX Calling Convention

	12 C/C++ Inline Assembly and Intrinsics
	Inline Assembly
	Extended Inline Assembly
	Output Operands
	Input Operands
	Clobber List
	Additional Constraints
	Simple Constraints
	Machine Constraints
	Multiple Alternative Constraints
	Constraint Modifiers

	Operand Aliases
	Assembly String Modifiers
	Extended Asm Macros

	Intrinsics

	13 C++ Name Mangling
	Types of Mangling
	Mangling Summary
	Type Name Mangling
	Nested Class Name Mangling
	Local Class Name Mangling
	Template Class Name Mangling

	Appendix A. Run-time Environment
	Linux86 and Win32 Programming Model
	Function Calling Sequence
	Register Usage Conventions

	Function Return Values
	Argument Passing

	Linux86-64 Programming Model
	Function Calling Sequence
	Function Return Values
	Argument Passing
	Linux86-64 Fortran Supplement
	Fortran Fundamental Types
	Naming Conventions
	Argument Passing and Return Conventions
	Inter-language Calling
	Arrays
	Common Blocks.

	Win64/SUA64 Programming Model
	Function Calling Sequence
	Function Return Values
	Argument Passing
	Win64/SUA64 Fortran Supplement
	Fortran Fundamental Types
	Fortran Naming Conventions
	Fortran Argument Passing and Return Conventions
	Interlanguage Calling

	Appendix B. Messages
	Diagnostic Messages
	Phase Invocation Messages
	Fortran Compiler Error Messages
	Message Format
	Message List

	Fortran Runtime Error Messages
	Message Format
	Message List

	Appendix C. C++ Dialect Supported
	Anachronisms Accepted
	New Language Features Accepted
	The following language features are not accepted
	Extensions Accepted in Normal C++ Mode
	cfront 2.1 Compatibility Mode
	cfront 2.1/3.0 Compatibility Mode

	Appendix D. C/C++ MMX/SSE Inline Intrinsics

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

