
PGI® Tools Guide
Parallel Tools for Scientists and Engineers

The Portland Group™

STMicroelectronics

Two Centerpointe Drive, Suite 320

Lake Oswego, OR 97035

ii

While every precaution has been taken in the preparation of this document, The Portland Group™, a wholly-owned subsidiary of

STMicroelectronics, makes no warranty for the use of its products and assumes no responsibility for any errors that may appear, or

for damages resulting from the use of the information contained herein. The Portland Group retains the right to make changes to

this information at any time, without notice. The software described in this document is distributed under license from

STMicroelectronics and may be used or copied only in accordance with the terms of the license agreement. No part of this document

may be reproduced or transmitted in any form or by any means, for any purpose other than the purchaser's personal use without the

express written permission of The Portland Group.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those

designations appear in this manual, The Portland Group was aware of a trademark claim. The designations have been printed in caps

or initial caps. Thanks is given to the Parallel Tools Consortium and, in particular, to the High Performance Debugging Forum for

their efforts.

PGF95, PGF95, PGC++, PVF, CDK and The Portland Group are trademarks and PGI, PGHPF, PGF77, PGCC, Cluster Development Kit,

PGPROF, and PGDBG are registered trademarks of STMicroelectronics, Inc. Other brands and names are the property of their

respective owners. The use of STLport, a C++ Library, is licensed separately and license, distribution and copyright notice can be

found in the online documentation for a given release of the PGI compilers and tools.

PGI Tools Guide
Copyright © 2004 – 2007 STMicroelectronics,

Inc.
All rights reserved.

Printed in the United States of America

First Printing:Release 5.2, June 2004
Second Printing:Release 6.0, March 2005

Third Printing:Release 6.1, December 2005
Fourth Printing:Release 6.2, August 2006

Fifth Printing: Release 7.0-1, December, 2006
Sixth Printing: Release 7.0-2, February, 2007

Technical support: http://www.pgroup.com/support/

Sales: sales@pgroup.com

Web: http://www.pgroup.com

iii

Contents
Preface . xiii

Intended Audience . xiii
Supplementary Documentation . xiii
Compatibility and Conformance to Standards . xiii
Organization . xiv
Conventions . xv
Related Publications .xvii
System Requirements . xviii

1 The PGDBG Debugger . 1
Definition of Terms .1
Building Applications for Debug .2
PGDBG Invocation and Initialization .2

Invoking PGDBG .2
Selecting a Version of Java .4
PGDBG Command-Line Options .4

PGDBG Graphical User Interface .5
Main Window .5

Command Prompt Panel .9
Focus Panel .9
Process/Thread Grid .9
Source Panel .11
Main Window Menus .13

Source Panel .15
Source Panel Menus .15
Source Panel Buttons .20
Source Panel Combo Boxes .20
Source Panel Messages .22
Source Panel Events .22

Source Panel Pop-Up Menus .22
Subwindows .24

Standard Subwindow Controls .26
Memory Subwindow .27
Disassembler Subwindow .28
Registers Subwindow .29
Custom Subwindow .30

iv

Messages Subwindow . 31
PGDBG Command Language . 31

Constants . 32
Symbols . 32
Scope Rules . 32
Register Symbols . 33
Source Code Locations . 33
Lexical Blocks . 34
Statements . 35
Events . 36
Expressions . 38

Commands Summary . 40
PGDBG Command Reference . 51

Notation Used in this Section . 51
Process Control . 51
Process-Thread Sets . 55
Events . 56
Program Locations . 65
Printing Variables and Expressions . 67
Symbols and Expressions . 71
Scope . 74
Register Access . 76
Memory Access . 77
Conversions . 79
Miscellaneous . 80

Signals . 87
Control-C . 88
Signals Used Internally by PGDBG . 88
Signals Used by Linux Libraries . 88

Register Symbols . 89
X86 Register Symbols . 89
AMD64/EM64T Register Symbols . 91
SSE Register Symbols . 93

Debugging Fortran . 94
Fortran Types . 94
Arrays . 94
Operators . 95
Name of the Main Routine . 95
Fortran Common Blocks . 95

v

Nested Subroutines .96
Fortran 90 Modules .97

Debugging C++ .98
Calling C++ Instance Methods .98

Debugging with Core Files .98
Debugging Parallel Programs .100

Summary of Parallel Debugging Features .100
OpenMP and Multi-thread Support .100
MPI and Multi-Process Support .101
Graphical Presentation of Threads and Processes .101

Basic Process and Thread Naming .101
Multi-Thread and OpenMP Debugging .102
Multi-Process MPI Debugging .103

Invoking PGDBG for MPI Debugging .103
Using PGDBG for MPI Debugging .104
MPICH Support .105
LAM-MPI Support .107

Thread and Process Grouping and Naming .107
PGDBG Debug Modes .107
Threads-only Debugging .108
Process-only Debugging .109
Multilevel Debugging .109
Process/Thread Sets .110
p/t-set Notation .110
Dynamic vs. Static p/t-sets .112
Current vs. Prefix p/t-set .113
p/t-set Commands .113
Command Set .119

Process Level Commands .119
Thread Level Commands .120
Global Commands .121

Process and Thread Control .122
Configurable Stop Mode .122
Configurable Wait Mode .123
Status Messages .127
The PGDBG Command Prompt .128
Parallel Events .129
Parallel Statements .131

Parallel Compound/Block Statements .131

vi

Parallel If, Else Statements . 131
Parallel While Statements . 132
Return Statements . 132

OpenMP Debugging . 132
Serial vs. Parallel Regions . 133
The PGDBG OpenMP Event Handler . 133
Debugging OpenMP Private Data . 134

MPI Debugging . 136
Process Control . 136
Process Synchronization . 137
MPI Message Queues . 137
MPI Groups . 138
MPI Listener Processes . 139
SSH and RSH . 139

2 The PGPROF Profiler .141
Introduction . 141

Definition of Terms . 142
Compilation . 143
Program Execution . 145

Profiling MPI Programs . 145
Profiling Multi-threaded Programs . 146
Profiling with Hardware Event Counters (Linux Only) . 146
Profiling with Hardware Event Counters using PGPROF -collect. . 146
Profiling with Hardware Event Counters using PAPI . 148

Profiler Invocation and Initialization . 150
Selecting a Version of Java . 150
Command Line Options . 150
Measuring Time . 152
Profile Data . 153
Caveats (Precision of Profiling Results) . 154

Accuracy of Performance Data . 154
Clock Granularity . 154
Souce Code Correlation . 154
Overhead of -Mprof=lines . 154

Graphical User Interface . 156
The PGPROF GUI Layout . 157

GUI Customization . 159
Profile Navigation . 162

vii

PGPROF Menus .166
File Menu .166
Settings Menu .168
Help Menu .172
Processes Menu .173
View Menu .174
Sort Menu .178
Search Menu .178

Selecting and Sorting Profile Data .179
Selecting Profile Data .179
Sorting Profile Data .181

Scalability Comparison .182
Viewing Profiles with Hardware Event Counters .185

Command Language .186
Command Usage .187

viii

ix

Tables
Table 1-1: Thread State Is Described Using Color .10
Table 1-2: PGDBG Operators. .40
Table 1-3: PGDBG Commands .42
Table 1-4: General Registers .90
Table 1-5: x87 Floating-Point Stack Registers .90
Table 1-6: Segment Registers .90
Table 1-7: Special Purpose Registers .91
Table 1-8: General Registers .91
Table 1-9: Floating-Point Registers .92
Table 1-10: Segment Registers .92
Table 1-11: Special Purpose Registers .93
Table 1-12: SSE Registers .93
Table 1-13: Thread State Is Described Using Color .103
Table 1-14: MPICH Support .106
Table 1-15: PGDBG Debug Modes .108
Table 1-16: p/t-set Commands .114
Table 1-17: PGDBG Parallel Commands .119
Table 1-18: PGDBG Stop Modes .123
Table 1-19: PGDBG Wait Modes .124
Table 1-20: PGDBG Wait Behavior .126
Table 1-21: PGDBG Status Messages. .128
Table 2-1: Default Bar Chart Colors .170

x

xi

Figures
Figure 1-1: Default Appearance of PGDBG GUI. .6
Figure 1-2: PGDBG Program I/O Window .7
Figure 1-3: PGDBG GUI with All Control Panels Visible .8
Figure 1-4: Process Grid with Inner Thread Grid .12
Figure 1-5: PGDBG Help Utility .15
Figure 1-6: Data Pop-up Menu. .23
Figure 1-7: Opening a Subwindow with a Pop-up Menu .25
Figure 1-8: Memory Subwindow .27
Figure 1-9: Disassembler Subwindow .29
Figure 1-10: Registers Subwindow. .30
Figure 1-11: Custom Subwindow .31
Figure 1-12: Focus Group Dialog Box .117
Figure 1-13: Focus in the GUI .118
Figure 1-14: OpenMP Private Data in PGDBG GUI .136
Figure 1-15: Messages Subwindow. .138
Figure 2-1: Profiler Window. .160
Figure 2-2: Figure 2-2: Profiler Window with Visible Histogram .161
Figure 2-3: Figure 2-3: PGPROF with Visible Process/Thread Selector .162
Figure 2-4: Example Routine Level Profile .164
Figure 2-5: Example Line Level Profile .165
Figure 2-6: Example Instruction Level Profile .166
Figure 2-7: Bar Chart Color Dialog Box. .171
Figure 2-8: Font Chooser Dialog Box .171
Figure 2-9: PGPROF Help .173
Figure 2-10: PGPROF with Max, Avg, Min rows. .174
Figure 2-11: Source Lines with Multiple Profile Entries .177
Figure 2-12: Selecting Profile Entries with Coverage Greater Than 3% .181
Figure 2-13: Profile of an Application Run with 1 Process .183
Figure 2-14: Profile with Visible Scale Column. .184
Figure 2-15: Profile with Hardware Event Counter .186

xii

Intended Audience

xiii

Preface
This guide describes how to use the PGPROF profiler and PGDBG debugger to tune and debug serial and
parallel applications built with The Portland Group (PGI) Fortran, C, and C++ for X86, AMD64 and
EM64T processor-based systems. It contains information about how to use the tools, as well as detailed
reference information on commands and graphical interfaces.

Intended Audience

This guide is intended for application programmers, scientists and engineers proficient in programming
with the Fortran, C, and/or C++ languages. The PGI tools are available on a variety of operating systems
for the X86, AMD64, and EM64T hardware platforms. This guide assumes familiarity with basic
operating system usage.

Supplementary Documentation

See http://www.pgroup.com/docs.htm for the PGDBG documentation updates. Documentation delivered
with PGDBG should be accessible on an installed system by accessing $PGI/docs/index.htm. See http://
www.pgroup.com/faq/index.htm for frequently asked PGDBG questions and answers.

Compatibility and Conformance to Standards

The PGI compilers and tools run on a variety of systems. They produce and/or process code that
conforms to the ANSI standards for FORTRAN 77, Fortran 95, C, and C++ and includes extensions from
MIL-STD-1753, VAX/VMS Fortran, IBM/VS Fortran, SGI Fortran, Cray Fortran, and K&R C. PGF77,
PGF90, PGCC ANSI C, and C++ support parallelization extensions based on the OpenMP defacto
standard. PGHPF supports data parallel extensions based on the High Performance Fortran (HPF)
defacto standard. The PGI Fortran Reference Manual describes Fortran statements and extensions as
implemented in the PGI Fortran compilers. PGDBG permits debugging of serial and parallel (multi-
threaded, OpenMP and/or MPI) programs compiled with PGI compilers. PGPROF permits profiling of
serial and parallel (multi-threaded, OpenMP and/or MPI) programs compiled with PGI compilers.

For further information, refer to the following:

• American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

xiv

• ISO/IEC 1539:1991, Information technology – Programming Languages – Fortran, Geneva, 1991
(Fortran 90).

• ISO/IEC 1539:1997, Information technology – Programming Languages – Fortran, Geneva, 1997
(Fortran 95).

• High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston, Texas
(1993), http://www.crpc.rice.edu/HPFF.

• High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston, Texas
(1997), http://www.crpc.rice.edu/HPFF.

• OpenMP Application Program Interface, Version 2.5, May 2005, http://www.openmp.org.

• Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

• Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

• American National Standard Programming Language C, ANSI X3.159-1989.

• ISO/IEC 9899:1999, Information technology – Programming Languages – C, Geneva, 1999 (C99).

• HPDF Standard (High Performance Debugging Forum) http://www.ptools.org/hpdf/draft/
intro.html

Organization

This manual is organized as follows:

Chapter 1 This chapter describes PGDBG, a symbolic debugger for Fortran, C, C++
and assembly language programs.

“Definition of Terms” on page 1 through “PGDBG Invocation and
Initialization” on page 2 describe how to build a target application for
debug and invoke PGDBG.

“PGDBG Graphical User Interface” on page 5 describes how to use the
PGDBG graphical user interface (GUI).

Conventions

xv

“PGDBG Command Language” on page 31 through “PGDBG Command
Reference” on page 51 provide detailed information about the PGDBG
command language, which can be used from the command-line user
interface or from the command panel of the graphical user interface.

“Signals” on page 87 through “Debugging with Core Files” on page 98
give some detail on how PGDBG interacts with signals, how to access
registers, language-specific issues, and debugging with core files.

“Debugging Parallel Programs” on page 100 through “MPI Debugging”
on page 136 describe the parallel debugging capabilities of PGDBG and
how to use them.

Chapter 2 The PGPROF Profiler chapter describes the PGPROF Profiler. This tool
analyzes data generated during execution of specially compiled C, C++,
F77, F95, and HPF programs.

Conventions

This guide uses the following conventions:

italic is used for commands, filenames, directories, arguments, options and for
emphasis.

Constant Width is used in examples and for language statements in the text, including
assembly language statements.

[item1] in general, square brackets indicate optional items. In this case item1 is
optional. In the context of p/t-sets, square brackets are required to specify
a p/t-set.

{ item2 | item 3} braces indicate that a selection is required. In this case, you must select
either item2 or item3.

filename ... ellipsis indicate a repetition. Zero or more of the preceding item may
occur. In this example, multiple filenames are allowed.

FORTRAN Fortran language statements are shown in the text of this guide using a
reduced fixed point size.

xvi

C/C++ C/C++ language statements are shown in the test of this guide using a
reduced fixed point size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of the Linux and Windows
operating systems on a variety of x86-compatible processors. There are a wide variety of releases and
distributions of each of these types of operating systems. The PGI User’s Guide defines the following
terms with respect to these platforms:

x86 a processor designed to be binary compatible with i386/i486 and previous
generation processors from Intel* Corporation.

IA32 an Intel Architecture 32-bit processor designed to be binary compatible
with x86 processors, but incorporating new features such as streaming
SIMD extensions (SSE) for improved performance.

AMD64 a 64-bit processor from AMD designed to be binary compatible with IA32
processors, and incorporating new features such as additional registers
and 64-bit addressing support for improved performance and greatly
increased memory range.

EM64T a 64-bit IA32 processor with Extended Memory 64-bit Technology
extensions that are binary compatible with AMD64 processors. This
includes the Intel Pentium 4, Intel Xeon, and Intel core 2 processors.

linux86 32-bit Linux operating system running on an x86, AMD64 or EM64T
processor-based system, with 32-bit GNU tools, utilities and libraries used
by the PGI compilers to assemble and link for 32-bit execution.

linux86-64 64-bit Linux operating system running on an AMD64 or EM64T processor-
based system, with 64-bit and 32-bit GNU tools, utilities and libraries used
by the PGI compilers to assemble and link for execution in either linux86
or linux86-64 environments. The 32-bit development tools and execution
environment under linux86-64 are considered a cross development
environment for x86 processor-based applications.

SFU Services for Unix, a 32-bit-only predecessor of SUA, the Subsystem for Unix
Applications. See SUA.

SUA Subsystem for UNIX-based Applications (SUA) is source-compatibility
subsystem for compiling and running custom UNIX-based applications on
a computer running 32-bit or 64-bit Windows server-class operating

Related Publications

xvii

system. It provides an operating system for Portable Operating System
Interface (POSIX) processes. SUA supports a package of support utilities
(including shells and >300 Unix commands), case-sensitive file names,
and job control. The subsystem installs separately from the Windows
kernel to support UNIX functionality without any emulation.

Win32 any of the 32-bit Microsoft* Windows* Operating Systems (XP/2000/Server
2003) running on an x86, AMD64 or EM64T processor-based system. On
these targets, the PGI compiler products include additional tools and
libraries needed to build executables for 32-bit Windows systems.

Win64 any of the 64-bit Microsoft* Windows* Operating Systems (XP Professional
/Windows Server 2003 x64 Editions) running on an AMD64 or EM64T
processor-based system.

Related Publications

The following documents contain additional information related to the X86 architecture and the
compilers and tools available from The Portland Group.

• PGI Fortran Reference Manual describes the FORTRAN 77, Fortran 90/95, and HPF statements,
data types, input/output format specifiers, and additional reference material related to the use of
PGI Fortran compilers.

• System V Application Binary Interface Processor Supplement by AT&T UNIX System Laboratories,
Inc. (Prentice Hall, Inc.).

• FORTRAN 95 HANDBOOK, Complete ANSI/ISO Reference (The MIT Press, 1997).

• Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

• The C Programming Language by Kernighan and Ritchie (Prentice Hall).

• C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

• The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T Bell
Laboratories, Inc. (Addison-Wesley Publishing Co., 1990)

• PGI User’s Guide, PGI Tools Guide, PGI Release Notes, FAQ, Tutorials, http://www.pgroup.com/

xviii

• MPI-CH http://www.unix.mcs.anl.gov/mpi/mpich /

• OpenMP http://www.openmp.org/

• Ptools (Parallel Tools Consortium) http://www.ptools.org/

• PAPI (Performance Application Program Interface) http://icl.cs.utk.edu/papi/

• HPDF (High Performance Debugging Forum) Standard http://www.ptools.org/hpdf/draft/
intro.html

System Requirements

• Linux or Windows (See http://www.pgroup.com/faq/install.htm for supported releases)

• Intel x86 (and compatible), AMD Athlon or AMD64, or Intel EM64T or Core2 processor

Definition of Terms

1

1 The PGDBG Debugger
PGDBG is a symbolic debugger for Fortran, C, C++ and assembly language programs. It provides typical
debugger features, such as execution control using breakpoints and single-stepping, as well as
examination and modification of application variables, memory locations, and registers. In addition,
PGDBG supports debugging of certain types of parallel applications, depending on the operating system
on the target machine.

• linux86 and linux86-64:

• Multi-threaded and OpenMP Linux applications.

• MPI applications on Linux clusters.

• Hybrid applications, which use multiple threads or OpenMP as well as multiple MPI
processes on Linux clusters.

• Win32 and Win64:

• Multi-threaded and OpenMP Windows applications.

Multi-threaded and OpenMP applications may be run using more threads than the available number of
CPUs, and MPI applications may allocate more than one process to a cluster node. PGDBG supports
debugging the listed types of applications regardless of how well the number of threads match the
number of CPUs or how well the number of processes match the number of cluster nodes.

Definition of Terms

Host The system on which PGDBG executes. This will generally be the system
where source and executable files reside, and where compilation is
performed.

Target A program being debugged.

Target Machine The system on which a target runs. This may or may not be the same
system as the host.

For an introduction to terminology used to describe parallel debugging, see “Summary of Parallel
Debugging Features” on page 100.

The PGDBG Debugger

2

Building Applications for Debug

To build an application for debug, compile with the –g option. With this option, the compiler will
generate information about the symbols and source files in the program and include it in the executable
file. The –g option also sets the compiler optimization to level zero (no optimization) unless you specify
optimization options (such as –O, -fast, or –fastsse) on the command line. Optimization options take
effect whether they are listed before or after –g on the command line. Programs built with –g and
optimization levels higher than –O0 can be debugged, but due to transformations made to the program
during optimization, source-level debugging may not be reliable. Machine-level debugging (e.g.,
accessing registers, viewing assembly code, etc.) will be reliable, even with optimized code. Programs
built without –g can be debugged; however, information about types, local variables, arguments and
source file line numbers will not be available.

In programs built with both –g and optimization levels higher than –O0, some optimizations may be
disabled or otherwise affected by the –g option, possibly changing the program behavior. An alternative
option, -gopt, can be used to build programs with full debugging information, but without modifying
program optimizations. Unlike –g, the –gopt option does not set optimization to level zero.

To build an application for debug on Windows platforms, applications must be linked with the –g option
as well as compiled with -g. This will result in the generation of debug information stored in a ‘.dwf’ file
and a ‘.pdb’ file. The PGI compiler driver should always be used to link applications; the linker should
never be invoked directly.

PGDBG Invocation and Initialization

PGDBG includes both a command-line interface and a graphical user interface (GUI). Text commands
are entered one line at a time through the command-line interface. The GUI interface supports
command entry through a point-and-click interface, a view of source and assembly code, a full
command-line interface panel, and several other graphical elements and features. “PGDBG Command
Language” on page 31 through “PGDBG Command Reference” on page 51 describe in detail how to use
the PGDBG command-line interface. “PGDBG Graphical User Interface” on page 5 describes how to use
the PGDBG GUI.

Invoking PGDBG

PGDBG is invoked using the pgdbg command as follows:

% pgdbg arguments target arg1 arg2 ... argn

PGDBG Invocation and Initialization

3

where arguments may be any of the command-line arguments described in “PGDBG Command-Line
Options” on page 4. See “Invoking PGDBG for MPI Debugging” on page 103 for instructions on how to
debug an MPI program [Linux Only].

The target parameter is the name of the program executable file being debugged. The arguments arg1
arg2 … argn are the command-line arguments to the target program. Invoking PGDBG as described
will start the PGDBG Graphical User Interface (GUI) (see Section “PGDBG Graphical User Interface” on
page 5). For users who prefer to use a command-line interface, PGDBG may be invoked with the –text
parameter (see “PGDBG Command-Line Options” on page 4 and “PGDBG Command Language” on
page 31).

Note that the command shell will interpret any I/O redirection specified on the PGDBG command line.
See “Process Control” on page 51 for a description of how to redirect I/O using the run command.

Both 32-bit and 64-bit applications are supported. In general, the PATH is set to the native architecture.
If the PATH environment variable is set to use the 32-bit PGI tools, a 64-bit application can be debugged
by invoking PGDBG with the –tp option. Conversely, if the PATH environment variable is set to use the
64-bit PGI tools, a 32-bit application can be debugged by invoking PGDBG with the –tp option. See
“PGDBG Command-Line Options” on page 4 for details.

Once PGDBG is started, it reads symbol information from the executable file, then loads the application
into memory. For large applications this process can take a few moments.

If an initialization file named .pgdbgrc exists in the current directory or in the home directory (as
defined by the environment variable HOME), it is opened and PGDBG executes the commands in the file.
The initialization file is useful for defining common aliases, setting breakpoints and for other startup
commands. If an initialization file is found in the current directory, then the initialization file in the
home directory, if there is one, is ignored. However, a script command placed in the initialization file
may execute the initialization file in the home directory, or execute PGDBG commands in any other file
(for example in the file .dbxinit for users who have an existing dbx debugger initialization file).

After processing the initialization file, PGDBG is ready to process commands. Normally, a session begins
by setting one or more breakpoints, using the break, stop or trace commands, and then issuing a run
command followed by cont, step, trace or next.

The PGDBG Debugger

4

Selecting a Version of Java

The PGDBG graphical user interface (GUI) depends on Java. PGDBG command line mode (pgdbg -text)
does not depend on Java. PGDBG requires that the Java Virtual Machine be a specific mimimum version
or above. By default, PGDBG will use the version of Java installed with your PGI software; if you chose
not to install Java when installing your PGI software, PGDBG will look for Java on your PATH. Both of
these can be overriden by setting the PGI_JAVA environment variable to the full path of the Java
executable you wish to use. For example, on a Linux system using the bash shell:

$ export PGI_JAVA=/home/myuser/myjava/bin/java

PGDBG Command-Line Options

The pgdbg command accepts several command line arguments that must appear on the command line
before the name of the program being debugged. The valid options are:

-dbx Start the debugger in dbx mode, which provides a dbx-like debugger
command language.

-s startup The default initialization file is ~/.pgdbgrc. The –s option specifies an
alternate initialization file startup.

-c “command” Execute the debugger command command (command must be in double
quotes) before executing the commands in the startup file.

-r Run the debugger without first waiting for a command. If the program
being debugged runs successfully, the debugger terminates. Otherwise, the
debugger is invoked and stops when an exception occurs.

-text Run the debugger using a command-line interface (CLI). The default is
for the debugger to launch in graphical user interface (GUI) mode.

-tp px, -tp k8-32 Debug a 32-bit program running on under a 64-bit operating system. This
option is valid under the 64-bit version of PGDBG only.

-tp p7-64, -tp k8-64 Debug a 64-bit program running under a 64-bit operating system. This
option is valid under the 64-bit version of PGDBG only.

–help Display a list of command-line arguments (this list).

–I <directory> Adds <directory> to the list of directories that PGDBG uses to search for
source files. This option may be used multiple times to add multiple
directories to the search path.

PGDBG Graphical User Interface

5

PGDBG Graphical User Interface

The default user interface used by PGDBG is a Graphical User Interface (GUI). There may be minor
variations in the appearance of the PGDBG GUI from host to host, depending on the type of display
hardware available, the settings for various defaults and the window manager used. Except for
differences caused by those factors, the basic interface remains the same across all systems.

Main Window

Figure 1-1 , “Default Appearance of PGDBG GUI”, shows the main window of PGDBG GUI when it is
invoked for the first time. This window appears when PGDBG starts and remains throughout the debug
session. The initial size of the main window is approximately 700 x 600. It can be resized according to
the conventions of the window manager. Changes in window size and other settings are saved and used
in subsequent invocations of PGDBG. To prevent this, uncheck the Save Settings on Exit item under the
Settings menu. See “Main Window Menus” on page 13, for information on the Settings menu.

The PGDBG Debugger

6

Figure 1-1: Default Appearance of PGDBG GUI

There are three horizontal divider bars (controlled by small up and down arrow icons) at the top of the
GUI in Figure 1-1. These dividers hide the following optional control panels: Command Prompt, Focus
Panel, and the Process/Thread Grid. Figure 1-3 , “PGDBG GUI with All Control Panels Visible”, shows the
main window with these controls visible. The GUI will remember which control panels are visible when
you exit and will redisplay them when you reopen PGDBG. Below the dividers is the Source Panel
described in “Source Panel” on page 11.

A second window named the Program I/O window is displayed when PGDBG is started. Any input or
output performed by the target program is entered and/or displayed in this window.

PGDBG Graphical User Interface

7

Figure 1-2: PGDBG Program I/O Window

On Windows platforms this window is instantiated behind the PGDBG main window in order to maintain
input focus in the main window.

The PGDBG Debugger

8

Figure 1-3: PGDBG GUI with All Control Panels Visible

PGDBG Graphical User Interface

9

The components of the main window (from top to bottom as seen in Figure 1-3) are:

• Command Prompt Panel

• Focus Panel

• Process/Thread Grid

• Source Panel

Command Prompt Panel

The Command Prompt Panel provides an interface in which to use the PGDBG command language.
Commands entered in this window are executed, and the results are displayed. See “Commands
Summary” on page 40, for a list of commands that can be entered in the command prompt panel. The
GUI also supports a “free floating” version of this window. To use the “free floating” command prompt
window, select the Command Window check box under the Window menu (“Source Panel Menus” on
page 15). Users who use only GUI controls may leave this panel hidden.

Focus Panel

The Focus Panel can be used in a parallel debugging session to specify subsets of processes and/or
threads known as p/t-sets. P/t-sets allow application of debugger commands to a subset of threads and/
or processes. P/t-sets are displayed in the table labeled Focus (Figure 1-3). In Figure 1-3, the Focus table
contains one p/t-set called All that represents all processes/threads. P/t-sets are covered in more detail in
“p/t-set Notation” on page 110. Within the PGDBG GUI, select a p/t set using a left mouse click on the
desired group in the Focus table. The selected group is known as the Current Focus. By default, the
Current Focus is set to all processes/threads. Note that this panel has no real use in serial debugging
(debugging one single-threaded process).

On Windows platforms, p/t-sets are used only for distinguishing threads.

Process/Thread Grid

The Process/Thread Grid is another component of the interface used for parallel debugging. All active
target processes and threads are listed in the Process/Thread Grid. If the target application consists of
multiple processes, the grid is labeled Process Grid. If the target application is a single multi-threaded
process, the grid is labeled Thread Grid. The colors of each element in the grid represent the state of the
corresponding component of the target application; for example, green means running and red means
stopped. The colors and their meanings are defined in Table 1-1.

The PGDBG Debugger

10

On Windows platforms, the Process/Thread Grid is used only for distinguishing threads.

Table 1-1: Thread State Is Described Using Color

In the Process/Thread Grid, each element is labeled with a numeric process identifier (see “Process-only
Debugging” on page 109) and represents a single process. Each element is a button that can be pushed
to select the corresponding process as the Current Process. The Current Process is highlighted with a
thick black border.

For single-process/multi-threaded (e.g., OpenMP) targets, the grid is called the Thread Grid. Each
element in the thread grid is labeled with a numeric thread identifier (see “Threads-only Debugging” on
page 108). As with the process grid, clicking on an element in the thread grid selects that element as the
Current Thread, which is highlighted with a thick black border.

For multi-process/multi-threaded (hybrid) targets, the grid is labeled the Process Grid. Selecting a
process in the grid will reveal an inner thread grid as shown in Figure 1-4 , “Process Grid with Inner
Thread Grid”. In Figure 1-4, process 0 has four threads labeled 0.0, 0.1, 0.2, and 0.3; where the integer to
the left of the decimal point is the process identifier and the integer to the right of the decimal point is
the thread identifier. See “Multilevel Debugging” on page 109 for more information on processes/thread
identifiers.

For a text representation of the Process/Thread grid, select the Summary tab under the grid. The text
representation is essentially the output of the threads debugger command (see “Process Control” on
page 51). When debugging a multi-process or multi-threaded application, the Summary panel will also
include a Context Selector (as described in “Source Panel Pop-Up Menus” on page 22). Use the Context
Selector to view a summary on a subset of processes/threads. By default, a summary of all the processes/
threads displays.

Option Description

Stopped Red

Signaled Blue

Running Green

Exited Black

Killed Black

PGDBG Graphical User Interface

11

Use the slider to the right of the grid to zoom in and out of the grid. Currently, the grid supports up to
1024 elements. If the slider is not visible, increase the size of the Process/Thread grid’s panel.

Source Panel

The Source Panel displays the source code for the current location. The current location is marked by an
arrow icon under the PC column. Source line numbers are listed under the Line No. column. Figure 1-4
shows some of the line numbers grayed-out. A grayed-out line number indicates that its respective
source line is non-executable. Some examples of non-executable source lines are comments, non-
applicable preprocessed code, some routine prologs, and some variable declarations. A line number in a
black font represent an executable source line. Breakpoints may be set at any executable source line by
clicking the left mouse button under the Event column of the source line. The breakpoints are marked
by stop sign icons. An existing breakpoint may be deleted by clicking the left mouse button on the stop
sign icon. The source panel is described in greater detail in .“Source Panel” on page 15

The PGDBG Debugger

12

Figure 1-4: Process Grid with Inner Thread Grid

PGDBG Graphical User Interface

13

Main Window Menus

The main window includes three menus located at the top of the window: File, Settings, and Help. Below
is a summary of each menu in the main window.

• File Menu

• Open Target… – Select this option to begin a new debugging session. After selecting this
option, select the program to debug (the target) from the file chooser dialog. The current
target is closed and replaced with the target that you selected from the file chooser. Press the
Cancel button in the file chooser to abort the operation. See the debug command in “Process
Control” on page 51 for more information.

• Attach to Target… – [Linux Only] Select this option to attach to a running process. You can
attach to a target running on a local or a remote host. See also the attach command in
“Process Control” on page 51.

• Detach Target – [Linux Only] Select this option to end the current debug session. This
command does not terminate the target application. See the detach command in “Process
Control” on page 51 for more information.

• Exit – End the current debug session and close all the windows.

• Settings Menu

• Font… – This option displays the font chooser dialog box. Use this dialog box to select the
font and size used in the Command Prompt Panel, Focus Panel, and Source Panel. The
default font is named monospace and the default size is 12.

• Show Tool Tips – Select this check box to enable tool tips. Tool tips are small temporary
messages that pop-up when you position the mouse pointer over a component in the GUI.
They provide additional information on what a particular component does. Unselect this
check box to turn them off.

• Restore Factory Settings – Select this option to restore the GUI to its initial state as shown in
Figure 1-1.

• Restore Saved Settings – Select this option to restore the GUI to the state that it was in at the
start of the debug session.

The PGDBG Debugger

14

• Save Settings on Exit – By default, the PGDBG will save the state (size and settings) of the
GUI when you exit. Uncheck this option to prevent PGDBG from saving the GUI state. This
option must be unchecked prior to every exit since PGDBG will always default to saving GUI
state. When PGDBG saves state, it stores the size of the main window, the location of the
main window on the desktop, the location of each control panel divider, the tool tips
preference, the font and size used. The GUI state is not shared across host machines.

• Help Menu

• PGDBG Help… – This option starts up PGDBG’s integrated help utility as shown in
Figure 1-5. The help utility includes a summary of every PGDBG command. To find a
command, use one of the following tabs in the left panel: The “book” tab presents a table of
contents, the “index” tab presents an index of commands, and the “magnifying glass” tab
presents a search engine. Each help page (displayed on the right) may contain hyperlinks
(denoted in underlined blue) to terms referenced elsewhere in the help engine. Use the arrow
buttons to navigate between visited pages. Use the printer buttons to print the current help
page.

• About PGDBG… – This option displays a dialog box with version and copyright information
on PGDBG. It also contains sales and support points of contact.

PGDBG Graphical User Interface

15

Figure 1-5: PGDBG Help Utility

Source Panel

As described in “Source Panel” on page 11, the source panel is located at the bottom of the GUI; below
the Command Prompt, Focus Panel, and Process/Thread Grid. Use the source panel to control the debug
session, step through source files, set breakpoints, and browse source code. The source panel descriptions
are divided into the following categories: Menus, Buttons, Combo Boxes, Messages, and Events.

Source Panel Menus

The source panel contains the following four menus: Data, Window, Control, and Options. In the
descriptions below, keyboard shortcuts will be indicated by keystroke combinations (e.g., Control P)
enclosed in parentheses.

The PGDBG Debugger

16

Data Menu The items under this menu are enabled when a data item is selected in the
source panel. Selecting and printing data in the source panel is explained
in detail in “Source Panel” on page 11. See also “Printing Variables and
Expressions” on page 67.

Print Print the value of the selected item. (Control
P).

Print * Dereference and print the value of the
selected item.

String Treat the selected value as a string and print
its value.

Bin Print the binary value of the selected item.

Oct Print the octal value of the selected item.

Hex Print the hex value of the selected item.

Dec Print the decimal value of the selected item.

Ascii Print the ASCII value of the selected item.

Addr Print the address of the selected item.

Type Of Print data type information for the selected
item.

Window Menu The items under this menu select various subwindows associated with the
target application. Subwindows are explained in greater detail in “Source
Panel Pop-Up Menus” on page 22.

Registers Display the registers subwindow. See also the
regs command in “Register Access” on page
76.

Stack Display the stack subwindow. See also the
Stack command in “Program Locations” on
page 65.

Locals Display a list of local variables that are
currently in scope. See also the names
command in “Scope” on page 74.

PGDBG Graphical User Interface

17

Custom Bring up a custom subwindow.

Disassembler Bring up the PGDBG Disassembler
subwindow.

Memory Bring up the memory dumper subwindow.

Messages [Linux Only] Display the MPI message
queues. See “MPI Message Queues” on page
137 for more information on MPI message
queues.

Events Display a list of currently active breakpoints,
watchpoints, etc.

Command Window When this menu item’s check box is selected,
the GUI will display a “free floating” version
of the command prompt window. See
“Commands Summary” on page 40 for a
description of each command that can be
entered in the command prompt.

Control Menu The items under this menu control the execution of the target application.
Many of the items under this menu have a corresponding button
associated with them (see “Source Panel Buttons” on page 20).

Arrive Return the source pane to the current PC
location. See the arrive command in
“Program Locations” on page 65 (Control
A).

Up Enter scope of routine up one level in the
call stack. See the up command in “Scope”
on page 74 (Control U).

Down Enter scope of routine down one level in the
call stack. See the down command in
“Scope” on page 74 (Control D).

Run Run or Rerun the target application. See the
run and rerun commands in “Process
Control” on page 51 (Control R).

The PGDBG Debugger

18

Run Arguments Opens a dialog box that allows adding to or
modifying the target’s runtime arguments.

Halt Halt the running processes or threads. See
the halt command in “Process Control” on
page 51 (Control H).

Call… Open a dialog box to request a routine to
call. See “Symbols and Expressions” on page
71 for more information on the call
command.

Cont Continue execution from the current
location. See the cont command in “Process
Control” on page 51 (Control G).

Step Continue and stop after executing one
source line, stepping into called routines.
See the step command in “Process Control”
on page 51 (Control S).

Next Continue and stop after executing one
source line, stepping over called routines.
See the next command in “Process Control”
on page 51 (Control N).

Step Out Continue and stop after returning to the
caller of the current routine. See the stepout
command in “Process Control” on page 51
(Control O).

Stepi Continue and stop after executing one
machine instruction, stepping into called
routines. See the stepi command in “Process
Control” on page 51 (Control I).

Nexti Continue and stop after executing one
machine instruction, stepping over called
routines. See the nexti command in “Process
Control” on page 51 (Control T).

PGDBG Graphical User Interface

19

Options Menu This menu contains additional items that assist in the debug process.

Search Forward… Select this option to perform a forward
keyword search in the source panel (Control
F).

Search Backward… Select this option to perform a backward
keyword search in the source panel (Control
B).

Search Again Select this option to repeat the last keyword
search that was performed on the source
panel (Control E).

Locate Routine… When this option is selected, PGDBG will
query for the name of the routine that you
wish to find. If PGDBG has symbol and
source information for that routine, it will
display the routine in the source panel. See
also “Source Panel Pop-Up Menus” on page
22.

Set Breakpoint… When this option is selected, PGDBG will
query for the name of a routine for setting a
breakpoint. The GUI will then set a
breakpoint at the first executable source line
in the specified routine.

Disassemble Disassemble the data selected in the source
panel. See also “Source Panel Pop-Up
Menus” on page 22.

Cascade Windows If one or more subwindows are open, this
option can be used to automatically stack
subwindows in the upper left-hand corner of
the desktop (Control W).

Refresh Repaint the process/thread grid and source
panels (Control L).

The PGDBG Debugger

20

Source Panel Buttons

There are nine buttons located above the source panel’s menus. Below is a summary of each button.

Run Same as the Run item under the Control menu.

Halt Same as the Halt item under the Control menu.

Cont Same as the Cont item under the Control menu.

Next Same as the Next item under the Control menu.

Step Same as the Step item under the Control menu.

Stepo Same as the Step Out item under the Control menu.

Nexti Same as the Nexti item under the Control menu.

Stepi Same as the Stepi item under the Control menu.

Back Reset the source panel view to the current PC location (denoted by the left arrow icon under
the PC column).

Source Panel Combo Boxes

Depending on the state of the debug session, the source panel may contain one or more combo boxes. A
combo box is a combination text field and list component. In its closed or default state, it presents a text
field of information with a small down arrow icon to its right. When the down arrow icon is selected by a
left mouse click, the box opens and presents a list of choices that can be selected.

The source panel, as shown in Figure 1-3, contains five combo boxes labeled All, Thread 0, omp.c, #0
main line: 12 in “omp.c” address: 0x4011f6, and Source. These combo boxes are called the Apply
Selector, Context Selector, Source File Selector, Scope Selector, and Display Mode Selector respectively.
Below is a description of each combo box.

• Use the Apply Selector to select the set of processes and/or threads on which to operate. Any
command entered in the source panel will be applied to this set of processes/threads. These
commands include setting breakpoints, selecting items under the Control menu, pressing one of
the nine buttons mentioned in “Source Panel Buttons” on page 20, and so on. Depending on
whether you are debugging a multi-threaded, multi-process, or multi-process/multi-threaded
(hybrid) target, the following options are available:

PGDBG Graphical User Interface

21

All All processes/threads receive commands entered in the source panel
(default).

Current Thread Commands are applied to the current thread ID only.

Current Process Commands are applied to all threads that are associated with the
current process.

Current Process.Thread Commands are applied to the current thread on the current process
only.

Focus Commands are applied to the focus group selected in the Focus
Panel (described in “Main Window” on page 5). Refer to “Process/
Thread Sets” on page 110for more information on this advanced
feature.

This combo box is not displayed when debugging a serial program.

• The function of the Context Selector is the same as for the Process/Thread Grid; it is used to
change the current Process, Thread, or Process.Thread ID currently being debugged. This combo
box is not displayed when debugging a serial program.

• By default, the Source File Selector displays the source file that contains the current target
location. It can be used to select another file for viewing in the Source Panel. When this combo box
is closed, it displays the name of the source file displayed in the Source Panel. To select a different
source file, open the combo box and select a file from the list. If the source file is available, the
source file will appear in the Source Panel.

• The Scope Selector displays the scope of the current Program Counter (PC). Open the combo box
and select a different scope from the list or use the up and down buttons located on the right of the
combo box. The up button is equivalent to the up debugger command and the down button is
equivalent to the down debugger command. See “Scope” on page 74 for more information on the
up and down commands.

• The Display Mode Selector is used to select three different source display modes: Source,
Disassembly, and Mixed. The Source mode shows the source code of the current source file
indicated by the File Selector. This is the default display mode if the source file is available. The
Disassembly mode shows the machine instructions of the current routine. This is the default
display mode if the source file is not available. The Mixed mode shows machine instructions
annotated with source code. This mode is available only if the source file is available.

The PGDBG Debugger

22

Source Panel Messages

The source panel contains two message areas. The top center indicates the current process/thread ID
(e.g., Thread 0 in Figure 1-7) and the bottom left displays status messages (e.g., Stopped at line 12… in
Figure 1-7).

Source Panel Events

Breakpoints are displayed under the Event column in the source panel. The stop sign icon denotes a
breakpoint. Breakpoints are added through the source panel by clicking the left mouse button on the
desired source line under the Event column. Clicking the left mouse button over a stop sign will delete
the corresponding breakpoint. Selecting the Events item under the Window menu will display a global
list of Events (e.g., breakpoints, watchpoints, etc.).

Source Panel Pop-Up Menus

The PGDBG source panel supports two pop-up menus to provide quick access to commonly used
features. One pop-up menu is used to invoke subwindows. It is accessed using a right mouse-click in a
blank or vacant area of the source panel. See “Subwindows” on page 24 for more information on
invoking subwindows using a pop-up menu.

The other pop-up menu is accessed by first highlighting some text in the source panel, then using a right
mouse click to bring up the menu. The selections offered by this pop-up menu take the selected text as
input.

To select text in the source panel, first click on the line of source containing the text. This will result in
the display of a box surrounding the source line. Next, hold down the left mouse button and drag the
cursor, or mouse pointer, across the text to be selected. The text should then be highlighted.

Once the text is highlighted, menu selections from the Source Panel menus or from the Source Panel
pop-up menu will use the highlighted text as input. In Figure 1-6, the variable myid has been
highlighted and the pop-up menu is being used to print its value as a decimal integer. The data type of
selected data items may also be displayed using the pop-up menu.

The pop-up menu provides the Disassemble, Call, and Locate selections, which use selected routine
names as input. The Disassemble item opens a disassembler subwindow for the selected routine. The Call
item can be used to manually call the selected routine. The Locate option displays the source code in
which the selected routine is defined. Please see the description for each of these items in “Source Panel
Menus” on page 15 for more information.

PGDBG Graphical User Interface

23

Figure 1-6: Data Pop-up Menu

The PGDBG Debugger

24

Subwindows

A subwindow is defined as any PGDBG GUI component that is not embedded in the main window
described in “Main Window” on page 5. One example of a subwindow is the Program I/O window
introduced in Figure 1-2. Other examples of subwindows can be found under the source panel’s Window
menu. These include the Registers, Stack, Locals, Custom, Disassembler, Memory, Messages, Events, and
Command Window subwindows. With the exception of the Command Window, all of these subwindows
are controlled by similar mechanisms. The standard subwindow control mechanisms are described in
“Standard Subwindow Controls” on page 26. Specific details of other subwindows are described in
subsequent sections. See the description of the Window menu, “Source Panel Menus” on page 15 for
more information on each subwindow.

The Window menu can be used to to bring up a subwindow. An alternative mechanism is to click the
right mouse button over a blank spot in the source panel to invoke a pop-up menu (Figure 1-7), which
can be used to select a subwindow. The subwindow that gets displayed is specific to the current process
and/or thread. For example, in Figure 1-7, selecting Registers will display the registers for thread 0,
which is the current thread.

PGDBG Graphical User Interface

25

Figure 1-7: Opening a Subwindow with a Pop-up Menu

The PGDBG Debugger

26

Standard Subwindow Controls

The PGDBG graphical user interface supports a number of subwindows for displaying detailed
information about the target application state. These subwindows include the memory subwindow, the
disassembler subwindow, the registers subwindow, the custom subwindow (used for displaying the
output of arbitrary commands), and the messages subwindow (used for displaying MPI state).

Figure 1-8 shows the memory subwindow. This subwindow shows all of the possible controls that are
available in a PGDBG subwindow. Not all subwindows will have all of the components shown in this
figure. However, nearly all will have the following components: File menu, Options menu, Reset button,
Close Button, Update button, and the Lock/Unlock toggle button.

The File menu contains the following items:

Save… Save the text in this subwindow to a file.

Close Close the subwindow.

The Options menu contains the following items:

Update Clear and regenerate the data displayed in the subwindow.

Stop Interrupt processing. This option comes in handy during long listings that can occur in the
Disassembler and Memory subwindows. Control C is a hot key mapped to this menu item.

Reset Clear the subwindow.

The Reset, Close, and Update buttons are synonymous with their menu item counterparts mentioned
above.

The Lock/Unlock button, located in the lower right hand corner of a subwindow, toggles between a lock
and an unlock state. Figure 1-8 shows this button in an unlocked state with the button labeled Lock.
Figure 1-9 shows this button in a locked state, with the button labeled Unlock. When the Lock/Unlock
button is in its unlocked state, subwindows will update themselves whenever a process or thread halts.
This can occur after a step, next, or cont command. To preserve the contents of a subwindow, click the
left mouse button on the Lock button to lock the display in the subwindow. Figure 1-9 shows an example
of a locked subwindow. Note that some of the controls in Figure 1-9 are disabled (grayed-out). After
locking a subwindow, PGDBG will disable any controls that affect the display until the subwindow is
unlocked. To unlock the subwindow, click the Unlock button. The toggle button will change to Lock and
PGDBG will re-enable the other controls.

PGDBG Graphical User Interface

27

Besides the subwindow capabilities described above, subwindows may also have one to three input fields.
If the subwindow has one or more input fields, then they also contain Stop and Clear buttons. The Stop
button is synonymous with the Stop item in the Options menu described above. The Clear button erases
the input field(s).

For target applications with more than one process and/or thread, a Context Selector displays in the
bottom center as shown in Figure 1-8. The Context Selector can be used to view data specific to a
particular process/thread or a subset of process/threads when selecting Focus. Refer to “Process/Thread
Sets” on page 110 for more information on Focus.

Figure 1-8: Memory Subwindow

Memory Subwindow

The memory subwindow displays a region of memory using a printf-like format descriptor. In the
Memory subwindow, inputs include the starting address in the Address field, the number of items in the
Count field, and a printf-like format string in the Format field. See the explanation of the PGDBG dump
command (“Memory Access” on page 77) for a description of supported format strings. The Address field
will accept a numeric address or a symbolic variable name.

The PGDBG Debugger

28

Disassembler Subwindow

Figure 1-9 shows the Disassembler subwindow. Use this subwindow to disassemble a routine (or a text
address) specified in the Request> input field. PGDBG will default to the current routine if you specify
nothing in the Request> input field. After a request is made to the Disassembler, the GUI will ask if you
want to “Display Disassembly in the Source window”. Choosing “yes” causes the Disassembler window to
disappear and the disassembly to appear in the source panel. Viewing the disassembly in the source
panel allows setting breakpoints at the machine instruction level. Choosing “no” will dump the
disassembly in the Disassembler subwindow as shown in Figure 1-9.

Specifying a text address (rather than a routine name) in the Request> field will cause PGDBG to
disassemble address locations until it runs out of memory or hits an invalid op code. This may cause
very large machine language listings. For that case, the subwindow provides a Stop button. Press the
Stop button to interrupt long listings that may occur with the Disassembler. Specify a count after the text
address to limit the number of instructions dumped to the subwindow. For example, entering 0xabcdef,
16 tells PGDBG to dump up to 16 instructions following address 0xabcdef. The Request> field accepts the
same arguments as the disasm command described in “Program Locations” on page 65.

PGDBG Graphical User Interface

29

Figure 1-9: Disassembler Subwindow

Registers Subwindow

Figure 1-10 illustrates the Registers subwindow. As mentioned earlier, view the registers on one or more
processes and threads using the Context Selector. The Registers subwindow is essentially a graphical
representation of the regs debugger command (see “Register Access” on page 76).

The PGDBG Debugger

30

Figure 1-10: Registers Subwindow

Custom Subwindow

Figure 1-11 illustrates the Custom subwindow. The Custom subwindow is useful for repeatedly executing
a sequence of debugger commands whenever a process/thread halts on a new location or when pressing
the Update button. The commands, entered in the edit box labeled “Command>”, can be any debugger
command mentioned in “Commands Summary” on page 40, including a semicolon-delimited list of
commands.

PGDBG Command Language

31

Figure 1-11: Custom Subwindow

Messages Subwindow

The Messages subwindow is used for debugging MPI applications. Refer to “MPI Message Queues” on
page 137 for more information on the content and use of this subwindow.

PGDBG Command Language

PGDBG supports a command language that is capable of evaluating complex expressions. The
command language can be used by invoking the PGDBG command line interface with the –text option,
or in the command prompt panel of the PGDBG graphical user interface. The next three sections of this
manual provide information about how to use this command language. See “PGDBG Graphical User
Interface” on page 5 for instructions on using the PGDBG GUI.

Commands are entered one line at a time. Lines are delimited by a carriage return. Each line must
consist of a command and its arguments, if any. The command language is composed of commands,
constants, symbols, locations, expressions, and statements.

The PGDBG Debugger

32

Commands are named operations, which take zero or more arguments and perform some action.
Commands may also return values that may be used in expressions or as arguments to other commands.

There are two command modes: pgi and dbx. The pgi command mode maintains the original PGDBG
command interface. In dbx mode, the debugger uses commands compatible with the familiar dbx
debugger. Pgi and dbx commands are available in both command modes, but some command behavior
may be slightly different depending on the mode. The mode can be set when PGDBG is invoked by using
command line options, or while the debugger is running by using the pgienv command.

Constants

PGDBG supports C language style integer (hex, octal and decimal), floating point, character, and string
constants.

Symbols

PGDBG uses the symbolic information contained in the executable object file to create a symbol table for
the target program. The symbol table contains symbols to represent source files, subprograms
(functions, and subroutines), types (including structure, union, pointer, array, and enumeration types),
variables, and arguments. The PGDBG command line interface is case-sensitive with respect to symbol
names; a symbol name on the command line must match the name as it appears in the object file.

Scope Rules

Since several symbols in a single application may have the same name, scope rules are used to bind
program identifiers to symbols in the symbol table. PGDBG uses the concept of a search scope for looking
up identifiers. The search scope represents a routine, a source file, or global scope. When the user enters
a name, PGDBG first tries to find the symbol in the search scope. If the symbol is not found, the
containing scope, (source file, or global) is searched, and so forth, until either the symbol is located or
the global scope is searched and the symbol is not found.

Normally, the search scope will be the same as the current scope, which is the routine where execution is
currently stopped. The current scope and the search scope are both set to the current routine each time
execution of the target program stops. However, the enter command can be used to change the search
scope.

A scope qualifier operator @ allows selection of out-of-scope identifiers. For example, if f is a routine
with a local variable i, then:

f@i

PGDBG Command Language

33

represents the variable i local to f. Identifiers at file scope can be specified using the quoted file name
with this operator, for example:

"xyz.c"@i

represents the variable i defined in file xyz.c.

Register Symbols

In order to provide access to the system registers, PGDBG maintains symbols for them. Register names
generally begin with $ to avoid conflicts with program identifiers. Each register symbol has a default
type associated with it, and registers are treated like global variables of that type, except that their
address may not be taken. See “Register Symbols” on page 89 for a complete list of the register symbols.

Source Code Locations

Some commands must refer to source code locations. Source file names must be enclosed in double
quotes. Source lines are indicated by number, and may be qualified by a quoted filename using the scope
qualifier operator.

Thus:

break 37

sets a breakpoint at line 37 of the current source file, and

break "xyz.c"@37

sets a breakpoint at line 37 of the source file xyz.c.

A range of lines is indicated using the range operator ":". Thus,

list 3:13

lists lines 3 through 13 of the current file, and

list "xyz.c"@3:13

lists lines 3 through 13 of the source file xyz.c.

The PGDBG Debugger

34

Some commands accept both line numbers and addresses as arguments. In these commands, it is not
always obvious whether a numeric constant should be interpreted as a line number or an address. The
description for these commands says which interpretation is used. However, PGDBG provides commands
to convert from source line to address and vice versa. The line command converts an address to a line,
and the addr command converts a line number to an address. For example:

{line 37}

means "line 37",

{addr 0x1000}

means "address 0x1000" , and

{addr {line 37}}

means "the address associated with line 37" , and

{line {addr 0x1000}}

means "the line associated with address 0x1000".

Lexical Blocks

Line numbers are used to name lexical blocks. The line number of the first instruction contained by a
lexical block is used to indicate the start scope of the lexical block.

In the example below, there are two variables named var. One is declared in function main, and the
other is declared in the lexical block starting at line 5. The lexical block has the unique name
"lex.c"@main@5. The variable var declared in "lex.c"@main@5 has the unique name
"lex.c"@main@5@var. The output of the whereis command below shows how these identifiers can be
distinguished.

lex.c:

1 main()

2 {

3 int var = 0;

4 {

5 int var = 1;

6 printf("var %d\n",var);

PGDBG Command Language

35

7 }

8 printf("var %d\n",var)

9 }

pgdbg> n

Stopped at 0x8048b10, function main, file

/home/demo/pgdbg/ctest/lex.c,

line 6

#6: printf("var %d\n",var);

pgdbg> print var

1

pgdbg> which var

"lex.c"@main@5@var

pgdbg> whereis var

variable: "lex.c"@main@var

variable: "lex.c"@main@5@var

pgdbg> names "lex.c"@main@5

var = 1

Statements

Although PGDBG command line input is processed one line at a time, statement constructs allow
multiple commands per line, as well as conditional and iterative execution. The statement constructs
roughly correspond to the analogous C language constructs. Statements may be of the following forms.

• Simple Statement: A command and its arguments. For example:

print i

• Block Statement: One or more statements separated by semicolons and enclosed in curly braces.
Note: these may only be used as arguments to commands or as part of if or while statements. For
example:

if(i>1) {print i; step }

• If Statement: The keyword if, followed by a parenthesized expression, followed by a block
statement, followed by zero or more else if clauses, and at most one else clause. For example:

if(i>j) {print i} else if(i<j) {print

j} else {print "i==j"}

The PGDBG Debugger

36

• While Statement: The keyword while, followed by a parenthesized expression, followed by a block
statement. For example:

while(i==0) {next}

Multiple statements may appear on a line separated by a semicolon. For example:

break main; break xyz; cont; where

sets breakpoints in routines main and xyz, continues, and prints the new current location. Any value
returned by the last statement on a line is printed.

Statements can be parallelized across multiple threads of execution. See “Parallel Statements” on page
131 for details.

Events

Breakpoints, watchpoints and other mechanisms used to define the response to certain conditions are
collectively called events.

• An event is defined by the conditions under which the event occurs and by the action taken when
the event occurs.

• A breakpoint occurs when execution reaches a particular address. The default action for a
breakpoint is simply to halt execution and prompt the user for commands.

• A watchpoint occurs when the value of an expression changes.

• A hardware watchpoint occurs when the specified memory location is accessed or modified.

PGDBG supports five basic commands for defining events. Each command takes a required argument
and may also take one or more optional arguments. The basic commands are break, watch, hwatch,
track and do. The command break takes an argument specifying a breakpoint location. Execution stops
when that location is reached. The watch command takes an expression argument. Execution stops and
the new value is printed when the value of the expression changes. The hwatch command takes a data
address argument (this can be an identifier or variable name). Execution stops when memory at that
address is written.

The track command is like watch except that execution continues after the new value is printed. The do
command takes a list of commands as an argument. The commands are executed whenever the event
occurs.

PGDBG Command Language

37

The five event commands share a common set of optional arguments. The optional arguments provide
the ability to make the event definition more specific. They are:

at line Event occurs at indicated line.

at addr Event occurs at indicated address.

in routine Event occurs throughout indicated routine.

if (condition) Event occurs only when condition is true.

do {commands} When event occurs execute commands.

The optional arguments may appear in any order after the required argument and should not be
delimited by commas.

For example:

watch i at 37 if(y>1)

This event definition says to stop and print the value of I whenever line 37 is executed and the value of y
is greater than 1.

do {print xyz} in f

This event definition says that at each line in the routine f print the value of xyz.

break func1 if (i==37) do {print

a[37]; stack}

This event definition says to print the value of a[37] and do a stack trace when i is equal to 37 in routine
func1.

Event commands that do not explicitly define a location will occur at each source line in the program.
For example:

do {where}

prints the current location at the start of each source line, and

track a.b

prints the value of a.b at the start of each source line if the value has changed.

The PGDBG Debugger

38

Events that occur at every line can be useful, but they can make program execution very slow.
Restricting an event to a particular address minimizes the impact on program execution speed, and
restricting an event that occurs at every line to a single routine causes execution to be slowed only when
that routine is executed.

PGDBG supports instruction level versions of several commands (for example breaki, watchi, tracki, and
doi). The basic difference in the instruction version is that these commands will interpret integers as
addresses rather than line numbers, and events will occur at each instruction rather than at each line.

When multiple events occur at the same location, all event actions will be taken before the prompt for
input. Defining event actions that resume execution is allowed but discouraged, since continuing
execution may prevent or defer other event actions. For example:

break 37 do {continue}

break 37 do {print i}

This creates an ambiguous situation. It's not clear whether i should ever be printed.

Events only occur after the continue and run commands. They are ignored by step, next, call, and other
commands.

Identifiers and line numbers in events are bound to the current scope when the event is defined.

For example:

break 37

sets a breakpoint at line 37 in the current file.

track i

will track the value of whatever variable i is currently in scope. If i is a local variable then it is wise to
add a location modifier (at or in) to restrict the event to a scope where i is defined.

Scope qualifiers can also specify lines or variables that are not currently in scope. Events can be
parallelized across multiple threads of execution. See “Parallel Events” on page 129 for details.

Expressions

The debugger supports evaluation of expressions composed of constants, identifiers, commands that
return values, and operators. Table 1-2 , “PGDBG Operators” shows the C language operators that are
supported. The operator precedence is the same as in the C language.

PGDBG Command Language

39

To use a value returned by a command in an expression, the command and arguments must be enclosed
in curly braces. For example:

breaki {pc}+8

invokes the pc command to compute the current address, adds 8 to it, and sets a breakpoint at that
address. Similarly, the following command compares the start address of the current routine with the
start address of routine xyz. It prints the value 1 if they are equal and 0 if they are not.

print {addr {func}}=={addr

xyz}

The @ operator, introduced previously, may be used as a scope qualifier. Its precedence is the same as
the C language field selection operators ".", and "->" .

PGDBG recognizes a range operator ":" which indicates array sub-ranges or source line ranges. For
example,

print a[1:10]

prints elements 1 through 10 of the array a, and

list 5:10

lists source lines 5 through 10, and

list "xyz.c"@5:10

lists lines 5 through 10 in file xyz.c. The precedence of ':' is between '||' and '='.

The general format for the range operator is [lo : hi : step] where:

lo is the array or range lower bound for this expression.

hi is the array or range upper bound for this expression.

step is the step size between elements.

An expression can be evaluated across many threads of execution by using a prefix p/t-set. See “Current
vs. Prefix p/t-set” on page 113 for details.

The PGDBG Debugger

40

Table 1-2: PGDBG Operators

Commands Summary

This section contains a brief summary of the PGDBG debugger commands. For more detailed

Operator Description Operator Description

* indirection <= less than or
equal

. direct field selec-
tion

>= greater than or
equal

-> indirect field selec-
tion

!= not equal

[] ``C’’ array index && logical and

() routine call || logical or

& address of ! logical not

+ add | bitwise or

(type) cast & bitwise and

- subtract ~ bitwise not

/ divide ^ bitwise exclusive
or

* multiply << left shift

= assignment >> right shift

== comparison () FORTRAN array
index

<< left shift % FORTRAN field
selector

>> right shift

Commands Summary

41

information on a command, see the section number associated with the command. If you are viewing an
online version of this manual, select the hyperlink under the selection category to jump to that section
in the manual.

The PGDBG Debugger

42

Table 1-3: PGDBG Commands

Name Arguments Section

arri[ve] “Program Locations” on
page 65

att[ach] <pid> [<exe>] | [<exe> <host>] “Process Control” on page
51

ad[dr] [n | line | func | var | arg] “Conversions” on page 79

al[ias] [name [string]] “Miscellaneous” on page
80

asc[ii] exp [,...exp] “Printing Variables and
Expressions” on page 67

as[sign] var=exp “Symbols and Expres-
sions” on page 71

bin exp [,...exp] “Printing Variables and
Expressions” on page 67

b[reak] [line | func] [if (condition)] [do {com-
mands}]

“Events” on page 56

breaki [addr | func] [if (condition)] [do {com-
mands}]

“Events” on page 56

breaks “Events” on page 56

call func [(exp,...)] “Symbols and Expres-
sions” on page 71

catch [number [,number...]] “Events” on page 56

cd [dir] “Program Locations” on
page 65

clear [all | func | line | addr {addr}] “Events” on page 56

Commands Summary

43

c[ont] “Process Control” on page
51

cr[ead] addr “Memory Access” on page
77

de[bug] “Process Control” on page
51

dec exp [,...exp] “Printing Variables and
Expressions” on page 67

decl[aration] name “Symbols and Expres-
sions” on page 71

decls [func | "sourcefile" | {global}] “Scope” on page 74

del[ete] event-number | all | 0 | event-number
[,.event-number.]

“Events” on page 56

det[ach “Process Control” on page
51

dir[ectory] [pathname] “Miscellaneous” on page
80

dis[asm] [count | lo:hi | func | addr, count] “Program Locations” on
page 65

disab[le] event-number | all “Printing Variables and
Expressions” on page 67

display exp [,...exp] “Printing Variables and
Expressions” on page 67

do {commands} [at line | in func] [if (condi-
tion)]

“Events” on page 56

doi {commands} [at addr | in func] [if (condi-
tion)]

“Events” on page 56

Name Arguments Section

The PGDBG Debugger

44

down “Scope” on page 74

defset name [p/t-set] “Process-Thread Sets” on
page 55

dr[ead] addr “Memory Access” on page
77

du[mp] address, count, "format-string" “Memory Access” on page
77

edit [filename | func] “Program Locations” on
page 65

enab[le] event-number | all “Events” on page 56

en[ter] func | "sourcefile" | {global} “Scope” on page 74

entr[y] func “Symbols and Expres-
sions” on page 71

fil[e] “Program Locations” on
page 65

files “Scope” on page 74

focus [p/t-set] “Process-Thread Sets” on
page 55

fp “Register Access” on page
76

fr[ead] addr “Memory Access” on page
77

func[tion] [addr | line] “Conversions” on page 79

glob[al]

“Global Commands” on
page 121

Name Arguments Section

Commands Summary

45

halt [command] “Process Control” on page
51

he[lp] “Miscellaneous” on page
80

hex Exp [,...exp] “Printing Variables and
Expressions” on page 67

hi[story] [num] “Miscellaneous” on page
80

hwatch addr [if (condition)] [do {commands}] “Events” on page 56

hwatchb[oth] addr [if (condition)] [do {commands}] “Events” on page 56

hwatchr[ead] addr [if (condition)] [do {commands}] “Events” on page 56

ignore [number [,number...]] “Events” on page 56

ir[ead] addr “Memory Access” on page
77

language “Miscellaneous” on page
80

lin[e] [n | func | addr] “Conversions” on page 79

lines routine “Program Locations” on
page 65

lis[t] [count | line,count | lo:hi | routine] “Program Locations” on
page 65

log filename “Miscellaneous” on page
80

lv[al] exp “Symbols and Expres-
sions” on page 71

Name Arguments Section

The PGDBG Debugger

46

mq[dump] “Memory Access” on page
77

names [func | "sourcefile" | {global}] “Scope” on page 74

n[ext] [count] “Process Control” on page
51

nexti [count] “Process Control” on page
51

nop[rint] exp “Miscellaneous” on page
80

oct exp [,...exp] “Printing Variables and
Expressions” on page 67

pc “Register Access” on page
76

pgienv [command] “Miscellaneous” on page
80

p[rint] exp1 [,...expn] “Printing Variables and
Expressions” on page 67

printf "format_string", expr,...expr “Printing Variables and
Expressions” on page 67

proc [number] “Process Control” on page
51

procs “Process Control” on page
51

pwd “Program Locations” on
page 65

q[uit] “Process Control” on page
51

Name Arguments Section

Commands Summary

47

regs “Register Access” on page
76

rep[eat] [first, last] | [first: last:n] | [num] | [-
num]

“Miscellaneous” on page
80

rer[un] [arg0 arg1 ... argn] [< inputfile] [> out-
putfile]

“Process Control” on page
51

ret[addr] “Register Access” on page
76

ru[n] [arg0 arg1 ... argn] [< inputfile] [> out-
putfile]

“Process Control” on page
51

rv[al] expr “Symbols and Expres-
sions” on page 71

sco[pe] “Scope” on page 74

scr[ipt] filename “Miscellaneous” on page
80

set var = ep “Symbols and Expres-
sions” on page 71

setenv name | name value “Miscellaneous” on page
80

sh[ell] arg0 [... argn] “Miscellaneous” on page
80

siz[eof] name “Symbols and Expres-
sions” on page 71

sle[ep] time “Miscellaneous” on page
80

source filename “Miscellaneous” on page
80

Name Arguments Section

The PGDBG Debugger

48

sp “Register Access” on page
76

sr[ead] addr “Memory Access” on page
77

stackd[ump] [count] “Program Locations” on
page 65

stack[trace] [count] “Program Locations” on
page 65

stat[us] “Events” on page 56

s[tep] [count] [up] “Process Control” on page
51

stepi [count] [up] “Process Control” on page
51

stepo[ut] “Process Control” on page
51

stop [at line | in func] [var] [if (condition)]
[do {commands}]

“Events” on page 56

stopi [at addr | in func] [var] [if (condition)]
[do {commands}]

“Events” on page 56

sync [func | line] “Process Control” on page
51

synci [func | addr] “Process Control” on page
51

str[ing] exp [,...exp] “Printing Variables and
Expressions” on page 67

thread number “Process Control” on page
51

Name Arguments Section

Commands Summary

49

threads “Process Control” on page
51

track expression [at line | in func] [if (condi-
tion)] [do {commands}]

“Events” on page 56

tracki expression [at addr | in func] [if (condi-
tion)] [do {commands}]

“Events” on page 56

trace [at line | in func] [var| func] [if (condi-
tion)] do {commands}

“Events” on page 56

tracei [at addr | in func] [var] [if (condition)]
do {commands}

“Events” on page 56

type expr “Symbols and Expres-
sions” on page 71

unal[ias] name “Miscellaneous” on page
80

undefset [name | -all] “Process-Thread Sets” on
page 55

undisplay [all | 0 | exp] “Printing Variables and
Expressions” on page 67

unb[reak] line | func | all “Events” on page 56

unbreaki addr | func | all “Events” on page 56

up “Scope” on page 74

use [dir] “Miscellaneous” on page
80

viewset name “Process-Thread Sets” on
page 55

Name Arguments Section

The PGDBG Debugger

50

wait [any | all | none] “Process Control” on page
51

wa[tch] expression [at line | in func] [if (condi-
tion)] [do {commands}]

“Events” on page 56

watchi expression [at addr | in func] [if(condi-
tion)] [do {commands}]

“Events” on page 56

whatis [name] “Symbols and Expres-
sions” on page 71

when [at line | in func] [if (condition)] do
{commands}

“Events” on page 56

wheni [at addr | in func] [if(condition)] do
{commands}

“Events” on page 56

w[here] [count] “Program Locations” on
page 65

whereis name “Symbols and Expres-
sions” on page 71

whichsets [p/t-set] “Process-Thread Sets” on
page 55

which name “Scope” on page 74

/ / [string] / “Program Locations” on
page 65

? ?[string] ? “Program Locations” on
page 65

! History modification “Miscellaneous” on page
80

^ History modification “Miscellaneous” on page
80

Name Arguments Section

PGDBG Command Reference

51

PGDBG Command Reference

This section describes the PGDBG command set in detail.

Notation Used in this Section

Command names may be abbreviated by omitting the portion of the command name enclosed in
brackets ([]).. Some commands accept a variety of arguments. Arguments enclosed in brackets([]) are
optional. Two or more arguments separated by a vertical line (|) indicate that any one of the arguments
is acceptable. An ellipsis (...) indicates an arbitrarily long list of arguments. Other punctuation
(commas, quotes, etc.) should be entered as shown. Argument names appear in italics and are chosen to
indicate what kind of argument is expected. For example:

lis[t] [count | lo:hi | routine | line,count]

indicates that the command list may be abbreviated to lis, and that it can be invoked without any
arguments or with one of the following: an integer count, a line range, a routine name, or a line and a
count.

Process Control

The following commands, together with the breakpoints described in the next section, control the
execution of the target program. PGDBG lets you easily group and control multiple threads and
processes. See “Process and Thread Control” on page 122 for more details.

attach

att[ach] pid [exe] | [exe host]

Attach to a running process with process ID pid. If the process is not running on the local host, then
specify the absolute path of the executable file exe and the host machine name host. For example, attach
1234 will attempt to attach to a running process whose process ID is 1234 on the local host. On a remote
host, you may enter something like attach 1234 /home/demo/a.out myhost. In this example, PGDBG will
try to attach to a process ID 1234 called /home/demo/a.out on a host named myhost.

PGDBG will attempt to infer the arguments of the attached target application. If PGDBG fails to infer the
argument list, then the program behavior is undefined if the run or rerun command is executed on the
attached process. This means that run and rerun should not be used for most attached MPI programs.

The stdio channel of the attached process remains at the terminal from which the program was
originally invoked.

The PGDBG Debugger

52

cont

c[ont]

Continue execution from the current location.

debug

de[bug] [target [arg1 _ argn]]

Load the specified target program with optional command line arguments.

detach

det[ach]

Detach from the current running process.

halt

halt

Halt the running process or thread.

next

n[ext] [count]

Stop after executing one source line in the current routine. This command steps over called routines.
The count argument stops execution only after executing count source lines.

nexti

nexti [count]

Stop after executing one instruction in the current routine. This command steps over called routines.
The count argument stops execution only after executing count instructions.

proc

proc [id]

Set the current process to the process identified by id. When issued with no argument, proc lists the
current program location of the current thread of the current process. See “Multi-Process MPI
Debugging” on page 103, for information on how processes are numbered.

PGDBG Command Reference

53

procs

procs

Print the status of all active processes. Each process is listed by its logical process ID.

quit

q[uit]

Terminate the debugging session.

rerun

rer[un]

rer[un] [arg0 arg1 ... argn] [< inputfile] [[> | >& | >> | >>&] outputfile

]

The rerun command is the same as run except if no args are specified, the previously used target
arguments are not re-used.

run

ru[n]

ru[n] [arg0 arg1 ...argn] [< inputfile] [[> | >& | >> | >>&] outputfile]

Execute program from the beginning. If arguments arg0, arg1,.. are specified, they are set up as the
command line arguments of the program. Otherwise, the arguments for the previous run command are
used. Standard input and standard output for the target program can be redirected using < or > and an
input or output filename.

step

s[tep]

s[tep] count

s[tep] up

Stop after executing one source line. This command steps into called routines. The count argument
stops execution after executing count source lines. The up argument stops execution after stepping out
of the current routine (see stepout). In a parallel region of code, step applies only to the currently active
thread.

The PGDBG Debugger

54

stepi

stepi

stepi count

stepi up

Stop after executing one instruction. This command steps into called routines. The count argument
stops execution after executing count instructions. The up argument stops the execution after stepping
out of the current routine (see stepout). In a parallel region of code, stepi applies only to the currently
active thread.

stepout

stepo[ut]

Stop after returning to the caller of the current routine. This command sets a breakpoint at the current
return address, and does a continue. To work correctly, it must be possible to compute the value of the
return address. Some routines, particularly terminal (or leaf) routines at higher optimization levels,
may not set up a stack frame. Executing stepout from such a routine causes the breakpoint to be set in
the caller of the most recent routine that set up a stack frame. This command halts execution
immediately upon return to the calling routine.

sync/synci

sync

synci

Advance the current process/thread to a specific program location; ignoring any user defined events.

thread

thread [number]

Set the current thread to the thread identified by number; where number is a logical thread id in the
current process’ active thread list. When issued with no argument, thread lists the current program
location of the currently active thread.

threads

threads

Print the status of all active threads. Threads are grouped by process. Each process is listed by its logical
process id. Each thread is listed by its logical thread id.

PGDBG Command Reference

55

wait

wait [any | all | none]

Return the PGDBG prompt only after specific processes or threads stop.

Process-Thread Sets

The following commands deal with defining and managing process thread sets. See “Process/Thread
Sets” on page 110, for a detailed discussion of process-thread sets.

defset

defset

Assign a name to a process/thread set. Define a named set. This set can later be referred to by name. A list
of named sets is stored by PGDBG.

focus

focus

Set the target process/thread set for commands. Subsequent commands will be applied to the members
of this set by default.

undefset

undefset

Remove a previously defined process/thread set from the list of process/thread sets. The debugger-
defined p/t-set [all] cannot be removed.

viewset

viewset

List the members of a process/thread set that currently exist as active threads or list defined p/t-sets.

whichsets

whichsets

List all defined p/t-sets to which the members of a process/thread set belong.

The PGDBG Debugger

56

Events

The following commands deal with defining and managing events. See “Parallel Events” on page 129,
for a general discussion of events and the optional arguments.

break

b[reak]

b[reak] line [if

(condition)] [do {commands}]

b[reak] routine [if

(condition)] [do {commands}]

If no argument is specified, print the current breakpoints. Otherwise, set a breakpoint at the indicated
line or routine. If a routine is specified, and the routine was compiled for debugging, then the
breakpoint is set at the start of the first statement in the routine (after the routine’s prologue code). If
the routine was not compiled for debugging, then the breakpoint is set at the first instruction of the
routine, prior to any prologue code. This command interprets integer constants as line numbers. To set a
breakpoint at an address, use the addr command to convert the constant to an address, or use the breaki
command.

When a condition is specified with if, the breakpoint occurs only when the specified condition is true. If
do is specified with a command or several commands as an argument, the command or commands are
executed when the breakpoint occurs.

The following examples set breakpoints at line 37 in the current file, line 37 in file xyz.c, the first
executable line of routine main, address 0xf0400608, the current line, and the current address,
respectively.

break 37

break "xyz.c"@37

break main

break {addr 0xf0400608}

break {line}

break {pc}

More sophisticated examples include:

break xyz if(xyz@n > 10)

PGDBG Command Reference

57

This command stops when routine xyz is entered only if the argument n is greater than 10.

break 100 do {print n; stack}

This command prints the value of n and performs a stack trace every time line 100 in the current file is
reached.

breaki

breaki

breaki routine [if (condition)] [do {commands}]

breaki addr [if (condition)] [do {commands}]

Set a breakpoint at the indicated address or routine. If a routine is specified, the breakpoint is set at the
first address of the routine. This means that when the program stops at this breakpoint the prologue
code which sets up the stack frame will not yet have been executed, so values of stack arguments may not
yet be correct. Integer constants are interpreted as addresses. To specify a line, use the line command to
convert the constant to a line number, or use the break command.

The if and do arguments are interpreted in the same way as for the break command. The next set of
examples set breakpoints at address 0xf0400608, line 37 in the current file, line 37 in file xyz.c, the first
executable address of routine main, the current line, and the current address, respectively:

breaki 0xf0400608

breaki {line 37}

breaki "xyz.c"@37

breaki main

breaki {line}

breaki {pc}

Similarly,

breaki 0x6480 if(n>3) do {print "n=",

n}

stops and prints the new value of n at address 0x6480 only if n is greater than 3.

breaks

breaks

Display all the existing breakpoints.

The PGDBG Debugger

58

catch

catch

catch [sig:sig]

catch [sig [, sig...]]

With no arguments, print the list of signals being caught. With the sig:sig argument, catch the specified
range of signals. With a list, catch signals with the specified number(s). When signals are caught,
PGDBG intercepts the signal and does not deliver it to the target application. The target runs as though
the signal was never sent.

clear

clear

clear all

clear routine

clear line

clear addr {addr}

Clear all breakpoints at current location. Clear all breakpoints. Clear all breakpoints from first
statement in the specified routine named routine. Clear breakpoints from line number line. Clear
breakpoints from the address addr.

delete

del[ete] event-number

del[ete] 0

del[ete] all

del[ete] event-number [, event-number...]

Delete the event event-number or all events (delete 0 is the same as delete all). Multiple event numbers
can be supplied if they are separated by commas.

disable

disab[le] event-number

disab[le] all

Disable the event event-number or all events. Disabling an event definition suppresses actions associated
with the event, but leaves the event defined so that it can be used later.

PGDBG Command Reference

59

do

do {commands} [if

(condition)]

do {commands} at line [if

(condition)]

do {commands} in routine [if

(condition)]

Define a do event. This command is similar to watch except that instead of defining an expression, it
defines a list of commands to be executed. Without the optional arguments at or in, the commands are
executed at each line in the program. The at argument with a line specifies the commands to be
executed each time that line is reached. The in argument with a routine specifies the commands are
executed at each line in the routine. The if option has the same meaning as in watch. If a condition is
specified, the do commands are executed only when condition is true.

doi

doi {commands} [if

(condition)]

doi {commands} at addr [if

(condition)]

doi {commands} in routine [if

(condition)]

Define a doi event. This command is similar to watchi except that instead of defining an expression, it
defines a list of commands to be executed. If an address (addr) is specified, then the commands are
executed each time that the specified address is reached. If a routine (routine) is specified, then the
commands are executed at each instruction in the routine. If neither is specified, then the commands
are executed at each instruction in the program. The if option has the same meaning as for the do
command above.

enable

enab[le] event-number | all

Enable the indicated event event-number, or all events.

hwatch

hwatch addr | var [if

(condition)] [do {commands}]

The PGDBG Debugger

60

Define a hardware watchpoint. This command uses hardware support to create a watchpoint for a
particular address or variable. The event is triggered by hardware when the byte at the given address is
written. This command is only supported on systems that provide the necessary hardware and software
support. Only one hardware watchpoint can be defined at a time.

When the if option is specified, the event action will only be triggered if the expression is true. When the
do option is specified, then the commands will be executed when the event occurs.

hwatchr

hwatchr[ead] addr | var [if

(condition)] [do {commands}]

Define a hardware read watchpoint. This event is triggered by hardware when the byte at the given
address or variable is read. As with hwatch, system hardware and software support must exist for this
command to be supported. The if and do options have the same meaning as for the hwatch command.

hwatchb

hwatchb[oth] addr | var [if

(condition)] [do {commands}]

Define a hardware read/write watchpoint. This event is triggered by hardware when the byte at the given
address or variable is either read or written. As with hwatch, system hardware and software support must
exist for this command to be supported. The if and do options have the same meaning as for the hwatch
command.

ignore

ignore

ignore [sig:sig]

ignore [sig [, sig...]]

When no arguments are specified, the ignore command will print the list of signals being ignored. With
the sig:sig argument it will ignore the specified range of signals, and with a list of signals it will ignore
signals with the specified number. When a particular signal number is ignored, signals with that
number sent to the target application are not intercepted by PGDBG. They are delivered to the target. See
also catch.

status

stat[us]

PGDBG Command Reference

61

Display all the event definitions, including an event number by which the event can be identified.

stop

stop varstop at line [if (condition)][do {commands}]

stop in routine [if (condition)][do {commands}]

stop if (condition)

Set a breakpoint at the indicated routine or line. Break when the value of the indicated variable var
changes. The at keyword and a number specifies a line number. The in keyword and a routine name
specifies the first statement of the specified routine. With the if keyword, the debugger stops when the
condition condition is true.

stopi

stopi var

stopi at address [if (condition)][do {commands}]

stopi in routine [if (condition)][do {commands}]

stopi if (condition)

Set a breakpoint at the indicated address or routine. Break when the value of the indicated variable var
changes. The at keyword and a number specifies an address to stop at. The in keyword and a routine
name specifies the first address of the specified routine to stop at. With the if keyword, the debugger stops
when condition is true.

track

track expression [at line | in func] [if

(condition)][do {commands}]

Define a track event. This command is equivalent to watch except that execution resumes after the new
value of the expression is printed.

tracki

tracki expression [at addr | in func] [if

(condition)][do {commands}]

Define an instruction level track event. This command is equivalent to watchi except that execution
resumes after the new value of the expression is printed.

The PGDBG Debugger

62

trace

trace var [if (condition)][do {commands}]

trace routine [if (condition)][do {commands}]

trace at line [if (condition)][do {commands}]

trace in routine [if (condition)][do {commands}]

With the var argument, activate source line tracing when var changes. When a routine is specified,
activate source line tracing and trace when in subprogram routine. With the at keyword, activate source
line tracing to display the specified line each time it is executed. With in, activate source line tracing
when in the specified routine. If condition is specified, trace is on only if the condition evaluates to true.
The do keyword defines a list of commands to execute at each trace point. Use the command pgienv
speed secs to set the time in seconds between trace points. Use the clear command to remove tracing for
a line or routine.

tracei

tracei var [if (condition)][do {commands}]

tracei routine [if (condition)][do {commands}]

tracei at line [if (condition)][do {commands}]

tracei in routine [if (condition)][do {commands}]

With the var argument, activate instruction tracing when var changes. When a routine is specified,
activate instruction tracing and trace when in subprogram routine. With the at keyword, activate
instruction tracing to display the specified line each time it is executed. With in, activate instruction
tracing when in the specified routine. If condition is specified, trace is on only if the condition evaluates
to true. The do keyword defines a list of commands to execute at each trace point. Use the command
pgienv speed secs to set the time in seconds between trace points. Use the clear command to remove
tracing for a line or routine.

unbreak

unb[reak] line

unb[reak] routine

unb[reak] all

Remove a breakpoint from the statement line, the routine routine, or remove all breakpoints.

unbreaki

unbreaki addr

unbreaki routine

unbreaki all

PGDBG Command Reference

63

Remove a breakpoint from the address addr, the routine routine, or remove all breakpoints.

watch

wa[tch] expression

wa[tch] expression [if

(condition)][do {commands}]

wa[tch] expression at line [if

(condition)][do {commands}]

wa[tch] expression in routine [if

(condition)][do {commands}]

Define a watch event. The given expression is evaluated, and subsequently, each time the value of the
expression changes, the program stops and the new value is printed. If a particular line is specified, the
expression is only evaluated at that line. If a routine routine is specified, the expression is evaluated at
each line in the routine. If no location is specified, the expression will be evaluated at each line in the
program. If a condition is specified, the expression is evaluated only when the condition is true. If
commands are specified, they are executed whenever the expression is evaluated and the value changes.

The watched expression may contain local variables, although this is not recommended unless a routine
or address is specified to ensure that the variable will only be evaluated when it is in the current scope.

NOTE

Using watchpoints indiscriminately can dramatically slow program execution.

Using the at and in options speeds up execution by reducing the amount of single-stepping and
expression evaluation that must be performed to watch the expression. For example:

watch i at 40

will barely slow program execution at all, while

watch i

will slow execution considerably.

The PGDBG Debugger

64

watchi

watchi expression

watchi expression [if (condition)][do {commands}]

watchi expression at addr [if

(condition)][do {commands}]

watchi expression in routine [if

(condition)][do {commands}]

Define an instruction level watch event. This is just like the watch command except that the at option
interprets integers as addresses rather than line numbers and the expression is evaluated at every
instruction rather than at every line.

This command is useful if line number information is limited (i.e. code not compiled ‘-g’ or assembly
code). It causes programs to execute more slowly than watch.

when

when do {commands} [if

(condition)]

when at line do {commands} [if

(condition)]

when in routine do {commands} [if

(condition)]

Execute commands at every line in the program, at a specified line in the program or in the specified
routine. If the optional condition is specified, commands are executed only when the expression
evaluates to true.

wheni

wheni do {commands} [if

(condition)]

wheni at addr do {commands} [if

(condition)]

wheni in routine do {commands} [if

(condition)]

Execute commands at each address in the program. If an addr is specified, the commands are executed
each time the address is reached. If a routine is specified, the commands are executed at each line in the
routine. If the optional condition is specified, commands are executed whenever the expression is
evaluated true.

PGDBG Command Reference

65

Events can be parallelized across multiple threads of execution. See “Parallel Events” on page 129, for
details.

Program Locations

This section describes PGDBG program location commands.

arrive

arri[ve]

Print location information for the current location.

cd

cd [dir]

Change to the $HOME directory or to the specified directory dir.

disasm

dis[asm]

dis[asm] count

dis[asm] lo:hi

dis[asm] routine

dis[asm] addr, count

Disassemble memory. If no argument is given, disassemble four instructions starting at the current
address. If an integer count is given, disassemble count instructions starting at the current address. If an
address range (lo:hi) is given, disassemble the memory in the range. If a routine name is given,
disassemble the entire routine. If the routine was compiled for debugging (-g), and source code is
available, the source code will be interleaved with the disassembly. If an address and a count are given,
disassemble count instructions starting at address addr.

edit

edit

edit filenameedit routine

If no argument is supplied, edit the current file starting at the current location. With a filename
argument, edit the specified file filename. With the func argument, edit the file containing routine
routine. This command uses the editor specified by the environment variable $EDITOR.

The PGDBG Debugger

66

In the PGDBG GUI, command line editors like vi are launched in the Program I/O Window. On Windows
platforms, arguments to the editor may need to be quoted to account for spaces in pathnames.

file

file [filename]

Change the source file to the file filename and change the scope accordingly. With no argument, print
the current file.

lines

lines routine

Print the lines table for the specified routine.

list

lis[t]

lis[t] count

lis[t] line,num

lis[t] lo:hi

lis[t] routine

With no argument, list 10 lines centered at the current source line. If a count is given, list count lines
centered at the current source line. If a line and count are given, list number lines starting at line
number line. In dbx mode, this option lists lines from start to number. If a line range is given, list the
indicated source lines in the current source file (this option is not valid in the dbx environment). If a
routine name is given, list the source code for the indicated routine.

pwd

pwd

Print the current working directory.

stacktrace

stack[trace] [count]

Print a stacktrace. For each active routine print the routine name, source file, line number, current
address (if that information is available). This command also prints the names and values of the
arguments, if available. If a count is specified, display a maximum of count stack frames.

PGDBG Command Reference

67

stackdump

stackd[ump] [count]

Print a formatted dump of the stack. This command displays a hex dump of the stack frame for each
active routine. This command is a machine-level version of the stacktrace command. If a count is
specified, display a maximum of count stack frames.

where

w[here] [count]

Print a stacktrace. For each active routine print the routine name, source file, line number, current
address (if that information is available). This command also prints the names and values of the
arguments, if available. If a count is specified, display a maximum of count stack frames.

/ (search forward)

/ / [string] /

Search forward for a string (string) of characters in the current source file. With just /, search for the
next occurrence of string in the current source file.

? (search backward)

? ?[string] ?

Search backward for a string (string) of characters in the current source file. With just ?, search for the
previous occurrence of string in the current source file.

Printing Variables and Expressions

This section describes PGDBG commands used for printing and setting variables.

print

p[rint] exp1 [,...expn]

Evaluate and print one or more expressions. This command is invoked to print the result of each line of
command input. Values are printed in a format appropriate to their type. For values of structure type,
each field name and value is printed. Character pointers are printed as a hex address followed by the
character string.

Character string constants print out literally. For example:

The PGDBG Debugger

68

pgdbg> print "The value of i is ", i

The value of i is 37

The array sub-range operator : prints a range of an array. The following examples print elements 0
through 9 of the array a:

C/C++ example:

pgdbg> print a[0:9]

a[0:4]: 0 1 2 3 4

a[5:9]: 5 6 7 8 9

FORTRAN example:

pgdbg> print a(0:9)

a(0:4): 0 1 2 3 4

a(5:9): 5 6 7 8 9

Note that the output is formatted and annotated with index information. PGDBG formats array output
into columns. For each row, the first column prints an index expression which summarizes the elements
printed in that row. Elements associated with each index expression are then printed in order. This is
especially useful when printing slices of large multidimensional arrays.

PGDBG also supports strided array expressions. Below are examples for C/C++ and FORTRAN.

C/C++ example:

pgdbg> print a[0:9:2]

a[0:8] 0 2 4 6 8

FORTRAN example:

pgdbg> print a(0:9:2)

a(0:8): 0 2 4 6 8

The print statement may be used to display members of derived types in FORTRAN or structures in C/
C++. Below are examples.

C/C++ example:

typedef struct tt {

int a[10];

}TT;

TT d = {0,1,2,3,4,5,6,7,8,9};

TT * p = &d;

PGDBG Command Reference

69

pgdbg> print d.a[0:9:2]

d.a[0:8:2]: 0 2 4 6 8

pgdbg> print p->a[0:9:2]

p->a[0:7:2]: 0 2 4 6

p->a[8]: 8

FORTRAN example:

type tt

integer, dimension(0:9) :: a

end type

type (tt) :: d

data d%a / 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 /

pgdbg> print d%a(0:9:2)

d%a(0:8:2): 0 2 4 6 8

printf

printf "format_string", expr,...expr

Print expressions in the format indicated by the format string. Behaves like the C library function printf.
For example:

pgdbg> printf "f[%d]=%G",i,f[i]

f[3]=3.14

The pgienv command with the stringlen argument sets the maximum number of characters that will
print with a print command. For example, the char declaration below:

char *c="a whole bunch of chars over

1000 chars long....";

By default, the print c command will only print the first 512 (or stringlen) bytes. Printing of C strings is
usually terminated by the terminating null character. This limit is a safeguard against unterminated C
strings.

ascii

asc[ii] exp [,...exp]

Evaluate and print as an ascii character. Control characters are prefixed with the '^' character; that is, 3
prints as ^c. Otherwise, values that can not be printed as characters are printed as integer values
prefixed by `\'. For example, 250 prints as \250.

The PGDBG Debugger

70

bin

bin exp [,...exp]

Evaluate and print the expressions. Integer values are printed in binary.

dec

dec exp [,...exp]

Evaluate and print the expressions. Integer values are printed in decimal.

display

display

display exp [,...exp]

Without arguments, list the expressions for PGDBG to automatically display at breakpoints. With an
argument or several arguments, print expression exp at every breakpoint. See also: undisplay.

hex

hex exp [,...exp]

Evaluate and print expressions as hexadecimal integers.

oct

oct exp [,...exp]

Evaluate and print expressions as octal integers.

string

str[ing] exp [,...exp]

Evaluate and print expressions as null-terminated character strings. This command will print a
maximum of 70 characters.

undisplay

undisplay 0

undisplay all

undisplay exp [,...exp]

PGDBG Command Reference

71

Remove all expressions specified by previous display commands. With an argument or several
arguments, remove the expression exp from the list of display expressions.

Symbols and Expressions

This section describes the commands that deal with symbols and expressions.

assign

as[sign] var = exp

Set variable var to the value of expression. The variable var can be any valid identifier accessed properly
for the current scope. For example, given a C variable declared ‘int * i’, the command ‘set *i = 9999’
could be used to assign the value 9999 to it.

call

call routine [(exp,...)]

Call the named routine. C argument passing conventions are used. Breakpoints encountered during
execution of the routine are ignored. Fortran functions and subroutines can be called, but the argument
values will be passed according to C conventions. PGDBG may not always be able to access the return
value of a Fortran function if the return value is an array. In the example below, PGDBG calls the routine
foo with four arguments:

pgdbg> call foo(1,2,3,4)

If a signal is caught during execution of the called routine, PGDBG will stop the execution and ask if you
want to cancel the call command. For example, suppose a command is issued to call foo as shown above,
and for some reason a signal is sent to the process while it is executing the call to foo. In this case,
PGDBG will print the following prompt:

PGDBG Message: Thread [0] was signalled

while executing a function reachable from the most recent PGDBG

command line call to foo. Would you like to cancel this command

line call? Answering yes will revert the register state of Thread [0] back

to the state it had prior to the last call to foo from the command

line. Answering no will leave Thread [0] stopped

in the call to foo from the command line

Please enter 'y' or 'n' > y

Command line call to foo cancelled

The PGDBG Debugger

72

Answering yes to this question will return the register state of each thread back to the state they had
before invoking the call command. Answering no to this question will leave each thread at the point they
were at when the signal occurred.

Note: Answering no to this question and continuing execution of the called routine may produce
unpredictable results.

declaration

decl[aration] name

Print the declaration for the symbol based on its type according to symbol table. The symbol must be a
variable, argument, enumeration constant, routine, a structure, union, enum, or typedef tag.

For example, given the C declarations:

int i, iar[10];

struct abc {int a; char b[4]; struct

abc *c;}val;

the decl command will provide the following output:

pgdbg> decl I

int i

pgdbg> decl iar

int iar[10]

pgdbg> decl val

struct abc val

pgdbg> decl abc

struct abc {

 int a;

 char b[4];

 struct abc *c;

};

entry

entr[y]

entr[y] routine

Return the address of the first executable statement in the program or specified routine. This is the first
address after the routine's prologue code.

PGDBG Command Reference

73

lval

lv[al] expr

Return the lvalue of the expression expr. The lvalue of an expression is the value it would have if it
appeared on the left hand of an assignment statement. Roughly speaking, an lvalue is a location to
which a value can be assigned. This may be an address, a stack offset, or a register.

rval

rv[al] expr

Return the rvalue of the expression expr. The rvalue of an expression is the value it would have if it
appeared on the right hand of an assignment statement. The type of the expression may be any scalar,
pointer, structure, or function type.

set

set var=expression

Set variable var to the value of expression. The variable var can be any valid identifier accessed properly
for the current scope. For example, given a C variable declared ‘int * i’, the command ‘set *i = 9999’
could be used to assign the value 9999 to it.

sizeof

siz[eof] name

Return the size, in bytes, of the variable type name. If name refers to a routine, sizeof will return the size
on bytes of the subprogram.

type

type expr

Return the type of the expression. The expression may contain structure reference operators (. , and ->
), dereference (*), and array index ([]) expressions. For example, given the C declarations:

int i, iar[10];

struct abc {int a; char b[4]; struct

abc *c;}val;

the type command will provide the following output:

The PGDBG Debugger

74

pgdbg> type I

int

pgdbg> type iar

int [10]

pgdbg> type val

struct abc

pgdbg> type val.a

int

pgdbg> type val.abc->b[2]

char

pgdbg> whatis

whatis name

With no arguments, print the declaration for the current routine. With argument name, print the
declaration for the symbol name.

Scope

The following commands deal with program scope. See “Scope Rules” on page 32, for a discussion of
scope meaning and conventions.

decls

declsdecls routine

decls "sourcefile"

decls {global}

Print the declarations of all identifiers defined in the indicated scope. If no scope is given, print the
declarations for global scope.

down

down [number]

Enter scope of routine down one level or number levels on the call stack.

enter

en[ter]

en[ter] routine

en[ter] "sourcefile"

en[ter] {global}

PGDBG Command Reference

75

Set the search scope to be the indicated symbol, which may be a routine, source file or global. Using
enter with no argument is the same as using enter global.

files

files

Return the list of known source files used to create the executable file.

global

glob[al]

Return a symbol representing global scope. This command is useful in combination with the scope
operator @ to specify symbols with global scope.

names

names

names routine

names "sourcefile"

names {global}

Print the names of all identifiers defined in the indicated scope. If no scope is specified, use the search
scope.

scope

sco[pe]

Return a symbol for the search scope. The search scope is set to the current routine each time program
execution stops. It may also be set using the enter command. The search scope is always searched first
for symbols.

up

up [number]

Enter scope of routine up one level or number levels on the call stack.

whereis

whereis name

Print all declarations for name.

The PGDBG Debugger

76

which

which name

Print full scope qualification of symbol name.

Register Access

System registers can be accessed by name. See “Register Symbols” on page 89, for the complete set of
registers and how to refer to them in PGDBG. A few commands exist for convenient access to common
registers.

fp

fp

Return the current value of the frame pointer.

pc

pc

Return the current program address.

regs

regs [format]

Print a formatted display of the names and values of the integer, float, and double registers. If the format
parameter is omitted, then PGDBG will print all of the registers. Otherwise, regs accepts the following
optional parameters:

f Print floats as single precision values (default)

d Print floats as double precision values

x Add hexadecimal representation of float values

retaddr

ret[addr]

Return the current return address.

PGDBG Command Reference

77

sp

sp

Return the current value of the stack pointer.

Memory Access

The following commands display the contents of arbitrary memory locations. Note that for each of these
commands, the addr argument may be a variable or identifier.

cread

cr[ead]addr

Fetch and return an 8-bit signed integer (character) from the specified address.

dread

dr[ead]addr

Fetch and return a 64 bit double from the specified address.

dump

du[mp] address, count,

"format-string"

This command dumps the contents of a region of memory. The output is formatted according to a
printf-like format descriptor. Starting at the indicated address, values are fetched from memory and
displayed according to the format descriptor. This process is repeated count times.

Interpretation of the format descriptor is similar to printf. Format specifiers are preceded by %.

The meaning of the recognized format descriptors is as follows:

%d, %D, %o, %O, %x, %X, %u, %U

Fetch and print integral values as decimal, octal, hex, or unsigned. Default size is machine dependent.
The size of the item read can be modified by either inserting 'h', or 'l' before the format character to
indicate half word or long word. For example, if your machine’s default size is 32-bit, then %hd
represents a 16-bit quantity. Alternatively, a 1, 2, or 4 after the format character can be used to specify
the number of bytes to read.

The PGDBG Debugger

78

%c

Fetch and print a character.

%f, %F, %e, %E, %g, %G

Fetch and print a float (lower case) or double (upper case) value using printf f, e, or g format.

%s

Fetch and print a null terminated string.

%p<format-chars>

Interpret the next object as a pointer to an item specified by the following format characters. The
pointed-to item is fetched and displayed. Examples:

%px

Pointer to int. Prints the value of the pointer, the pointed-to address, and the contents of the pointed-to
address, which is printed using hexadecimal format.

%i

Fetch an instruction and disassemble it.

%w, %W

Display address about to be dumped.

%z<n>, %Z<n>, %z<-n>, %Z<-n>

Display nothing but advance or decrement current address by n bytes.

%a<n>, %A<n>

Display nothing but advance current address as needed to align modulo n.

fread

fr[ead]addr

Fetch and print a 32-bit float from the specified address.

PGDBG Command Reference

79

iread

ir[ead] addr

Fetch and print a signed integer from the specified address.

lread

lr[ead] addr

Fetch and print an address from the specified address.

mqdump

mq[dump]

Dump MPI message queue information for the current process. Refer to “MPI Message Queues” on page
137, for more information on mqdump.

sread

sr[ead]addr

Fetch and print a short signed integer from the specified address.

Conversions

The commands in this section are useful for converting between different kinds of values. These
commands accept a variety of arguments, and return a value of a particular kind.

addr

ad[dr]

ad[dr] n

ad[dr] line

ad[dr] routine

ad[dr] var

ad[dr] arg

Create an address conversion under these conditions:

• If an integer is given return an address with the same value.

• If a line is given, return the address corresponding to the start of that line.

The PGDBG Debugger

80

• If a routine is given, return the first address of the routine.

• If a variable or argument is given, return the address where that variable or argument is stored.

For example:

breaki {line {addr 0x22f0}}

function

func[tion]

func[tion] addr

func[tion] line

Return a routine symbol. If no argument is specified, return the current routine. If an address is given,
return the routine containing addr. An integer argument is interpreted as an address. If a line is
specified, return the routine containing that line.

line

lin[e]

lin[e] nlin[e] routinelin[e] addr

Create a source line conversion. If no argument is given, return the current source line. If an integer n is
given, return it as a line number. If a routine is given, return the first line of the routine. If an address
addr is given, return the line containing that address.

For example, the following command returns the line number of the specified address:

line {addr 0x22f0}

Miscellaneous

The following commands provide shortcuts, mechanisms for querying, customizing and managing the
PGDBG environment, and access to operating system features.

alias

al[ias]

al[ias] name

al[ias] name string

PGDBG Command Reference

81

Create or print aliases. If no arguments are given print all the currently defined aliases. If just a name is
given, print the alias for that name. If a name and string are given, make name an alias for string.
Subsequently, whenever name is encountered it will be replaced by string. Although string may be an
arbitrary string, name must not contain any space characters.

For example:

alias xyz print "x= ",x,"y= ",y,"z= ",z;

cont

creates an alias for xyz. Now whenever xyz is typed, PGDBG will respond as though the following
command was typed:

print "x= ",x,"y= ",y,"z= ",z;

cont

directory

dir[ectory] [pathname]

Add the directory pathname to the search path for source files. If no argument is specified, the currently
defined directories are printed. This command assists in finding source code that may have been moved
or is otherwise not found by the default PGDBG search mechanisms.

For example:

dir morestuff

adds the directory morestuff to the list of directories to be searched. Now, source files stored in morestuff
are accessible to PGDBG.

If the first character in pathname is ~, it will be substituted by $HOME.

help

help [command]

If no argument is specified, print a brief summary of all the commands. If a command name is
specified, print more detailed information about the use of that command.

history

history [num]

The PGDBG Debugger

82

List the most recently executed commands. With the num argument, resize the history list to hold num
commands. History allows several characters for command substitution:

The history modifiers may be:

:s/old/new/ Substitute the value new for the value old.

:p Print but do not execute the command.

The command pgienv history off tells the debugger not to display the history record number. The
command pgienv history on tells the debugger to display the history record number.

language

language

Print the name of the language of the current file.

log

log filename

!! [modifier] Execute the previous command

! num [modifier] Execute command number num

!-num [modifier] Execute command -num from the most current
command

!string [modifier] Execute the most recent command starting with
string

!?string? [modifier] Execute the most recent command containing
string

^ Quick history command substitution
^old^new^<modifier> this is equivalent to !:s/
old/new/

PGDBG Command Reference

83

Keep a log of all commands entered by the user and store it in the named file. This command may be
used in conjunction with the script command to record and replay debug sessions.

noprint

nop[rint] exp

Evaluate the expression but do not print the result.

pgienv

pgienv [command]

Define the debugger environment. With no arguments, display the debugger settings.

help pgienv Provide help on pgienv

pgienv Display the debugger settings

pgienv dbx on Set the debugger to use dbx style commands

pgienv dbx off Set the debugger to use pgi style commands

pgienv history on Display the `history' record number with prompt

pgienv history off Do NOT display the `history' number with prompt

pgienv exe none Ignore executable’s symbolic debug information

pgienv exe symtab Digest executable’s native symbol table (typeless)

pgienv exe demand Digest executable’s symbolic debug information incrementally on
command

pgienv exe force Digest executable’s symbolic debug information when executable
is loaded

pgienv solibs none Ignore symbolic debug information from shared libraries

pgienv solibs symtab Digest native symbol table (typeless) from each shared library

pgienv solibs demand Digest symbolic debug information from shared libraries incre-
mentally on demand

The PGDBG Debugger

84

pgienv solibs force Digest symbolic debug information from each shared library at
load time

pgienv mode serial Single thread of execution (implicit use of p/t-sets)

pgienv mode thread Debug multiple threads (condensed p/t-set syntax)

pgienv mode process Debug multiple processes (condensed p/t-set syntax)

pgienv mode multilevel Debug multiple processes and multiple threads

pgienv omp [on|off] Enable/Disable the PGDBG OpenMP event handler. This option is
disabled by default. The PGDBG OpenMP event handler, when
enabled, sets breakpoints at the beginning and end of each paral-
lel region. Breakpoints are also set at each thread synchroniza-
tion point. The handler coordinates threads across parallel
constructs to maintain source level debugging. This option, when
enabled, may significantly slow down program performance.
Enabling this option is recommended for localized debugging of a
particular parallel region only.

pgienv prompt
<name>

Set the command line prompt to <name>

pgienv promptlen
<num>

Set maximum size of p/t-set portion of prompt

pgienv speed <secs> Set the time in seconds <secs> between trace points

pgienv stringlen
<num>

Set the maximum # of chars printed for `char *'s

pgienv termwidth
<num>

Set the character width of the display terminal.

pgienv logfile <name> Close logfile (if any) and open new logfile <name>

pgienv threadstop sync When one thread stops, the rest are halted in place

pgienv threadstop
async

Threads stop independently (asynchronously)

PGDBG Command Reference

85

pgienv procstop sync When one process stops, the rest are halted in place

pgienv procstop async Processes stop independently (asynchronously)

pgienv threadstopcon-
fig auto

For each process, debugger sets thread stopping mode to 'sync' in
serial regions, and 'async' in parallel regions

pgienv threadstopcon-
fig user

Thread stopping mode is user defined and remains unchanged by
the debugger.

pgienv procstopconfig
auto

Not currently used.

pgienv procstopconfig
user

Process stop mode is user defined and remains unchanged by the
debugger.

pgienv threadwait none Prompt available immediately; no wait for running threads

pgienv threadwait any Prompt available when at least a single thread stops

pgienv threadwait all Prompt available only after all threads have stopped

pgienv procwait none Prompt available immediately; no wait for running processes

pgienv procwait any Prompt available when at least a single process stops

pgienv procwait all Prompt available only after all processes have stopped

pgienv threadwaitcon-
fig auto

For each process, the debugger will set the thread wait mode to
‘all’ in serial regions and ‘none’ in parallel regions. (default)

pgienv threadwaitcon-
fig user

The thread wait mode is user defined and will remain unchanged
by the debugger.

The PGDBG Debugger

86

repeat

rep[eat] [first, last]

rep[eat] [first,:last:n]

rep[eat] [num]

rep[eat] [-num]

Repeat the execution of one or more previous history list commands. With the num argument, re-
execute the command number num, or with -num, the last num commands. With the first and last
arguments, re-execute commands number first to last (optionally n times).

script

scr[ipt] filename

Open the indicated file and execute the contents as though they were entered as commands. If you use ~
before the filename, it is expanded to the value of the environment variable HOME.

pgienv verbose <bit-
mask>

Choose which debug status messages to report. Accepts an integer
valued bit mask of the following values:

• 0x1 - Standard messaging (default). Report status informa-
tion on current process/thread only.

• 0x2 - Thread messaging. Report status information on all
threads of (current) processes.

• 0x4 - Process messaging. Report status information on all
processes.

• 0x8 - OpenMP messaging (default). Report OpenMP events.

• 0x10 - Parallel messaging (default). Report parallel events.

• 0x20 - Symbolic debug information. Report any errors
encountered while processing symbolic debug information
(e.g. STABS, DWARF). Pass 0x0 to disable all messages.

• Pass 0x0 to disable all messages.

Signals

87

setenv

setenv name

setenv name value

Print value of environment variable name. With a specified value, set name to value.

shell

shell [arg0, arg1,... argn]

Fork a shell (defined by $SHELL) and give it the indicated arguments (the default shell is sh). If no
arguments are specified, an interactive shell is invoked, and executes until a "^D" is entered.

sleep

sle[ep] [time]

Pause for time seconds. If no time is specified, pause for one second.

source

sou[rce] filename

Open the indicated file and execute the contents as though they were entered as commands. If you use ~
before the filename, it is expanded to the value of $HOME.

unalias

unal[ias] name

Remove the alias definition for name, if one exists.

use

use [dir]

Print the current list of directories or add dir to the list of directories to search. If the first character in
pathname is ~, it will be substituted with the value of $HOME.

Signals

PGDBG intercepts all signals sent to any of the threads in a multi-threaded program and passes them on
according to that signal's disposition as maintained by PGDBG (see the catch and ignore commands),
except for signals that cannot be intercepted or signals used internally by PGDBG.

The PGDBG Debugger

88

Control-C

If the target application is not running, control-C can be used to interrupt long-running PGDBG
commands. For example, a command requesting disassembly of thousands of instructions might run for
a long time, and it can be interrupted by control-C. In such cases the target application is not affected.

If the target application is running, entering control-C at the PGDBG command prompt will halt
execution of the target. This is useful in cases where the target “hangs” due to an infinite loop or
deadlock,

Sending a SIGINT (control-C) to a program while it is in the middle of initializing its threads (calling
omp_set_num_threads(), or entering a parallel region) may kill some of the threads if the signal is
sent before each thread is fully initialized. Avoid sending SIGINT in these situations. Note that when the
number of threads employed by a program is large, thread initialization may take a while.

Sending SIGINT (control-C) to a running MPI program is not recommended. See “MPI Listener
Processes” on page 139, for details. Use the PGDBG halt command as an alternative to sending SIGINT to
a running program. The PGDBG command prompt must be available in order to issue a halt command.
The PGDBG command prompt is available while threads are running if pgienv threadwait none is set.

Signals Used Internally by PGDBG

SIGTRAP and SIGSTOP are used by Linux for communication of application events to PGDBG.
Management of these signals is internal to PGDBG. Changing the disposition of these signals in PGDBG
(via catch and ignore)will result in undefined behavior.

Signals Used by Linux Libraries

Some Linux thread libraries use SIGRT1 and SIGRT3 to communicate among threads internally. Other
Linux thread libraries, on systems that do not have support for real-time signals in the kernel, use
SIGUSR1 and SIGUSR2. Changing the disposition of these signals in PGDBG (via catch and ignore) will
result in undefined behavior.

Target applications built for sample-based profiling (compiled with ‘-pg’) generate numerous SIGPROF
signals. Although SIGPROF can be handled by PGDBG, debugging of applications built for sample-based
profiling is not recommended.

Register Symbols

89

Register Symbols

This section describes the register symbols defined for X86 processors and EM64T/AMD64 processors
operating in compatibility or legacy mode.

X86 Register Symbols

This section describes the X86 register symbols.

The PGDBG Debugger

90

Table 1-4: General Registers

Table 1-5: x87 Floating-Point Stack Registers

Table 1-6: Segment Registers

Name Type Description

$edi unsigned General purpose

$esi unsigned General purpose

$eax unsigned General purpose

$ebx unsigned General purpose

$ecx unsigned General purpose

$edx unsigned General purpose

Name Type Description

$d0 -
$d7

80-bit
IEEE

Floating-
point

Name Type Description

$gs 16-bit unsigned Segment register

$fs 16-bit unsigned Segment register

$es 16-bit unsigned Segment register

$ds 16-bit unsigned Segment register

$ss 16-bit unsigned Segment register

$cs 16-bit unsigned Segment register

Register Symbols

91

Table 1-7: Special Purpose Registers

AMD64/EM64T Register Symbols

This section describes the register symbols defined for AMD64/EM64T processors operating in 64-bit
mode.

Table 1-8: General Registers

Name Type Description

$ebp 32-bit unsigned Frame pointer

$efl 32-bit unsigned Flags register

$eip 32-bit unsigned Instruction pointer

$esp 32-bit unsigned Privileged-mode stack pointer

$uesp 32-bit unsigned User-mode stack pointer

Name Type Description

$r8 - $r15 64-bit unsigned General purpose

$rdi 64-bit unsigned General purpose

$rsi 64-bit unsigned General purpose

$rax 64-bit unsigned General purpose

$rbx 64-bit unsigned General purpose

$rcx 64-bit unsigned General purpose

$rdx 64-bit unsigned General purpose

The PGDBG Debugger

92

Table 1-9: Floating-Point Registers

Table 1-10: Segment Registers

Name Type Description

$d0 - $d7 80-bit IEEE Floating-point

Name Type Description

$gs 16-bit unsigned Segment register

$fs 16-bit unsigned Segment register

$es 16-bit unsigned Segment register

$ds 16-bit unsigned Segment register

$ss 16-bit unsigned Segment register

$cs 16-bit unsigned Segment register

Register Symbols

93

Table 1-11: Special Purpose Registers

Table 1-12: SSE Registers

SSE Register Symbols

On AMD64/EM64T, Pentium III, and compatible processors, an additional set of SSE (Streaming SIMD
Enhancements) registers and a SIMD floating-point control and status register are available.

Each SSE register may contain four IEEE 754 compliant 32-bit single-precision floating-point values.
The PGDBG regs command reports these values individually in both hexadecimal and floating-point
format. PGDBG provides syntax to refer to these values individually, as members of a range, or all
together. There is no support for SSE2 or packed integers.

The component values of each SSE register can be accessed using the same syntax that is used for array
subscripting. Pictorially, the SSE registers can be thought of as follows:

Bits: 127 96 95 65 63 32 31 0

Name Type Description

$ebp 64-bit unsigned Frame pointer

$rip 64-bit unsigned Instruction pointer

$rsp 64-bit unsigned Stack pointer

$eflags 64-bit unsigned Flags register

Name Type Description

$mxcsr 64-bit unsigned SIMD floating-
point control

$xmm0 - $xmm15 Packed 4x32-bit IEEE Packed
2x64-bit IEEE

SSE floating-point
registers

The PGDBG Debugger

94

To access a $xmm0(3), the 32-bit single-precision floating point value that occupies bits 96 – 127 of SSE
register 0, use the following PGDBG command:

 pgdbg> print $xmm0(3)

To set $xmm2(0) to the value of $xmm3(2), use the following PGDBG command:

 pgdbg> set $xmm2(3) = $xmm3(2)

SSE registers can be subscripted with range expressions to specify runs of consecutive component values,
and access an SSE register as a whole. For example, the following are legal PGDBG commands:

 pgdbg> set $xmm0(0:1) = $xmm1(2:3)

 pgdbg> set $xmm6 = 1.0/3.0

The first command above initializes elements 0 and 1 of $xmm0 to the values in elements 2 and 3
respectively in $xmm1. The second command above initializes all four elements of $xmm6 to the
constant 1.0/3.0 evaluated as a 32-bit floating-point constant.

In most cases, PGDBG detects when the target environment supports the SSE registers. In the the event
PGDBG does not allow access to SSE registers on a system that should have them, set the PGDBG_SSE
environment variable to `on’ to enable SSE support.

Debugging Fortran

Fortran Types

PGDBG displays Fortran type declarations using Fortran type names. The only exception is Fortran
character types, which are treated as arrays of the C type char.

Arrays

Fortran array subscripts and ranges are accessed using the Fortran language syntax convention,
denoting subscripts with parentheses and ranges with colons.

$xmm0(3) $xmm0(2) $xmm0(1) $xmm0(0)

$xmm1(3) $xmm1(2) $xmm1(1) $xmm1(0)

$xmm7(3) $xmm7(2) $xmm7(1) $xmm7(0)

Debugging Fortran

95

PGI compilers for the linux86-64 platform (AMD64 or Intel EM64T) support large arrays (arrays with an
aggregate size greater than 2GB). Large array support is enabled by compiling with ‘–
mcmodel=medium –Mlarge_arrays’. PGDBG provides full support for large arrays and large subscripts.

PGDBG supports arrays with non-default lower bounds. Access to such arrays uses the same subscripts
that are used in the target application.

PGDBG also supports adjustable arrays. Access to adjustable arrays may use the same subscripting that is
used in the target application.

Operators

In general, PGDBG uses C language style operators in expressions. The Fortran array index selector “()”
and the Fortran field selector “%” for derived types are supported. However, .eq., .ne., and so forth are not
supported. The analogous C operators ==, !=, etc. must be used instead. Note that the precedence of
operators matches the C language, which may in some cases be different than for Fortran. See Table 1-2
for a complete list of operators and their definition.

Name of the Main Routine

If a PROGRAM statement is used, the name of the main routine is the name in the program statement.
Otherwise, the name of the main routine is __unnamed_. A routine symbol named _MAIN_ is defined
with start address equal to the start of the main routine. As a result,

break MAIN

can always be used to set a breakpoint at the start of the main routine.

Fortran Common Blocks

Each subprogram that defines a common block will have a local static variable symbol to define the
common. The address of the variable will be the address of the common block. The type of the variable
will be a locally defined structure type with fields defined for each element of the common block. The
name of the variable will be the common block name, if the common block has a name, or _BLNK_
otherwise.

For each member of the common block, a local static variable is declared which represents the common
block variable. Thus given declarations:

common /xyz/ integer a, real b

The PGDBG Debugger

96

then the entire common block can be printed out using,

print xyz

Individual elements can be accessed by name. For example:,

print a, b

Nested Subroutines

To reference a nested subroutine qualify its name with the name of its enclosing routine using the
scoping operator @.

For example:

subroutine subtest (ndim)

integer(4), intent(in) :: ndim

integer, dimension(ndim) :: ijk

call subsubtest ()

contains

 subroutine subsubtest ()

 integer :: I

 i=9

 ijk(1) = 1

 end subroutine subsubtest

 subroutine subsubtest2 ()

 ijk(1) = 1

 end subroutine subsubtest2

end subroutine subtest

program testscope

integer(4), parameter :: ndim = 4

call subtest (ndim)

end program testscope

pgdbg> break subtest@subsubtest

breakpoint set at: subsubtest line: 8 in "ex.f90" address: 0x80494091

pgdbg> names subtest@subsubtest

i = 0

pgdbg> decls subtest@subsubtest

arguments:

variables:

integer*4 i;

pgdbg> whereis subsubtest

function: "ex.f90"@subtest@subsubtest

Debugging Fortran

97

Fortran 90 Modules

To access a member mm of a Fortran 90 module M, qualify mm with M using the scoping operator @. If
the current scope is M, the qualification can be omitted.

For example:

module M

implicit none

real mm

contains

subroutine stub

print *,mm

end subroutine stub

end module M

program test

use M

implicit none

call stub()

print *,mm

end program test

pgdbg> Stopped at 0x80494e3, function MAIN, file M.f90,

line 13

#13: call stub()

pgdbg> which mm

"M.f90"@m@mm

pgdbg> print "M.f90"@m@mm

0

pgdbg> names m

mm = 0

stub = "M.f90"@m@stub

pgdbg> decls m

real*4 mm;

subroutine stub();

pgdbg> print m@mm

0

pgdbg> break stub

breakpoint set at: stub line:6 in "M.f90" address: 0x8049446 1

pgdbg> c

Stopped at 0x8049446, function stub, file M.f90, line 6

The PGDBG Debugger

98

 #6: print *,mm

pgdbg> print mm

0

pgdbg>

Debugging C++

Calling C++ Instance Methods

To use the call command to call a C++ instance method, the object must be explicitly passed as the first
parameter to the call. For example, given the following definition of class Person and the appropriate
implementation of its methods:

 class Person {

 public:

 char name[10];

 Person(char * name);

 void print();

 };

 main(){

 Person * pierre;

 pierre = new Person("Pierre");

 pierre->print();

 }

The instance method print on object Pierre is called as follows:

pgdbg> call Person::print(pierre)

Notice that pierre must be explicitly passed into the method (it is the this pointer), and the class name
must also be specified.

Debugging with Core Files

PGDBG supports debugging of core files on the linux86 and linux86-64 platforms. To invoke PGDBG for
core file debugging, use the following options:

$ pgdbg –core coreFileName programName

Debugging with Core Files

99

Core files are generated when a fatal exception occurs in an application. The shell environment in which
the application runs must be set up to allow core file creation. On many systems, the default user ulimit
does not allow core file creation. Check the ulimit as follows:

For sh/bash users:

$ ulimit -c

For csh/tcsh users:

% limit coredumpsize

If the core file size limit is zero or something too small for the application, it can be set to unlimited as
follows:

For sh/bash users:

$ ulimit -c unlimited

For csh/tcsh users:

% limit coredumpsize unlimited

See the Linux shell documentation for more details. Some versions of Linux provide system-wide limits
on core file creation.

Core files (or core dumps) are generated when a program encounters an exception or fault. For
example, one common exception is the segmentation violation, which can be caused by referencing an
invalid memory address. The memory and register states of the program are written into a core file so
that they can be examined by a debugger.

The core file is normally written into the current directory of the faulting application. It is usually
named core or core.pid where pid is the process ID of the faulting thread. If the shell environment is set
correctly and a core file is not generated in the expected location, the system core dump policy may
require configuration by a system administrator.

Different versions of Linux handle core dumping slightly differently. The state of all process threads are
written to the core file in most modern implementations of Linux. In some new versions of Linux, if
more than one thread faults, then each thread’s state is written to separate core files using the core.pid
file naming convention mentioned above. In older versions of Linux, only one faulting thread is written
to the core file.

The PGDBG Debugger

100

If a program uses dynamically shared objects (i.e., shared libraries named lib*.so), as most programs on
Linux do, then accurate core file debugging requires that the program be debugged on the system where
the core file was created. Otherwise, slight differences in the version of a shared library or the dynamic
linker can cause erroneous information to be presented by the debugger. Sometimes a core file can be
debugged successfully on a different system, particularly on more modern linux systems, but you should
take care when attempting this.

PGDBG supports all non-control commands when debugging core files. It will perform any command
that does not cause the program to run. Any command that causes the program to run will generate an
error message in PGDBG. Depending on the type of core file created, PGDBG may provide the status of
multiple threads. PGDBG does not support multi-process core file debugging.

Debugging Parallel Programs

This section gives an overview of how to use PGDBG to debug parallel applications. It provides some
important definitions and background information on how PGDBG represents processes and threads.

Summary of Parallel Debugging Features

PGDBG is a parallel application debugger capable of debugging multi-process MPI applications, multi-
thread and OpenMP applications, and hybrid multi-thread/multi-process applications that use MPI to
communicate between multi-threaded or OpenMP processes. On Windows platforms, only OpenMP/
multi-thread debugging is supported.

OpenMP and Multi-thread Support

PGDBG provides full control of threads in parallel regions. Commands can be applied to all threads, a
single thread, or a group of threads. Thread identification in PGDBG uses the native thread numbering
scheme for OpenMP applications; for other types of multi-threaded applications thread numbering is
arbitrary. OpenMP PRIVATE data can be accessed accurately for each thread. PGDBG provides
understandable status displays regarding per-thread state and location.

Advanced features provide for configurable thread stop modes and wait modes, allowing debugger
operation that is concurrent with application execution.

Debugging Parallel Programs

101

MPI and Multi-Process Support

PGDBG supports debugging of multi-process MPI applications, whether running on a single system or
distributed on multiple systems. MPI applications can be started under debugger control using the
mpirun command, or PGDBG can attach to a running, distributed MPI application. In either case all
processes are automatically brought under debugger control. Process identification uses the MPI rank
within COMMWORLD.

Graphical Presentation of Threads and Processes

PGDBG graphical user interface components that provide support for parallelism are described in detail
in “PGDBG Graphical User Interface” on page 5.

Basic Process and Thread Naming

Because PGDBG can debug multi-threaded applications, multi-process applications, and hybrid multi-
threaded/multi-process applications (only multi-thread on Windows platforms), it provides a
convention for uniquely identifying each thread in each process. This section gives a brief overview of
this naming convention and how it is used in order to provide adequate background for the subsequent
sections. A more detailed discussion of this convention, including advanced techniques for applying it, is
provided in “Thread and Process Grouping and Naming” on page 107.

PGDBG identifies threads in an OpenMP application using the OpenMP thread IDs. Otherwise, PGDBG
assigns arbitrary IDs to threads, starting at zero and incrementing in order of thread creation.

PGDBG identifies processes in an MPI application using MPI rank (in communicator COMMWORLD).
Otherwise, PGDBG assigns arbitrary IDs to processes; starting at zero and incrementing in order of
process creation. Process IDs are unique across all active processes.

In a multi-threaded/multi-process application, each thread can be uniquely identified across all
processes by prefixing its thread ID with the process ID of its parent process. For example, thread 1.4
identifies the thread with ID 4 in the process with ID 1.

An OpenMP application (single-process) logically runs as a collection of threads with a single process,
process 0, as the parent process. In this context, a thread is uniquely identified by its thread ID. The
process ID prefix is implicit and optional. See “Threads-only Debugging” on page 108.

An MPI program logically runs as a collection of processes, each made up of a single thread of execution.
Thread 0 is implicit to each MPI process. A process ID uniquely identifies a particular process, and
thread ID is implicit and optional. See “Process-only Debugging” on page 109.

The PGDBG Debugger

102

A hybrid, or multilevel, MPI/OpenMP program requires the use of both process and thread IDs to
uniquely identify a particular thread. See “Multilevel Debugging” on page 109.

A serial program runs as a single thread of execution, thread 0, belonging to a single process, process 0.
The use of thread IDs and process IDs is unnecessary but optional.

Multi-Thread and OpenMP Debugging

PGDBG automatically attaches to new threads as they are created during program execution. PGDBG
reports when a new thread is created and the thread ID of the new thread is printed.

([1] New Thread)

The system ID of the freshly created thread is available through the threads command. The procs
command can be used to display information about the parent process.

PGDBG maintains a conceptual current thread. The current thread is chosen by using the thread
command when the debugger is operating in text mode (invoked with the -text option), or by clicking in
the thread grid when the GUI interface is in use (the default). A subset of PGDBG commands known as
thread-level commands, when executed, apply only to the current thread. See “Thread Level
Commands” on page 120, for more information.

The threads command lists all threads currently employed by an active program. The threads command
displays each thread’s unique thread ID, system ID (Linux process ID), execution state (running,
stopped, signaled, exited, or killed), signal information and reason for stopping, and the current
location (if stopped or signaled). An arrow (=>) indicates the current thread. The process ID of the
parent is printed in the top left corner. The thread command changes the current thread.

pgdbg [all] 2> thread 3

pgdbg [all] 3> threads

0 ID PID STATE SIGNAL LOCATION

=> 3 18399 Stopped SIGTRAP main line: 31 in "omp.c" address:

0x80490ab

 2 18398 Stopped SIGTRAP main line: 32 in "omp.c" address: 0x80490cf

 1 18397 Stopped SIGTRAP main line: 31 in "omp.c" address: 0x80490ab

 0 18395 Stopped SIGTRAP f line: 5 in "omp.c" address: 0x8048fa0

In the GUI, thread state is represented by a color in the process/thread grid.

Debugging Parallel Programs

103

Table 1-13: Thread State Is Described Using Color

Multi-Process MPI Debugging

When installed as part of the PGI Cluster Development Kit (CDK) on Linux platforms, PGDBG supports
multi-process MPI debugging. The PGI CDK contains versions of MPICH and MPICH2 pre-configured to
support debugging cluster applications with PGDBG. Non-CDK MPI software must be configured to
support PGDBG; see http://www.pgroup.com/support/faq.htm for more information.

Invoking PGDBG for MPI Debugging

The command used to start MPI debugging under MPICH using the PGDBG GUI is:

% mpirun -np nprocs -dbg=pgdbg executable [arg1,...argn]

The command used to start MPI debugging under MPICH2 using the PGDBG GUI is:

% mpiexec -np nprocs -pgi executable [arg1,...argn]

Note that for MPICH2, the mpdboot command must have been run, as with any other MPICH2
application.

Thread State Description Color

Stopped If all threads are
stopped at break-
points, or where
directed to stop by
PGDBG

Red

Signaled If at least one thread is
stopped due to delivery
of a signal

Blue

Running If at least one thread is
running

Green

Exited or Killed If all threads have
been killed or exited

Black

The PGDBG Debugger

104

The command used to start MPI debugging using PGDBG in TEXT mode is the same, except that the
DISPLAY environment variable must be undefined in the shell that is invoking mpirun:

For sh/bash users:

$ unset DISPLAY

For csh/tcsh users:

% unsetenv DISPLAY

In either case, PGDBG must be installed and found in the PATH.

When an MPI debug session begins, PGDBG will stop the program at the first executable statement in the
program. Execution does not need to be started using the run command as it does with serial or multi-
threaded programs. Execution is started using one of the other control commands, such as cont, next, or
step.

Using PGDBG for MPI Debugging

The initial MPI process is run locally; ‘local’ describes the host on which PGDBG is running. PGDBG
automatically attaches to new MPI processes as they are created by the running MPI application.
PGDBG displays an informational message as it attaches to the freshly created processes.

([1] New Process)

The MPI global rank is printed with the message. The procs command can be used to list the host and
the PID of each process by rank. The current process is indicated by an arrow (=>). The proc command
can be used to change the current process by process ID.

pgdbg [all] 0.0> proc 1; procs

Process 1: Thread 0 Stopped at 0x804a0e2, function main, file mpi.c,

line 30

 #30: aft=time(&aft);

 ID IPID STATE THREADS HOST

 0 24765 Stopped 1 local

 => 1 17890 Stopped 1 red2.wil.st.com

The execution state of a process is described in terms of the execution state of its component threads. See
Table 1-13 for a description of how thread state is represented in the GUI.

Debugging Parallel Programs

105

The PGDBG command prompt displays the current process and the current thread. In the above
example, the current process was changed to process 1 by the proc 1 command and the current thread of
process 1 is 0; this is written as 1.0:

pgdbg [all] 1.0>

See “Process and Thread Control” on page 122, for a complete description of the prompt format.

The following rules apply during a PGDBG debug session:

• PGDBG maintains a conceptual current process and current thread.

• Each active process has a thread set of size >=1.

• The current thread is a member of the thread set of the current process.

Certain commands, when executed, apply only to the current process or the current thread. See “Process
Level Commands” on page 119, and “Thread Level Commands” on page 120, for more information.

A license file distributed with PGDBG restricts PGDBG to debugging a total of 64 threads. PGI
Workstation, Server, and CDK (Cluster Development Kit) license files may further restrict the number of
threads that PGDBG is eligible to debug. PGDBG will use the PGI Workstation, Server, or CDK license files
to determine the number of threads it is allowed to debug.

With its 64-thread limit, PGDBG is capable of debugging a 16-node cluster with 4 CPUs on each node or
a 32-node cluster with 2 CPUs on each node or any combination of threads that add up to 64.

MPICH Support

PGDBG supports redirecting stdin, stdout, and stderr with the following MPICH switches:

The PGDBG Debugger

106

Table 1-14: MPICH Support

PGDBG also provides support for the following MPICH switches:

For information about how to configure an arbitrary installation of MPICH to use PGDBG, see the
PGDBG online FAQ at http://www.pgroup.com/support/faq.htm.

When PGDBG is invoked via mpirun the following PGDBG command line arguments are not accessible.
A workaround is listed for each.

Command Output

-stdout <file> Redirect standard output to <file>

-stdin <file> Redirect standard input from <file>

-stderr <file> Redirect standard error to <file>

Command Output

-nolocal PGDBG runs locally, but no MPI
processes run locally

-all-local PGDBG runs locally, all MPI pro-
cesses run locally

Argument Workaround

-dbx Include 'pgienv dbx on' in .pgdbgrc
file

-s startup Use .pgdbgrc default script file and
the script command

-c "command" Use .pgdbgrc default script file and
the script command

Thread and Process Grouping and Naming

107

LAM-MPI Support

The Portland Group Cluster Development Kit (CDK) includes an implementation of MPICH. PGDBG is
configured to automatically integrate with MPICH. PGDBG can also be used with LAM-MPI, but some
configuration is required. For more information, see the online FAQ at http://www.pgroup.com/support/
faq.htm.

Thread and Process Grouping and Naming

This section describes how to name a single thread, how to group threads and processes into sets, and
how to apply PGDBG commands to groups of processes and threads.

PGDBG Debug Modes

PGDBG can operate in four debug modes. The mode determines a short form for uniquely naming
threads and processes. The debug mode is set automatically or by the pgienv command.

-text Clear your DISPLAY environment
variable before invoking mpirun

-t <target> Add to the beginning of the PATH
environment variable a path to the
appropriate PGDBG

Argument Workaround

The PGDBG Debugger

108

Table 1-15: PGDBG Debug Modes

PGDBG initially operates in serial mode reflecting a single thread of execution. Thread IDs can be
ignored in serial debug mode since there is only a single thread of execution.

The PGDBG prompt displays the ID of the current thread according to the current debug mode. See “The
PGDBG Command Prompt” on page 128, for a description of the PGDBG prompt.

The pgienv command is used to change debug modes manually.

pgienv mode [serial|thread|process|multilevel]

The debug mode can be changed at any time during a debug session.

Threads-only Debugging

Enter threads-only mode to debug a program with a single multi-threaded process. As a convenience the
process ID portion can be omitted. PGDBG automatically enters threads-only debug mode from serial
debug mode when it detects and attaches to new threads.

Example 1-1: Thread IDs in Threads-only Debug Mode

Debug Mode Program Characterization

Serial A single thread of execution

Threads-only A single process, multiple threads of
execution

Process-only Multiple processes, each process
made up of a single thread of exe-
cution [Linux Only]

Multilevel Multiple processes, at least one pro-
cess employing multiple threads of
execution [Linux Only]

1 Thread 1 of process 0 (*.1)

* All threads of process 0 (*. *)

Thread and Process Grouping and Naming

109

In threads-only debug mode, status and error messages are prefixed with thread IDs depending on
context.

Process-only Debugging

[Linux Only] Enter process-only mode to debug an application consisting of single-threaded processes.
As a convenience, the thread ID portion can be omitted. PGDBG automatically enters process-only debug
mode from serial debug mode when the target program returns from MPI_Init.

Example 1-2: Process IDs in process-only debug mode

In process-only debug mode, status and error messages are prefixed with process IDs depending on
context.

Multilevel Debugging

[Linux Only] The name of a thread in multilevel debug mode is the thread ID prefixed with its parent
process ID. This forms a unique name for each thread across all processes. This naming scheme is valid
in all debug modes. PGDBG changes automatically to multilevel debug mode from process-only debug
mode or threads-only debug mode when at least one MPI process creates multiple threads.

Example 1-3: Thread IDs in multilevel debug mode

0.7 Thread 7 of process 0 (multilevel
names are valid in threads-only
mode)

0 All threads of process 0 (0.*)

* All threads of all processes (*.*)

1.0 Thread 0 of process 1 (multilevel
names are valid in process-only
mode)

0.1 Thread 1 of process 0

0.* All threads of process 0

The PGDBG Debugger

110

In multilevel debug, mode status and error messages are prefixed with process/thread IDs depending on
context.

Process/Thread Sets

A process/thread set (p/t-set) is used to restrict a debugger command to apply to just a particular set of
threads. A p/t-set is a set of threads drawn from all threads of all processes in the target program. Use p/
t-set notation (described in “p/t-set Notation” on page 110) to define a p/t-set.

In the following sections, frequent reference is made to three named p/t-sets:

• The target p/t-set is the set of processes and threads to which a debugger command is applied. The
target p/t-set is initially defined by the debugger to be the set [all] which describes all threads of all
processes.

• A prefix p/t-set is defined when p/t-set notation is used to prefix a debugger command. For the
prefixed command, the target p/t-set is the prefix p/t-set.

• The current p/t-set is the p/t set currently set in the PGDBG environment. The current p/t-set can
be defined using the focus command. The current p/t set is used as the target p/t-set unless a prefix
p/t-set overrides it.

p/t-set Notation

The following set of rules describes how to use and construct p/t-sets:

Use a prefix p/t-set with a simple command:

[p/t-set prefix] command parm0,

parm1, ...

Use a prefix p/t-set with a compound command:

[p/t-set prefix] simple-command [;

simple-command ...]

p/t-id:

{integer|*}.{integer|*}

* All threads of all processes

Thread and Process Grouping and Naming

111

p/t-id optional notation when process-only or threads-only debugging is in effect (see the pgienv
command):

{integer|*}

p/t-range:

p/t-id:p/t-id

p/t-list:

{p/t-id|p/t-range} [, {p/t-id|p/t-range} ...]

p/t-set:

[[!]{p/t-list|set-name}]

Example 1-4: p/t-sets in Threads-only Debug Mode

Example 1-5: p/t-sets in Process-only Debug Mode

[0,4:6] Threads 0,4,5, and 6

[*] All threads

[*.1] Thread 1. Multilevel notation is
valid in threads-only mode

[*.*] All threads

[0,2:3] Processes 0, 2, and 3 (equivalent to
[0.*,2:3.*])

[*] All processes (equivalent to [*.*])

[0] Process 0 (equivalent to [0.*])

[*.0] Process 0. Multilevel syntax is valid
in process-only mode.

The PGDBG Debugger

112

Example 1-6: p/t-sets in Multilevel Debug Mode

Dynamic vs. Static p/t-sets

The defset command can be used to define both dynamic and static p/t-sets. The members of a dynamic
p/t-set are those active threads described by the p/t-set at the time that p/t-set is used. A p/t-set is dynamic
by default. Threads and processes are created and destroyed as the target program runs and, therefore,
membership in a dynamic set varies as the target program executes.

Example 1-7: Defining a Dynamic p/t-set

The members of a static p/t-set are those threads described by the p/t-set at the time that p/t-set is
defined. Use a ! to specify a static set. Membership in a static set is fixed at definition time.

[0:2.*] Processes 0, 1, and 2. Multilevel
syntax is valid in process-only
debug mode.

[0.1,0.3,0.5] Thread 1,3, and 5 of process 0

[0.*] All threads of process 0

Thread 1,2, and 3 of process 1

[1:2.1] Thread 1 of processes 1 and 2

[clients] All threads defined by named set
clients

[1] Incomplete; invalid in multilevel
debug mode

defset clients
[*.1:3]

Defines a named set clients whose mem-
bers are threads 1, 2, and 3 of all pro-
cesses that are currently active when
clients is used. Membership in clients
changes as processes are created and
destroyed.

Thread and Process Grouping and Naming

113

Example 1-8: Defining a Static p/t-set

p/t-sets defined with defset are not mode dependent and are valid in any debug mode.

Current vs. Prefix p/t-set

The current p/t-set is set by the focus command. The current p/t-set is described by the debugger prompt
(depending on debug mode; see “The PGDBG Command Prompt” on page 128, for a description of the
PGDBG prompt). A p/t-set can be used to prefix a command to override the current p/t-set. The prefix p/
t-set becomes the target p/t-set for the command. The target p/t-set defines the set of threads that will be
affected by a command.

• In the following command line, the target p/t-set is the current p/t-set:

pgdbg [all] 0.0> cont

Continue all threads in all processes

• In contrast, a prefix p/t-set is used in the following command so the the target p/t-set is the prefix
p/t-set (note the prefix p/t-set in bold:

pgdbg [all] 0.0> [0.1:2] cont

Continue threads 1 and 2 of process 0 only

In both of the above examples, the current p/t-set is the debugger-defined set [all]. In the first case, [all]
is the target p/t-set. In the second case, the prefix p/t-set overrides [all] and becomes the target p/t-set.
The continue command is applied to all active threads in the target p/t-set. Using a prefix p/t-set does
not change the current p/t-set.

p/t-set Commands

The following commands can be used to collect threads into logical groups.

• defset and undefset can be used to manage a list of named p/t-sets.

• focus is used to set the current p/t-set.

defset clients [!*.1:3] Defines a named set clients whose
members are threads 1, 2, and 3 of
those processes that are currently
active at the time of the definition.

The PGDBG Debugger

114

• viewset is used to view the active members described by a particular p/t-set, or to list all the defined
p/t-sets.

• whichsets is used to describe the p/t-sets to which a particular process/thread belongs.

Table 1-16: p/t-set Commands

Examples of the p/t-set commands in the previous table follow.

Use defset to define the p/t-set initial is to contain only thread 0:

pgdbg [all] 0> defset initial [0]

"initial" [0] : [0]

Change the current p/t-set to initial using the focus command:

pgdbg [all] 0> focus [initial]

[initial] : [0]

[0]

Command Description

defset Define a named p/t-set. This set can later be referred
to by name. A list of named sets is stored by PGDBG.

focus Set the target process/thread set for commands.
Subsequent commands will be applied to the mem-
bers of this set by default.

undefset Undefine a previously defined process/thread set.
The set is removed from the list. The debugger-
defined p/t-set [all] cannot be removed.

viewset List the members of a process/thread set that cur-
rently exist as active threads, or list all the defined p/
t-sets.

whichsets List all defined p/t-sets to which the members of a
process/thread set belongs.

Thread and Process Grouping and Naming

115

Advance the thread. Because the code is not using a prefix p/t-set, the target p/t-set is the current p/t-set,
which is initial:

pgdbg [initial] 0> next

The whichsets command shows that thread 0 is a member of two defined p/t-sets:

pgdbg [initial] 0> whichsets [initial]

Thread 0 belongs to:

all

initial

The viewset command displays all threads that are active and are members of defined p/t-sets:

pgdbg [initial] 0> viewset

"all" [*.*] : [0.0,0.1,0.2,0.3]

"initial" [0] : [0]

The focus command can be used to set the current p/t-set back to [all]:

pgdbg [initial] 0> focus [all]

[all] : [0.0,0.1,0.2,0.3]

[*.*]

The undefset command undefines the initial p/t-set:

pgdbg [all] 0> undefset initial

p/t-set name "initial" deleted.

The examples above illustrate how to manage named p/t-sets using the command-line interface. A
similar capability is available in the PGDBG GUI. “Focus Panel” on page 9, contains information about
the Focus Panel. The Focus Panel, shown in Figure 1-3, contains a table labeled Focus with two columns:
a Name column and a p/t-set column. The entries in this table are p/t-sets exactly like the p/t-sets used
in the command line interface.

To create a p/t set in the Focus Panel , left-click the Add button. This opens a dialog box similar to the
one in Table 1-12. Enter the name of the p/t-set in the Focus Name text field and the p/t-set in the p/t-set
text field. Click the left mouse button on the OK button to add the p/t-set. The new p/t-set will appear in
the Focus Table. Clicking the Cancel button or closing the dialog box will abort the operation. The Clear
button will clear the Focus Name and p/t-set text fields

The PGDBG Debugger

116

To select a p/t-set, click the left mouse button on the desired p/t-set in the table. The selected p/t-set is
also known as the Current Focus. PGDBG will apply all commands entered in the Source Panel to the
Current Focus when you choose Focus in the Apply Selector (“Source Panel Combo Boxes” on page 20).
Current Focus can also be used in a GUI subwindow. Choose Current Focus in a subwindow’s Context
Selector (“Subwindows” on page 24) to display data for the Current Focus only.

To modify an existing p/t-set, select the desired group in the Focus Table and left-click the Modify button.
A dialog box similar to that in Figure 1-12 will appear, except that the Focus Name and p/t-set text fields
will contain the selected group’s name and p/t-set respectively. You can edit the information in these text
fields and click OK to save the changes.

To remove an existing p/t-set, select the desired item in the Focus Table and left-click the Remove button.
PGDBG will display a dialog box asking for confirmation of the request for removal of the selected p/t-
set. Left-click the Yes button to confirm or the No button to cancel the operation.

It should be noted that p/t-sets defined in the Focus Panel of the PGDBG GUI are only used by the Apply
and Context Selectors in the GUI. They do not affect focus in the Command Prompt Panel. Conversely,
focus changes made in the Command Prompt Panel affect only the Command Prompt Panel and not the
rest of the PGDBG GUI.

For example, in Figure 1-12 there is a p/t-set named “process 0 odd numbered threads”. The p/t-set is
[0.1, 0.3] which indicates threads 1 and 3 in process 0. Table 1-13 shows this p/t-set in the Focus Table.
We also chose Focus in the Apply Selector. Any command issued in the Source Panel is applied to the
Current Focus, or thread 1 and 3 on process 0 only. All other threads will remain idle until either the All
p/t-set is selected in the Focus Panel or All is selected in the Apply Selector. Note that “process 0 odd
numbered threads” is not available in the Command Prompt Panel.

Thread and Process Grouping and Naming

117

Figure 1-12: Focus Group Dialog Box

The PGDBG Debugger

118

Figure 1-13: Focus in the GUI

Thread and Process Grouping and Naming

119

Command Set

For the purpose of parallel debugging, the PGDBG command set is divided into three disjoint subsets
according to how each command reacts to the current p/t-set. Process level and thread level commands
can be parallelized. Global commands cannot be parallelized.

Table 1-17: PGDBG Parallel Commands

Process Level Commands

The process level commands are the PGDBG control commands.

The PGDBG control commands apply to the active members of the current p/t-set by default. A prefix set
can be used to override the current p/t-set. The target p/t-set is the prefix p/t-set if present.

Apply the next command to threads 1 and 2 of process 0:

pgdbg [all] 0.0> focus [0.1:2]

pgdbg [0.1:2] 0.0> next

Apply the next command to thread 3 of process 0 using a prefix p/t-set:

pgdbg [all] 0.0> [0.3] n

Commands Action

Process Level Commands Parallel by current p/t-set or prefix
p/t-set [Linux Only]

Thread Level Commands Parallel by prefix p/t-set. Ignores
current p/t-set

Global Commands Non-parallel commands

cont nexti stepout synci

halt step sync wait

next stepi

The PGDBG Debugger

120

Thread Level Commands

The following commands are not concerned with the current p/t-set. When no p/t-set prefix is used,
these commands execute in the context of the current thread of the current process by default. That is,
thread level commands ignore the current p/t-set. Thread level commands can be applied to multiple
threads by using a prefix p/t-set. When a prefix p/t-set is used, the commands in this section are executed
in the context of each active thread described by the prefix p/t-set. The target p/t-set is the prefix p/t-set if
present, or the current thread (not the current p/t-set) if no prefix p/t set exists. The thread level
commands are:

* breakpoints and variants: (stop, stopi, break, breaki) if no prefix p/t-set is specified, [all] is used
(overriding current p/t-set).

The following occurs when a prefix p/t-set is used:

• The threads described by the prefix are sorted per process by thread ID in increasing order.

• The processes are sorted by process ID in increasing order, and duplicates are removed.

• The command is then applied to the threads in the resulting list in order.

addr dump noprint sp

ascii entry oct sread

assign fp pc stack

bin fread pf stackdump

break* func print string

cread hex regs watch

dec hwatch retaddr watchi

decl iread rval whatis

disasm line scope where

do lines set track

doi lval sizeof tracki

dread

Thread and Process Grouping and Naming

121

Without a prefix p/t-set, the print command executes in the context of the current thread of the current
process, thread 0.0, printing rank 0:

pgdbg [all] 0.0> print myrank

0

With a prefix p/t-set, the thread members of the prefix are sorted and duplicates are removed. The print
command iterates over the resulting list:

pgdbg [all] 0.0> [2:3.*,1:2.*] print

myrank

[1.0] print myrank:

1

[2.0] print myrank:

2

[2.1] print myrank:

2

[2.2] print myrank:

2

[3.0] print myrank:

3

[3.2] print myrank:

3

[3.1] print myrank:

3

Global Commands

The rest of the PGDBG commands ignore threads and processes, or are defined globally for all threads
across all processes. The current p/t-set and prefix p/t-set (if any) are ignored.

The following is a list of commands that are defined globally.

? disable pgienv status

/ display proc thread

alias edit procs threads

arrive enable pwd unalias

breaks files quit unbreak

call focus repeat undefset

The PGDBG Debugger

122

Process and Thread Control

PGDBG supports thread and process control (e.g. step, next, cont ...) everywhere in the program. Threads
and processes can be advanced in groups anywhere in the program. Recall that multi-process MPI
debugging is supported only on Linux platforms.

The PGDBG control commands are:

To describe those threads to be advanced, set the current p/t-set or use a prefix p/t-set.

A thread inherits the control operation of the current thread when it is created. If the current thread
single-steps over an _mp_init call (found at the beginning of every OpenMP parallel region) using the
next command, then all threads created by _mp_init will step into the parallel region as if by the next
command.

A process inherits the control operation of the current process when it is created. So if the current process
returns from a call to MPI_Init under the control of a cont command, the new process will do the same.

Configurable Stop Mode

PGDBG supports configuration of how threads and processes stop in relation to one another. PGDBG
defines two new pgienv environment variables, threadstop and procstop, for this purpose. PGDBG defines
two stop modes, synchronous (sync) and asynchronous (async).

fatch funcs rerun use

cd help run viewset

debug history script wait

defset ignore shell whereis

delete log source whichsets

directory

cont nexti stepout synci

halt step sync wait

next stepi

Thread and Process Grouping and Naming

123

Table 1-18: PGDBG Stop Modes

Thread stop mode is set using the pgienv command as follows:

pgienv threadstop [sync|async]

Process stop mode is set using the pgienv command as follows:

pgienv procstop [sync|async]

PGDBG defines the default to be asynchronous for both thread and process stop modes. When debugging
an OpenMP program, PGDBG automatically enters synchronous thread stop mode in serial regions, and
asynchronous thread stop mode in parallel regions.

The pgienv environment variables threadstopconfig and procstopconfig can be set to automatic (auto)
or user defined (user) to enable or disable this behavior:

pgienv threadstopconfig [auto|user]

pgienv procstopconfig [auto|user]

Selecting the user-defined stop mode prevents the debugger from changing stop modes automatically.
Automatic stop configuration is the default for both threads and processes.

Configurable Wait Mode

Wait mode describes when PGDBG will accept the next command. The wait mode is defined in terms of
the execution state of the program. Wait mode describes to the debugger which threads/processes must
be stopped before it will accept the next command. In certain situations, it is desirable to be able to enter
commands while the program is running and not stopped at an event. The PGDBG prompt will not
appear until all processes/threads are stopped. However, a prompt may be available before all processes/

Command Result

sync Synchronous stop mode; when one
thread stops at a breakpoing (event), all
other threads are stopped soon after.

async Asynchronous stop mode; each thread
runs independently of the other threads.
One thread stopping does not affect the
behavior of another.

The PGDBG Debugger

124

threads have stopped. Pressing <enter> at the command line will bring up a prompt if it is available.
The availability of the prompt is determined by the current wait mode and any pending wait commands
(described below).

PGDBG accepts a compound statement at each prompt. Each compound statement is a sequence of
semicolon-separated commands, which are processed immediately in order. The wait mode describes
when to accept the next compound statement. PGDBG supports three wait modes, which can be applied
to processes and/or threads.

Table 1-19: PGDBG Wait Modes

• Thread wait mode describes which threads PGDBG waits for before accepting new commands.

• Process wait mode describes which processes PGDBG waits for before accepting new commands.

Thread wait mode is set using the pgienv command as follows:

pgienv threadwait [any|all|none]

Process wait mode is set using the pgienv command as follows:

pgienv procwait [any|all|none]

If process wait mode is set to none, then thread wait mode is ignored.

In TEXT mode, PGDBG defaults to:

threadwait all

procwait any

Command Result

all The prompt is available only after all threads
have stopped since the last control command.

any The prompt is available only after at least one
thread has stopped since the last control com-
mand.

none The prompt is available immediately after a con-
trol command is issued.

Thread and Process Grouping and Naming

125

If the target program goes MPI parallel, then procwait is changed to none automatically by PGDBG.

If the target program goes thread parallel, then threadwait is changed to none automatically by PGDBG.
The pgienv environment variable threadwaitconfig can be set to automatic (auto) or user defined (user)
to enable or disable this behavior.

pgienv threadstopconfig [auto|user]

Selecting the user defined wait mode prevents the debugger from changing wait modes automatically.
Automatic wait mode is the default thread wait mode.

PGDBG defaults to the following in GUI mode:

threadwait none

procwait none

Setting the wait mode may be necessary when invoking the debugger using the -s (script file) option in
GUI mode (to ensure that the necessary threads are stopped before the next command is processed).

PGDBG also provides a wait command that can be used to insert explicit wait points in a command
stream. Wait uses the target p/t-set by default, which can be set to wait for any combination of processes/
threads. The wait command can be used to insert wait points between the commands of a compound
command.

The threadwait and procwait pgienv variables can be used to configure the behavior of wait (see pgienv
usage in “Configurable Wait Mode” on page 123).

The following table describes the behavior of wait. In the example in the table:

• S is the target p/t-set

• P is the set of all processes described by S and p is a single process

• T is the set of all threads described by S and t is a single thread

The PGDBG Debugger

126

Table 1-20: PGDBG Wait Behavior

Command threadwait procwait Wait Set

wait all all Wait for T

wait all any

none

Wait for all threads in at least one p in P

wait any

none

all Wait for T

wait any

none

any

none

Wait for all t in T for at least one p in P

wait all all all Wait for T

wait all all any

none

Wait for all threads of at least one p in P

wait all any

none

all Wait for T

wait all any

none

any

none

Wait for all t in T for at least one p in P

wait any all all Wait for at least one thread for each process p in P

wait any all any

none

Wait for at least one t in T

wait any any

none

all Wait for at least one thread in T for each process p in P

wait any any

none

any

none

Wait for at least one t in T

Thread and Process Grouping and Naming

127

Status Messages

PGDBG can produce a variety of status messages during a debug session. This feature can be useful in
text mode in the absence of the graphical aids provided by the GUI. Use the pgienv command to enable
or disable the types of status messages produced by setting the verbose environment variable to an
integer-valued bit mask using pgienv:

pgienv verbose <bitmask>

The values for the bit mask listed in the following table control the type of status messages desired.

wait none all

any

none

all

any

none

Wait for no threads

Command threadwait procwait Wait Set

The PGDBG Debugger

128

Table 1-21: PGDBG Status Messages

The PGDBG Command Prompt

The PGDBG command prompt reflects the current debug mode (see “PGDBG Debug Modes” on page
107).

In serial debug mode, the PGDBG prompt looks like this:

pgdbg>

Value Type Information

0x1 Standard Report status information on current process/thread only. A
message is printed when the current thread stops and when
threads and processes are created and destroyed. Standard
messaging is the default and cannot be disabled.

0x2 Thread Report status information on all threads of current processes. A
message is reported each time a thread stops. If process mes-
saging is also enabled, then a message is reported for each
thread across all processes. Otherwise, messages are reported
for threads of the current process only.

0x4 Process Report status information on all processes. A message is
reported each time a process stops. If thread messaging is also
enabled, then a message is reported for each thread across all
processes. Otherwise, messages are reported for the current
thread only of each process.

0x8 SMP Report SMP events. A message is printed when a process enters
or exits a parallel region, or when the threads synchronize. The
PGDBG OpenMP handler must be enabled.

0x16 Parallel Report process-parallel events (default).

0x32 Symbolic
debug infor-
mation

Report any errors encountered while processing symbolic
debug information (e.g. ELF, DWARF2).

Thread and Process Grouping and Naming

129

In threads-only debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of
the current thread:

pgdbg [all] 0>

Current thread is 0

In process-only debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of
the current process:

pgdbg [all] 0>

Current process is 0

In multilevel debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of
the current thread prefixed by the id of its parent process:

pgdbg [all] 1.0>

Current thread 1.0

The pgienv promptlen variable can be set to control the number of characters devoted to printing the
current p/t-set at the prompt.

Parallel Events

This section describes how to use a p/t-set to define an event across multiple threads and processes.
Events, such as breakpoints and watchpoints, are user-defined events. User-defined events are thread-
level commands (see “Thread Level Commands” on page 120, for details).

Breakpoints, by default, are set across all threads of all processes. A prefix p/t-set can be used to set
breakpoints on specific processes and threads. For example:

i) pgdbg [all] 0> b 15

ii) pgdbg [all] 0> [all] b 15

iii) pgdbg [all] 0> [0.1:3] b

15

(i) and (ii) are equivalent. (iii) sets a breakpoint only in threads 1,2,3 of process 0.

By default, all other user events are set for the current thread only. A prefix p/t-set can be used to set user
events on specific processes and threads. For example:

i) pgdbg [all] 0> watch glob

ii) pgdbg [all] 0> [*] watch

glob

The PGDBG Debugger

130

(i) sets a data breakpoint for glob on thread 0 only. (ii) sets a watchpoint for glob on all threads that are
currently active.

When a process or thread is created, it inherits all of the breakpoints defined for the parent process or
thread. All other events must be defined explicitly after the process or thread is created. All processes
must be stopped to add, enable, or disable a user event.

Events may contain if and do clauses. For example:

pgdbg [all] 0> [*] break

func if (glob!=0) do {set f = 0}

The breakpoint will fire only if glob is non-zero. The do clause is executed if the breakpoint fires. The if
and do clauses execute in the context of a single thread. The conditional in the if clause and the body of
the do execute in the context of a single thread, the thread that triggered the event. The conditional
definition as above can be restated as follows:

[0] if (glob!=0) {[0] set

f = 0}

[1] if (glob!=0) {[1] set

f = 0}

...

When thread 1 hits func, glob is evaluated in the context of thread 1. If glob evaluates to non-zero, f is
bound in the context of thread 1 and its value is set to 0.

Control commands can be used in do clauses, however they only apply to the current thread and are only
well defined as the last command in the do clause. For example:

pgdbg [all] 0> [*] break

func if (glob!=0) do {set f = 0; c}

If the wait command appears in a do clause, the current thread is added to the wait set of the current
process. For example:

pgdbg [all] 0> [*] break

func if (glob!=0) do {set f = 0; c; wait}

if conditionals and do bodies cannot be parallelized with prefix p/t-sets. For example, an illegal
command would be:

pgdbg [all] 0> break func if (glob!=0)

do {[*] set f = 0} ILLEGAL

Thread and Process Grouping and Naming

131

This is illegal. The body of a do statement cannot be parallelized.

Parallel Statements

This section describes how to use a p/t-set to define a statement across multiple threads and processes.

Parallel Compound/Block Statements

Each command in a compound statement is executed in order. The target p/t-set is applied to all
statements in a compound statement. The following two examples (i) and (ii) are equivalent:

i) pgdbg [all] 0>[*] break

main; cont; wait; print f@11@i

ii) pgdbg [all] 0>[*] break

main; [*]cont; [*]wait; [*]print

f@11@i

Use the wait command if subsequent commands require threads to be stopped as the print command
above does.

The threadwait and procwait environment variables do not affect how commands within a compound
statement are processed. These pgienv environment variables describe to PGDBG under what conditions
(runstate of program) it should accept the next (compound) statement.

Parallel If, Else Statements

A prefix p/t-set can be used to parallelize an if statement. An if statement executes in the context of the
current thread by default. The following example:

pgdbg [all] 0> [*] if

(i==1) {break func; c; wait} else {sync

func2}

is equivalent to the following pseudo-code:

 for the subset of [*] where

(i==1)

 break func; c; wait;

 for the subset of [*] where (i!=1)

 sync func2

The PGDBG Debugger

132

Parallel While Statements

A prefix p/t-set can be used to parallelize a while statement. A while statement executes in the context of
the current thread by default. The following example:

pgdbg [all] 0> [*] while

(i<10) {n; wait; print i}

is equivalent to the following pseudo-code:

 loop:

 if the subset of [*] is the empty set

 goto done

 for the subset of [*] where (i<10)

 [s]n; [s]wait; [s]print

i;

 goto loop

 done:

The while statement terminates when either the subset of the target p/t-set matching the while condition
is the empty set, or a return statement is executed in the body of the while.

Return Statements

The return statement is defined only in serial context since it cannot return multiple values. When
return is used in a parallel statement, it returns the last value evaluated.

OpenMP Debugging

An attempt is made by PGDBG to preserve line level debugging and to help make debugging OpenMP
programs more intuitive. PGDBG preserves line level debugging across OpenMP threads in the following
situations:

• Entrance to parallel region

• Exit from parallel region

• Synchronization points of nested parallel regions

• Critical and exclusive sections

• Parallel sections

OpenMP Debugging

133

When directives or pragmas that imply complex parallel operations are encountered in the execution of
an OpenMP application, PGDBG treats those directives as a single source line.

Serial vs. Parallel Regions

The initial thread is the thread with OpenMP ID 0. Conceptually, the initial thread is the only thread that
can be effectively debugged in a serial region of code. All threads may be debugged in a parallel region of
code. When the initial thread is in a serial region, the non-initial threads are waiting to be assigned to do
some work in the next parallel region. All threads enter the next parallel region only when the first
thread has entered the parallel region.

PGDBG source level debugging operations (next, step,...) are not useful for debugging non-initial
threads in serial regions, since these threads are idle, executing low-level code that is not compiled to
include source line information. Non-initial threads in serial regions may be debugged using assembly-
level debugging operations, but it is not recommended.

To ease debugging in serial and parallel regions of an OpenMP program, PGDBG automatically
configures both the thread wait mode and the thread stop mode of the debug session.

Upon entering a serial region, PGDBG automatically changes the thread stop mode to synchronous stop
mode and the thread wait mode to all. This allows easy control of all threads together in serial regions.
For example, a next command, applied to all threads in a serial region, will complete successfully when
the initial thread hits the next source line.

Upon entering a parallel region, PGDBG automatically changes the thread stop mode to asynchronous
stop mode and the threadwait mode to none. This allows control of each thread independently. For
example, a next command, applied to all threads in a parallel region, will not complete successfully
until all threads hit their next source line. With the thread wait mode set to none, use the halt command
on threads that hit barrier points.

To disable the automatic configuration of the thread wait and thread stop modes, see the
threadstopconfig and threadwaitconfig options of the pgienv command (“Miscellaneous” on page 80).

The configuration of the thread wait and stop modes, as described above, occurs automatically for
OpenMP programs only. When debugging a Linuxthread program, the threadstop and threadwait
configuration options should be set using the pgienv command (“Miscellaneous” on page 80).

The PGDBG OpenMP Event Handler

The OpenMP event handler is deprecated as of PGDBG release 5.2.

The PGDBG Debugger

134

PGDBG provides optional explicit support for OpenMP events. OpenMP events are points in a well-
defined OpenMP program where the behavior of one thread depends on the location of another thread.
For example, a thread may continue after another thread reaches a barrier point. The PGDBG OpenMP
event handler is disabled by default. It can be enabled using the pgienv omp environment variable as
shown below:

pgienv omp [on|off]

The PGDBG OpenMP event handler sets breakpoints before a parallel region, after a parallel region, and
at each thread synchronization point. Using the OpenMP event handler causes a noticeable slowdown in
performance of the program as it runs with the debugger.

Debugging OpenMP Private Data

PGDBG supports debugging of OpenMP private data for all supported languages as of release 6.0. When
an object is declared private in the context of an OpenMP parallel region, it essentially means that each
thread team will have its own copy of the object. This capability is shown in the following Fortran and C/
C++ examples, where the loop index variable i is private by default.

FORTRAN example:

 program omp_private_data

 integer array(8)

 call omp_set_num_threads(2)

!$OMP PARALLEL DO

 do i=1,8

 array(i) = i

 enddo

!$OMP END PARALLEL DO

 print *, array

 end

C/C++ example:

#include <omp.h>

int main ()

{

 int i;

 int array[8];

 omp_set_num_threads(2);

#pragma omp parallel

 {

OpenMP Debugging

135

#pragma omp for

 for (i = 0; i < 8; ++i)

 array[i] = i;

 }

 for (i = 0; i < 8; ++i)

 printf("array[%d] = %d\n",

i, array[i]);

}

Display of OpenMP private data when the above examples are built with a PGI compiler (6.0 or higher)
and displayed by PGDBG (6.0 or higher) is as follows:

pgdbg [all] 0> [*] print

i

[0] print i:

1

[1] print i:

5

The example specifies [*] for the p/t-set to execute the print command on all threads. Table 1-14 shows
the values for i in the PGDBG GUI using a Custom Window. Note that All Threads is selected in the
Context Selector to display the value on both threads.

The PGDBG Debugger

136

Figure 1-14: OpenMP Private Data in PGDBG GUI

MPI Debugging

MPI debugging is supported on Linux platforms.

Process Control

PGDBG is capable of debugging parallel-distributed MPI programs and hybrid distributed multi-
threaded applications. PGDBG is invoked via MPIRUN and automatically attaches to each MPI process as
it is created. See “Multi-Process MPI Debugging” on page 103, to get started.

Here are some things to consider when debugging an MPI program:

• Use p/t-sets to focus on a set of processes. Be mindful of process dependencies.

• In order for a process to receive a message, the sender must be allowed to run.

• Process synchronization points, such as MPI_Barrier, will not return until all processes have hit
the sync point.

MPI Debugging

137

• MPI_Finalize will not return for Process 0 until Process 1..n-1 exit.

A control command (cont, step, …) can be applied to a stopped process while other processes are
running. A control command applied to a running process is applied to the stopped threads of that
process and is ignored by its running threads. Those threads held by the OpenMP event handler will also
ignore the control command in most situations.

PGDBG automatically switches to process wait mode none as soon as it attaches to its first MPI process.
See the pgienv command and “Configurable Wait Mode” on page 123, for details.

Use the run command to rerun an MPI program. The rerun command is not useful for debugging MPI
programs since MPIRUN passes arguments to the program that must be included. After MPI debugging is
shut down, PGDBG will clean up all of its MPI processes.

Process Synchronization

Use the PGDBG sync command to synchronize a set of processes to a particular point in the program.
The following command runs all processes to MPI_Finalize:

pgdbg [all] 0.0> sync MPI_Finalize

The following command runs all threads of process 0 and process 1 to MPI_Finalize:

pgdbg [all] 0.0> [0:1.*] sync

MPI_Finalize

A synchronize command will only successfully sync the target processes if the sync address is well defined
for each member of the target process set, and all process dependencies are satisfied. If these conditions
are not met, for example, a member could wait forever for a message. The debugger cannot predict if a
text address is in the path of an executing process.

MPI Message Queues

PGDBG can dump the MPI message queues through the mqdump command (“Memory Access” on page
77). In the PGDBG GUI, the message queues can be viewed by selecting the Messages item under the
Windows menu. This command can also have a p/t-set prefix to specify a subset of processes and/or
threads. When using the GUI, a subwindow is displayed with the message queue output as shown in
Figure 1-15 (the PGDBG text debugger produces the same output). Within the subwindow, you can select
which process/threads to display with the Context Selector combo box located at the bottom of the
subwindow (e.g., Process 1 in Figure 1-15).

The PGDBG Debugger

138

The message queue dump is only available for MPI application debugging using the PGI CDK licensed
version of PGDBG. The following error message may display if you invoke mqdump:

ERROR: MPI Message Queue library not found. Try setting

‘PGDBG_MQS_LIB_OVERRIDE’ environment

variable.

If this message is displayed by a CDK-licensed version of PGDBG, then the PGDBG_MQS_LIB_OVERRIDE
environment variable should be set to the absolute path of libtvmpich.so or compatible library. This
library is normally located in $PGI/lib.

Figure 1-15: Messages Subwindow

MPI Groups

PGDBG identifies each process by its COMMWORLD rank. In general, PGDBG currently ignores MPI
groups.

MPI Debugging

139

MPI Listener Processes

Entering Control-C (^C) from the PGDBG command line can be used to halt all running processes. This
is not the preferred method, however, to use while debugging an MPI program. Entering ^C at the
command line sends a SIGINT signal to the debugger’s children. This signal is never received by the MPI
processes listed by the procs command (i.e., the initial and attached processes); SIGINT is intercepted in
each case by PGDBG. However, PGDBG does not attach to the MPI listener processes paired with each
MPI process. These listener processes will receive a ^C from the command line, which will kill these
processes and result in undefined program behavior.

For this reason, PGDBG automatically switches to process wait mode none (pgienv procwait none) as
soon as it attaches to its first MPI process. Setting 'pgienv procwait none' allows commands to be entered
while there are running processes, which allows the use of the halt command to stop running processes
without the use of ^C.

Note: halt cannot interrupt a wait command. ^C must be used for this. In MPI debugging, wait should
be used with care.

SSH and RSH

By default, PGDBG uses rsh for communication between remote PGDBG components. PGDBG can also
use ssh for secure environments. The environment variable PGRSH, should be set to ssh or rsh, to
indicate the desired communication method.

The PGDBG Debugger

140

Introduction

141

2 The PGPROF Profiler
This chapter describes the PGPROF profiler. The profiler is a tool that analyzes data generated during
execution of specially compiled C, C++, F77, F95 and HPF programs. The PGPROF profiler displays
information about which routines and lines were executed, how often they were executed, and how
much of the total time they consumed.

The PGPROF profiler can also be used to profile multi-process HPF or MPI programs, multi-threaded
programs (e.g., OpenMP or programs compiled with –Mconcur, etc.), or hybrid multi-process programs
employing multiple processes with multiple threads in each process. Profile data from multi-process and
multi-threaded applications can be examined on combined views or on a process-by-process basis. This
information can be used to identify communication patterns or the portions of a program that will
benefit the most from performance tuning.

Introduction

Profiling is a three-step process:

Compilation Compile with additional options that may cause special profiling calls to
be inserted in the code, generate debugging information that can be used
to correlate instruction addresses with source code line numbers and, in
most cases, add data collection libraries to be linked in.

Execution Unless the OProfile interface is used, the profiled program is invoked
normally but collects call counts and timing data during execution. When
the profile is collected via the OProfile interface, the timing and event data
is collected via the OProfile daemon, which must be started and stopped
before and after the program is run, respectively. See “Profiling with
Hardware Event Counters using PGPROF -collect.” on page 146 for more
details.

Analysis The PGPROF tool interprets the pgprof.out file to display the profile data
and associated source files. The profiler supports routine level, line level
and data collection modes. The next section provides definitions for these
data collection modes.

The PGPROF Profiler

142

Definition of Terms

Basic Block At optimization levels above 0, code is broken into basic blocks, which are
groups of sequential statements with only one entry and one exit.

Check Box A check box is a GUI component consisting of a square or box icon that
can be selected by left mouse clicking inside the square. The check box has
a selected and an unselected state. In its selected state, a check mark will
appear inside the box. The box is empty in its unselected state.

Combo Box A combo box is a GUI component consisting of a text field and a list of text
items. In its closed or default state, it presents a text field of information
with a small down arrow icon to its right. When the down arrow icon is
selected by a left mouse-click, the box opens and presents a list of choices.

CPU Time The amount of time the CPU is computing on behalf of a process, not
waiting for input/output or running other programs.

Dialog Box A dialog box is a GUI component that displays information in a graphical
box. It may also request some input from the user. After reading and/or
entering some information, the user can click on the OK button to
acknowledge the message and/or accept their input.

Elapsed Time Total time to complete a task including disk accesses, memory accesses,
input/output activities and operating system overhead.

Function Level Profiling Call counts and execution times are collected on a per-routine (e.g.,
subroutine, subprogram, function, etc.) basis.

GUI Stands for Graphical User Interface. A set of windows, and associated
menus, buttons, scrollbars, etc., that can be used to control the profiler
and display the profile data.

Hardware Counters and Events
These are various performance monitors that allow the user to track
specific hardware behavior in their program. Some examples of hardware
counters include: Instruction Counts, CPU Cycle Counts, Floating Point
Operations, Cache Misses, Memory Reads, and so on.

Host The system on which the PGPROF profiler executes. This will generally be
the system where source and executable files reside, and where
compilation is performed.

Introduction

143

Instruction Level Profiling
Execution counts and times are collected at the machine instruction level.

Line Level Profiling Execution counts and times are collected for source lines within a called
routine.

Radio Button A radio button is a GUI component consisting of a circle icon that can be
selected by left mouse clicking inside the circle. The radio button has a
selected and an unselected state. In its selected state, the circle is filled in
with a solid color, usually black. The circle is empty or unfilled when the
button is in its unselected state.

Routine Level Profiling Call counts and execution times are collected on a per-routine (e.g.,
subroutine, subprogram, function, etc.) basis.

Target Machine The system on which a profiled program runs. This may or may not be the
same system as the host.

Virtual Timer A statistical method for collecting time information by directly reading a
timer which is being incremented at a known rate on a processor by
processor basis.

Wall-Clock Time Total time to complete a task including disk accesses, memory accesses,
input/output activities and operating system overhead.

Compilation

The following list shows compiler options that cause profile data collection calls to be inserted and
libraries to be linked in the executable file:

–Mprof=dwarf Add limited DWARF symbol information for viewing source line
information when profiling using the OProfile interface or with other
third party profilers.

–Mprof=func Insert calls to produce a pgprof.out file for routine level data (routine
entry/exit profiling).

–qp Same as –Mprof=func.

–Mprof=lines Insert calls to produce a pgprof.out file which contains both routine and
line level data.

–ql Same as –Mprof=lines.

The PGPROF Profiler

144

–pg [Linux Only] Enable gprof-style (sample-based) profiling. Running an
executable compiled with this option will produce a gmon.out profile file
which contains routine, line, and instruction level profiling data.

–qp [Linux Only] Same as –pg.

–Mprof=time [Linux Only] Same as –pg except a pgprof.out file is produced rather than
a gmon.out file.

–Mprof=hwcts [Linux Only] Produce an instruction level profile using hardware counters
via the PAPI interface. Compiling and linking with this option produces an
executable that generates a pgprof.out file which contains function
(routine), line, and instruction level profiling data. See “Profiling with
Hardware Event Counters using PAPI” on page 148 for more information
on profiling with hardware counters.

–Mprof=mpi [Linux Only] Link with an MPI profile library which intercepts MPI calls
in order to record message sizes and to count message sends and receives.
This switch can be used in addition to the other types of profiling available
(e.g., –Mprof=mpi,time; –Mprof=mpi,hwcts; –Mprof=mpi,func; –
Mprof=mpi,lines).

–Mprof=cost [ST100 Only] Insert calls to produce a pgprof.out file for routine level cost
profiling. See the definition of COST in “Profile Data” on page 153 for
more information.

NOTE

Not all profiler options are available in every compiler. Please consult the appropriate
compiler user guide for a complete list of profiling options. A list of available profiling
options can also be generated with the compiler’s –help option.

PGI supports three methods of profiling: Sample based profiling via a program library [Linux Only],
sample based profiling via the OProfile interface [Linux Only], and profiling through instrumentation
of user code. Compiling with -pg, -Mprof=time, and -Mprof=hwcts switches enables generating sampled
based profiling via a program library. See “Profiling with Hardware Event Counters using PGPROF -
collect.” on page 146 for details on generating sample based profiles via the OProfile interface. Sample
based profiling may provide more accurate timings than instrumentation (e.g., –Mprof=[lines|func])
because it can be less intrusive. It may have some limitations on particular systems; check the PGPROF
release notes for more information. Instrumentation of user code allows computing the coverage

Introduction

145

accomplished during execution of an application (see Coverage in “Profile Data” on page 153). There
are also differences in how instrumentation and sample based profiling measure time (see “Measuring
Time” on page 152).

When working with sample based profiles, it is important that PGPROF know the name of the
executable. By default, PGPROF will assume that your executable is called a.out. To indicate a different
executable, use the –exe command line argument or the Set Executable… option under the File menu
in the GUI. See “Profiler Invocation and Initialization” on page 150 for more information on changing
the executable name.

Program Execution

Once a program is compiled for profiling, it must be executed to produce profile data. The profiled
program is invoked normally, but while running, it collects call counts and/or time data. When the
program terminates, a profile data file is generated. Depending on the profiling method used, this data
file is called pgprof.out or gmon.out. The following system environment variables can be set to change
the way profiling is performed:

• GMON_ARCS – Use this environment variable to set the maximum number of arcs (caller/callee
pairs). The default is 4096. This option only applies to gprof style profiling (e.g., programs
compiled with the –pg option).

• PGPROF_DEPTH – Use this environment variable to change the maximum routine call depth for
PGPROF profiled programs. The default is 4096 and is applied to programs compiled
-Mprof=func, –Mprof=lines, –Mprof=mpi, –Mprof=mpi,hwcts, or –Mprof=mpi,time.

• PGPROF_EVENTS – Use this environment variable to specify hardware (event) counters from
which to collect data. This variable is applied to programs compiled with the –Mprof=hwcts or
-Mprof=hwcts,mpi options. The use of hardware (event) counters is discussed in further detail in
“Profiling with Hardware Event Counters using PAPI” on page 148.

• PGPROF_NAME – Use this environment variable to change the name of the output file intended
for PGPROF. The default is pgprof.out. This option is only applied to programs compiled with the
-Mprof=[func | hwcts | lines | mpi | time] options. If a program is compiled with the –pg option,
then the output file is always called gmon.out.

Profiling MPI Programs

MPI profiling is available only on Linux platforms.

The PGPROF Profiler

146

To profile an MPI program, use mpirun or mpiexec to execute a program that was compiled and linked
with the –Mprof=mpi switch. A separate data file is generated for each non-initial MPI process. The
pgprof.out file acts as the "root" profile data file. It contains profile information on the initial MPI
process and points to the separate data files for the rest of the processes involved in the profiling run.

Profiling Multi-threaded Programs

Profiling of multi-threaded programs (e.g., OpenMP, programs compiled with –Mconcur, etc.) has
different results depending on the profiling method used. If a program is compiled with –Mprof=hwcts,
–Mprof=lines, –Mprof=func, or –Mprof=mpi,[hwcts | lines | func], then each thread gets profiled. If a
program is compiled with –pg or –Mprof=time, then only the master thread gets profiled.

The type of data presented by each profiling method varies. Profiles generated with –Mprof=func,
-Mprof=lines, or –Mprof=mpi,[func | lines] measure elapsed or wall-clock time for each thread.
Profiles generated with –Mprof=hwcts or –Mprof=mpi,hwcts collect hardware counter data for each
thread. Profiles generated with –pg or –Mprof=time collect total CPU time for the master thread only.
Elapsed time is not available for –Mprof=hwcts, –Mprof=mpi,hwcts, –pg, or –Mprof=time.

Profiling with Hardware Event Counters (Linux Only)

On Linux platforms, PGI performance tools provide support for capturing information about low-level
processor behavior (e.g. cache misses) and correlating it with source or assembly code using PGPROF.
Two methods of data collection are supported: execution of the program under the control of PGPROF
using the the -collect option, and building the program with the -Mprof=hwcts compiler option and
executing it independently. Collection of profile data using pgprof -collect may be done on any linux86
or linux86_64 system where Oprofile is installed. Profiling by compiling with the -Mprof=hwcts option
is only available on linux86_64 systems where PAPI has been installed. OProfile is included as an
install-time option with most Linux distributions; it may also be downloaded from
oprofile.sourceforge.net. PAPI is available for download from http://icl.cs.utk.edu/papi/.

Profiling with Hardware Event Counters using PGPROF -collect.

PGPROF can also be used to display time-based and hardware event-based profiles generated via the
OProfile package, which is available on most current Linux distributions.

Unlike profiling with the PAPI interface, no special link time options are needed to enable profiling,
though compiling with -Mprof=dwarf, -g, or -gopt allows viewing profiles with source code annotations
under PGPROF.

Introduction

147

To simplify generating profiles, invoke pgprof with the -collect option. PGPROF will execute the
program, collect profile data and generate a pgprof.out file, viewable with PGPROF.

Default event specification options are provided to handle standard profiling situations. For example:

pgprof -collect -dcache program arg ...

With the options shown above, pgprof monitors various causes of data cache miss. By default a one
millisecond time-based profile is produced. See the output of "pgprof -help" for more usage information.

Note that pgprof -collect can invoke a script instead of a program. This is useful if you want to produce
an aggregated profile of several invocations of the program using different data sets. In this situation,
use the -exe option, which allows the data collection phase to determine which program is being
profiled.

pgprof -collect -dcache -exe program sh run_script

In this situation, if you neglect to specify the -exe option, you can generate the pgprof.out file by
executing the following command before another profiling run is started:

optopgprof

program

The driver script pgprof contains more detailed documentation on its usage.

When using PGPROF -collect, you control the OProfile kernel driver and the sample collection daemon
via opcontrol. This requires root privileges for management operations. Thus, invocations to opcontrol,
which are performed when pgprof is called with the -collect option, are executed via the sudo
commmand. One technique that requires minimal updates to the /etc/sudoers files is to assume that all
users in a group are allowed to execute opcontrol with group privileges. For example, you could make
the following changes to /etc/sudoers:

User

alias specification

User_Alias SW = %sw

...

SW ALL=NOPASSWD: /usr/bin/opcontrol

The lines above permit all members of the group ’sw’ to run opcontrol with root privileges.

Note that pgprof -collect will shutdown the oprofile daemon when interrupted. However, if the script is
terminated with SIGKILL, you must execute the following:

The PGPROF Profiler

148

pgprof -collect -shutdown

This is important because if the oprofile daemon is left running, disk space on the root file system will
eventually be exhausted.

Since OProfile provides only system wide profiling, when you invoke pgprof with the -collect option
pgprof provides a locking mechanism that allows only one invocation to be active at a time. Note that
this locking mechanism is external to OProfile and does not prevent other profile runs from invoking
opcontrol through other mechanisms, but it would is straightforward to incorporate pgprof's locking
mechanism in other OProfile-based profiling scripts.

Profiling with Hardware Event Counters using PAPI

To use PAPI-style profiling, PAPI must be installed. Installation of PAPI requires rebuilding the Linux
kernel. PGI compiler and tools releases are built with the version of PAPI that is current at the time of
the PGI release. Normally, the profiling support code for -Mprof=hwcts supports profiling against that
current version and the previous version of PAPI (though a warning message is generated if the previous
version is used).

To bypass the version check, set the environment variable PGPROF_PAPI_VER to m.n where where m
and n respectively are the major and minor numbers associated with your PAPI library.

To profile using hardware counters, compile with the option –Mprof=hwcts. This option adds the PAPI
and PGI profiling libraries to the application’s linker command. By default, this will use the
PAPI_TOT_CYC counter to profile total CPU cycles executed by the application. PGPROF will convert the
cycle counts into CPU time (seconds). The PGPROF_EVENTS environment variable can be set to specify
up to four counters to use. The format for the PGPROF_EVENTS variable follows:

event0[.over][:event1[.over]] _

The event field is the name of the event or hardware counter and the optional over field specifies the
overflow value. The overflow value is the number of events to be counted before collecting profile
information. Overflow provides some control on the sampling rate of the profiling mechanism. The
default overflow is 1000000.

To determine which hardware counters are available on the system, compile and run the following
simple program. This program uses the PAPI and PGI libraries to dump the available hardware counters
to standard output.

Introduction

149

int main(int argc, char *argv[]) {

__pgevents();

exit(0);

}

Save the code in the previous example in a file called pgevents.c and compile it as follows:

pgcc pgeventc.c -o pgevents -lpgnod_prof_papi

-lpapi

To display the available events, run the newly created program called pgevents. The pgevents utility
shows the format of the PGPROF_EVENTS environment variable, the list of PAPI preset events, and the
list of native (or processor specific) events. Below is an example of specifying 4 events with the
PGPROF_EVENTS environment variable (using tcsh or csh shells):

% setenv PGPROF_EVENTS \

PAPI_TOT_CYC.1593262939:PAPI_FP_OPS:PAPI_L1_DCM:PAPI_L2_ICM

Specify the events above using the sh or bash shells in the following manner:

$ set PGPROF_EVENTS=\

PAPI_TOT_CYC.1593262939:PAPI_FP_OPS:PAPI_L1_DCM:PAPI_L2_ICM

$ export PGPROF_EVENTS

If PGPROF_EVENTS is not defined, then the profiling mechanism will count CPU cycles (PAPI_TOT_CYC
event) by default.

The following example shows a partial output from pgevents:

Selecting Events

Hardware Information

cpus/node - 4

nodes - 1

total cpus - 4

vendor - AuthenticAMD

model - AMD K8 Revision C

speed 1593.262939mhz

event counters 4

Preset Events

PAPI_L1_DCM - Level 1 data cache misses

PAPI_L1_ICM - Level 1 instruction cache misses

PAPI_L2_DCM - Level 2 data cache misses

PAPI_L2_ICM - Level 2 instruction cache misses

PAPI_L1_TCM - Level 1 cache misses

The PGPROF Profiler

150

PAPI_L2_TCM - Level 2 cache misses

...

PAPI_TOT_CYC - Total Cycles

...

Native Events

FP_ADD_PIPE - Dispatched FPU ops - Revision B

and later revisions - Add pipe ops excluding junk ops.

FP_MULT_PIPE - Dispatched FPU ops - Revision B

and later revisions - Multiply pipe ops excluding junk ops.

...

CPU_CLK_UNHALTED - Cycles processor is running

(not in HLT or STPCLK state)

Profiler Invocation and Initialization

The PGPROF profiler is used to analyze profile data produced during the execution phase as described in
“Introduction” on page 141.

The PGPROF profiler is invoked as follows:

% pgprof [options] [datafile]

If invoked without any options or arguments, the PGPROF profiler attempts to open a data file named
pgprof.out, and assumes that application source files are in the current directory. The program
executable name, as specified when the program was run, is usually stored in the profile data file. If all
program-related activity occurs in a single directory, the PGPROF profiler needs no options.

Selecting a Version of Java

PGPROF (both GUI and command line) depends on Java. PGPROF requires that the Java Virtual
Machine be a specific mimimum version or above. By default, PGPROF will use the version of Java
installed with your PGI software; if you chose not to install Java when installing your PGI software,
PGPROF will look for Java on your PATH. Both of these can be overriden by setting the PGI_JAVA
environment variable to the full path of the Java executable you wish to use. For example, on a Linux
system using the bash shell:

$ export

PGI_JAVA=/home/myuser/myjava/bin/java

Command Line Options

If present, PGPROF options are interpreted as follows:

Introduction

151

datafile A single datafile name may be specified on the command line. For profiled
MPI applications, the specified datafile should be that of the initial MPI
process. Access to the profile data for all MPI processes is available in that
case, and data may be filtered to allow inspection of the data from a subset
of the processes.

–s Use the PGPROF Command Line Interface (CLI).

–text Same as -s.

–scale “files(s)” Compare scalability of datafile with one or more files. A list of files may be
specified by enclosing the list within quotes and separating each filename
with a space. For example:

-scale “one.out two.out” This example will compare the profiles one.out and two.out with datafile
(or pgprof.out by default). If only one file is specified quotes are not
required.

For sample based profiles (e.g., gmon.out) specified with this option,
PGPROF assumes that all profile data was generated by the same
executable. For information on how to specify multiple executables in a
sample-based scalability comparison, see the Scalability Comparison…
item in the description of the File menu (“File Menu” on page 166).

–I srcdir Specify the source file search path. The PGPROF profiler will always look
for a program source file in the current directory first. If it does not find
the source file in the current directory, it will consult the search path
specified in srcdir. The srcdir argument is a string containing one or more
directories separated by a path separator. The path separator is platform
dependent; on Linux/Solaris it is a colon (:) and on Windows it is a
semicolon (;). Directories in the path will then be searched in order from
left-to-right. When a directory with a filename that matches a source file is
found, that directory is used. Below is an example for Linux/Solaris:

–I ../src:STEPS

In the example above, the profiler first looks for source files in the current
directory, then in the ../src directory, followed by the STEPS directory. The
following is the same example for Windows:

–I ..\src;STEPS

The PGPROF Profiler

152

See the Set Source Directory… item in the description of the File menu
(“File Menu” on page 166) for more information.

–exe filename Set the executable to filename (default is a.out).

–o filename Same as –exe.

–title string Set the title of the application to string (GUI only).

–V Print version information.

–help Prints a list of available command line arguments.

–usage Same as –help.

-dt (number) Set the time multiply factor (default is 1.0). This is used to calibrate the
times reported by PGPROF. The profiler will display a time multiplied by
the specified number. This option works for all profiling mechanisms that
measure time (e.g., –Mprof=time, – pg, –Mprof=lines, –Mprof=func, –
Mprof=mpi.[time | lines | func]).

Measuring Time

The profiling mechanism will collect total CPU time for programs compiled with –Mprof=time, –pg,
and –Mprof=mpi,time (see also “Profiling Multi-threaded Programs” on page 146). For programs
compiled with –Mprof=hwcts or –Mprof=mpi,hwcts, no timings are collected. For programs compiled
to count CPU cycles with –Mprof=hwcts or –Mprof=mpi,hwcts, PGPROF automatically converts CPU
cycles into CPU time.

Programs compiled with –Mprof=lines, –Mprof=func, or –Mprof=mpi,[time | lines | func] employ a
virtual timer for measuring the elapsed time of each running process/thread. This data collection
method employs a single timer that starts at zero (0) and is incremented at a fixed rate while the active
program is being profiled. For multiprocessor programs, there is a timer on each processor, and the
profiler’s summary data (minimum, maximum and per processor) is based on each processor’s time
executing in a function. How the timer is incremented and at what frequency depends on the target
machine. The timer is read from within the data collection functions and is used to accumulate COST
and TIME values for each line, function, and the total execution time. The line level data is based on
source lines; however, in some cases, there may be multiple statements on a line and the profiler will
show data for each statement.

Introduction

153

NOTE

Due to the timing mechanism used by the profiler to gather data, information provided for
longer running functions will be more accurate than for functions that only execute for a
shorter time relative to the overhead of the individual timer calls. Refer to “Caveats
(Precision of Profiling Results)” on page 154 for more information about profiler accuracy.

Profile Data

The following statistics are collected and may be displayed by the PGPROF profiler.

BYTES For HPF and MPI profiles only. This is the number of message bytes sent
and received.

BYTES RECEIVED For HPF and MPI profiles only. This is the number of bytes received in a
data transfer.

BYTES SENT For HPF and MPI profiles only. This is the number of bytes sent.

CALLS The number of times a function is called.

COST [ST100 only] The sum of the differences between the timer value entering
and exiting a function. This includes time spent on behalf of the current
function in all children whether profiled or not. PGPROF can provide cost
information when you compile your program with the –Mprof=cost or –
Mprof=lines options (see “Compilation” on page 143).

COUNT The number of times a line or function is executed.

COVERAGE This is the percentage of lines in a function that were executed at least
once.

LINE NUMBER For line mode, this is the line number for that line. For function mode, this
is the line number of the first line of the function.

MESSAGES For HPF and MPI profiles only. This is the number of messages sent and
received by the function or line.

RECEIVES For HPF and MPI profiles only. This is the number of messages received by
the function or line.

SENDS For HPF and MPI profiles only. This is the number of messages sent by the
function or line.

The PGPROF Profiler

154

STMT ON LINE For programs with multiple statements on a line, data is collected and
displayed for each statement individually.

TIME The time spent only within the function or executing the line. The TIME
does not include time spent in functions called from this function or line.
TIME may be displayed in seconds or as a percent of the total time.

TIME PER CALL This is the TIME for a function divided by the CALLS to that function. TIME
PER CALL is displayed in milliseconds.

Caveats (Precision of Profiling Results)

Accuracy of Performance Data

The collection of performance data will always introduce some overhead, or intrusion, that can affect
the behavior of the application being monitored. How this overhead affects the accuracy of the
performance data depends on the performance monitoring method chosen, system software and
hardware attributes, and the idiosyncracies of the profiled application. Although the PGPROF
implementation attempts to minimize intrusion and maximize accuracy, it would be unwise to assume
the data is beyond question.

Clock Granularity

Many target machines provide a clock resolution of only 20 to 100 ticks per second. Under these
circumstances, a function must consume at least a few seconds of CPU time to generate meaningful line
level times.

Souce Code Correlation

At higher optimization levels, and especially with highly vectorized code, significant code reorganization
may occur within functions. The PGPROF profiler allows line profiling at any optimization level. In
some cases, the correlation between source and data may at times appear inconsistent. Compiling at a
lower optimization level or examining the assembly language source may be necessary to interpret the
data in these cases.

Overhead of -Mprof=lines

The profiling mode enabled by the compiler switch -Mprof=lines adds real time instrumentation calls to
compiler generated code. This profiling mode incurs a significant overhead due to the need to generate a
timestamp for each line executed. Currently on Linux, the gettimeofday system call is invoked to

Introduction

155

generate these timestamps. On modern x86 and x64 processors, the Linux kernel can implement
gettimeofday via a virtual system call mechanism which allows the timestamps to be generated in less
than .1 microseconds. When the timestamp is generated by the power management timer via the normal
system call mechanism, a call to gettimeofday can take between 1 to 2 microseconds. The Linux kernel
will use the virtual system call implementation on single processor systems, or on Multi-Processor (MP)
systems where it is known that the rdtsc instructions generates timestamps via a synchronized clock
(more modern processors). Unless the virtual system call mode is used for gettimeofday, extremely long
run times will result for code compiled with the -Mprof=lines option.

The overhead of the gettimeofday system call can be determined by running the following program on
an unloaded system:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <assert.h>

#include <sys/time.h>

void warmup(int usecs)

{

 struct timeval tv;

 long long t0, t, dt;

 volatile int i;

 gettimeofday(&tv, NULL);

 t0 = tv.tv_sec * 1000000 + tv.tv_usec;

 for (; ;) {

 for (i = 0; i < 1000; i++)

 ;

 gettimeofday(&tv, NULL);

 t = tv.tv_sec * 1000000 + tv.tv_usec;

 dt = t - t0;

 if (dt > usecs)

 break;

 }

}

int main(int argc, char **argv)

{

 int cnt = 20, i, j;

 int rcnt = 100;

 double *vgs;

 double *vgd, gsum, gave;

 struct timeval tv;

 assert((vgs = calloc(sizeof vgs[0],

The PGPROF Profiler

156

cnt + 1)) != NULL);

 assert((vgd = calloc(sizeof vgd[0],

cnt)) != NULL);

 /* Warmup system to jiggle powersaved out

of low frequency state */ warmup(1000000);

 for (i = 0; ; i++) {

 gettimeofday(&tv, NULL);

 vgs[i] = (double)tv.tv_sec + (double)tv.tv_usec/1000000;

 if (i == cnt)

 break;

 for (j = 0; j < rcnt; j++)

 gettimeofday(&tv, NULL);

 }

 gsum = 0;

 for (i = 0; i < cnt; i++) {

 vgd[i] = (vgs[i+1] -

vgs[i]) / rcnt;

 gsum += vgd[i];

 }

 gave = gsum / cnt;

 printf("gettimeofday average (usec) = %f\n",

gave * 1000000);

 return 0;

}

Graphical User Interface

The PGPROF Graphical User Interface (GUI) is invoked using the command pgprof. This section
describes how to use the profiler with the GUI on systems where it is supported. There may be minor
variations in the GUI from host to host, depending on the type of monitor available, the settings for
various defaults and the window manager used. Some monitors do not support the color features
available with the PGPROF GUI. The basic interface across all systems remains the same, as described in
this chapter, with the exception of the differences tied to the display characteristics and the window
manager used.

There are two major advantages provided by the PGPROF GUI.

Source Interaction The PGPROF GUI will display the program source of any routine for which
the profiler has information, whether or not line level profile data is
available. To display the source code of a routine, select the routine name.
Since interpreting profile data usually involves correlating the program

Graphical User Interface

157

source and the data, the source interaction provided by the GUI greatly
reduces the time spent interpreting data. The GUI allows you to easily
compare data on a per processor/thread basis, and identify problem areas
of code based on processor/thread execution time differences for routines
or lines.

Graphical Display of Data It is often difficult to visualize the relationships between the various
percentages and execution counts. The GUI displays bar graphs that
graphically represent these relationships to help locate the ‘hot spots’ in
the target program.

The PGPROF GUI Layout

On startup, PGPROF, the profiler attempts to load the profile datafile specified on the command line (or
the default pgprof.out). If no file is found, a file chooser dialog box is displayed. Choose a profile datafile
from the list or select Cancel.

When a profile datafile is opened, PGPROF populates the following areas in the GUI, shown from top to
bottom in “Profiler Window” on page 160:

• Profile Summary – Below the “File…Settings…Help” menu bar is the profile summary area. This
information displays the label Profiled followed by: executable name, date last modified, the
amount of time consumed by the executable and the number of processes (if the application being
profiling has more than one process).

• Profile Entry Combo Box – Below the Profile Summary is the Profile Entry Combo Box. The profile
entry (profile datafile, source file, subprogram,…) displayed in this box is known as the current
profile entry. This entry corresponds to the data highlighted in the profile tables described below.
The current entry can be changed by entering a new entry or selecting an entry from the combo
box. Left-click on the down-arrow icon to show a list of previously viewed entries available for
selection. See “Profile Navigation” on page 162 for more information on profile entries.

• Navigation Buttons – Use the left and right arrow buttons, located on the left of the Profile Entry
Combo Box, to navigate between previously viewed profile entries.

• Select Combo Box – This combo box is located to the right of the Profile Entry Combo Box. Open
the Select Combo Box to refine the criteria for displaying profile entries in the tables mentioned
below. By default, the selection is set to All profile entries.

The PGPROF Profiler

158

• Top Left Table – The Top Left Table, located below the Navigation Buttons, displays the static
profile entry information. This includes filenames, routine names, and line numbers of the profile
entries. When viewing line level information, this table will also show the source code if the source
files are available. If this table has more than one entry in it, then a column labeled View displays.
See the description on the Bottom Table for more information.

• Top Right Table – The Top Right Table displays profile summary information for each profile
entry. To change what is displayed, select the Processes or View menus, discussed in “Processes
Menu” on page 173 and “View Menu” on page 174, respectively. To view profile information at the
line level, compiled with –Mprof=lines or –pg, then in the routine level view, double click the left
mouse button to view its line level profile information.

• Bottom Table – The Bottom Table displays detailed profile information for the current profile
entry. For a multi-process application, this table contains a profile entry for each application
process. For a multi-threaded (or multi-process/multi-threaded) application, PGPROF offers the
option to view process and/or thread level profile information. A Process/Thread Selector (combo
box) will appear in the lower right hand corner when profiling multi-threaded programs. Use this
combo box to toggle between thread, process, or process/thread profile information. Figure 2-3 ,
“Figure 2-3: PGPROF with Visible Process/Thread Selector”, shows the Process/Thread Selector in
its opened state. Three choices are available: Processes, Threads, Process.Threads.

The heading in the leftmost column will be Process(es) by default. When profiling a multi-
threaded application, the heading in the leftmost column will reflect whatever is selected in the
Process/Thread Selector. When the leftmost column is displaying processes or threads, each entry
will contain integers that represent process/thread IDs. When the leftmost heading is displaying
processes and threads (denoted Process(es).Threads in the column heading), each entry is a
floating-point number of the form (Process_ID).(Thread_ID). Following the process/thread ID,
the filename, routine name, or line number display enclosed in parentheses. This provides
additional ownership information of the process/thread. It also acts as a minor sort key. See the
discussion on Sort, “Sort Menu” on page 178, for more information.

This table will display process/thread information for the current profile entry by default. To view
other entries, use the View check boxes in the Top Left Table to select other entries. The View check
boxes are shown in Figure 2-11 , “Source Lines with Multiple Profile Entries”, in “View Menu” on
page 174. These support easy comparison of more than one process/thread in the Bottom Table.
When you Print the tables to a file or a printer, an entry with a checked View box gets printed with
each profile entry. Again, this allows for easy comparison of more than one process/thread. See the
Print option, under the File menu, in “File Menu” on page 166 for more information on printing.

Graphical User Interface

159

• Histogram – Located at the bottom of the GUI is a tabbed pane with two tabs labeled View and
Histogram. When the Histogram tab is selected, the GUI displays a histogram of one or more
profiled data items. The data items that are displayed are the same data items selected in the View
menu (see “View Menu” on page 174). Each row is labeled with the data in the histogram. Each
column is a profile entry. The bars are sorted in the order specified in the Sort menu (see “Sort
Menu” on page 178). Left-clicking on a bar displays information for the corresponding profile
item in the Top Left and Right tables. Double-clicking the left mouse button on a bar will drill
down into the profile on that item (see “Profile Navigation” on page 162). Selected bars are
highlighted in blue. The histogram is illustrated in Figure 2-2 , “Figure 2-2: Profiler Window with
Visible Histogram”.

• Profile Name – The Profile Name area is located in the lower left hand corner of the GUI. It is
preceded with the keyword Profile: This area displays the profile filename.

GUI Customization

Figure 2-1 , “Profiler Window”, shows how the PGPROF GUI appears when launched for the first time.
The default dimensions of the GUI are 800 x 600. It can be resized according to the conventions of the
window manager. The width of the Top Left and Right tables can be adjusted using the grey vertical
divider located between the two tables. The height of the Top Left, Right, and Bottom tables can be
adjusted using the grey horizontal divider. Both of these dividers can be dragged in the direction shown
by arrow icons located on each divider. Left-click on these arrow icons can be used to quickly “snap” the
display in either direction.

After customizing of the display, PGPROF will save the size of the main window and the location of each
divider for subsequent PGPROF sessions. To prevent saving these settings on exit from PGPROF, uncheck
the Save Settings on Exit item under the Settings menu. The Settings menu is described in more detail in
“Settings Menu” on page 168.

The PGPROF Profiler

160

Figure 2-1: Profiler Window

Graphical User Interface

161

Figure 2-2: Figure 2-2: Profiler Window with Visible Histogram

The PGPROF Profiler

162

Figure 2-3: Figure 2-3: PGPROF with Visible Process/Thread Selector

Profile Navigation

The PGPROF GUI is modeled after a web browser. The current profile entry can be thought of as an
address, similar to a web page address (e.g. URL). This address is displayed in the Profile Entry Combo
Box; introduced in “The PGPROF GUI Layout” on page 157. The address format follows:

(profile)[@sourceFile[@routine[@lineNumber[@textAddress]]]]

The only required component of the address is the profile datafile (e.g., pgprof.out, gmon.out, etc.).
Each additional component is separated by an ‘@’. For example, Figure 2-4 , “Example Routine Level
Profile” shows a profile of an application with a single routine called main. When a profile is initially
displayed, the first entry in the Top Left and Right tables is selected (highlighted) by default. The Profile

Graphical User Interface

163

Entry Combo Box reflects the selected entry by displaying its address. In this case, the Profile Entry
Combo Box contents are: pgprof.out@regexec.c@reg. This indicates that the current profile entry is a
routine named reg located in file regexec.c.

A different address can be entered in the Profile Entry Combo Box using the above address format or by
choosing a previously viewed profile entry in the combo box. Click on the down arrow in the combo box
to choose from a list of previously viewed profile entries. As described in “The PGPROF GUI Layout” on
page 157, previously viewed profile entries can be selected with the Profile Entry Combo Box or with the
Navigation Buttons.

The current profile entry is highlighted in the Top Left, Right, and Histogram tables. To change the
current profile entry, left-click on a new entry in the Right Table or Histogram. This may also be done by
clicking on an entry in the Left Table, but there must be a corresponding entry in the Right Table.
Double clicking the left mouse button on a profile entry will drill down into the selected profile entry.
The example in Figure 2-4 , “Example Routine Level Profile” assumes that the program was compiled
with –Mprof=time and the current profile entry is pgprof.out@regexec.c@reg. Double clicking on the
highlighted entry in the Right Table causes PGPROF to display reg’s line level information. Figure 2-5 ,
“Example Line Level Profile”, shows this example after double clicking on main. Double clicking on line
759 causes PGPROF to display the instruction level profile shown in Figure 2-6 , “Example Instruction
Level Profile”.

Drilling down works at higher levels of profiling too. For example, if the current profile entry is
pgprof.out, then double clicking on pgprof.out displays a list of profiled files and their profile
information. Double clicking on a file from this list moves to the routine level profiling information for
that file, etc.

The PGPROF Profiler

164

Figure 2-4: Example Routine Level Profile

Graphical User Interface

165

Figure 2-5: Example Line Level Profile

The PGPROF Profiler

166

Figure 2-6: Example Instruction Level Profile

PGPROF Menus

As shown in Figures 2-1 through 2-4, there are five menus in the GUI: File, Settings, Help, Processes,
View, and Sort. “File Menu” on page 166 through “Sort Menu” on page 178 describe each menu in
detail. Keyboard shortcuts, when available, are listed next to menu items.

File Menu

The File menu contains the following items:

• New Window (control N) – Select this option to create a copy of the current profiler window on
your screen.

Graphical User Interface

167

• Open Profile… – Select this option to open another profile. After selecting this menu item, locate
a profile data file in a file chooser dialog box. Select the new file in the dialog by double clicking it
using the left mouse button. A new profile window will appear with the selected profile. Note: The
name of the profile’s executable must be set before opening a sample based profile (e.g.,
gmon.out). See the Set Executable… option below for more details.

• Set Executable… – Select this option to select the executable to be analyzed. Selection of this
menu item launches a file selection dialog in which to locate the profiled executable. Select the
executable by double clicking the left mouse button on it. When working with sample based
profiles (e.g., gmon.out), the executable chosen must match the executable that generated the
profile. By default, the profiler assumes that the executable is called a.out.

• Set Source Directory… – Select this option to set the location of the profiled executable’s source
files. The profiler displays a text field in a dialog box. Enter one or more directories in this text
field. Each directory is separated by a path separator. The path separator is platform dependent.
On Linux/Unix it is a colon (:), on Windows it is a semicolon (;). These directories act as a
search path when the profiler cannot find a source file in the current directory. On Linux, for
example:

../src:STEPS

• After entering the string above into the dialog box, the profiler will first search for source files in
the current directory, then in the ../src directory, and finally in the STEPS directory. The directory
can also be set through the –I command line option described in “Profiler Invocation and
Initialization” on page 150. The same example for Windows follows:

..\src;STEPS

• Scalability Comparison… – Select this option to open another profile for scalability comparison.
Follow the same directions for the Open Profile… option described above. The new profile will
contain a Scale column in its Top Right table. You can also open one or more profiles for
scalability comparison through the –scale command line option explained in “Profiler Invocation
and Initialization” on page 150. See also “Scalability Comparison” on page 182 for more
information on scalability.

• Print… – The print option is used to make a hard copy of the current profile data. The profiler
will combine the data in all three profile tables and send the output to a printer. A printer dialog
box will appear. A printer may be selected from the Print Service Name combo box. Click on the
Print To File check box to send the output to a file. Other print options may be available. However,
they are dependent on the specific printer and the Java Runtime Environment (JRE).

The PGPROF Profiler

168

• Print to File… – Same as Print… option except the output goes to a file. After selecting this menu
item, a save file dialog box will appear. Enter or choose an output file in the dialog box. Click
Cancel to abort the print operation.

Settings Menu

The Settings menu contains the following items:

Bar Chart Colors… – This menu option will open a color chooser dialog box and a bar chart preview
panel (“Bar Chart Color Dialog Box” on page 171). There are four bar chart colors based on the
percentage filled and three bar chart attributes. The Filled Text Color attribute represents the text color
inside the filled portion of the bar chart. The Unfilled Text Color attribute represents the text color
outside the filled portion of the bar chart. The Background Color attribute represents the color of the
unfilled portion of the bar chart. Table 2-1 , “Default Bar Chart Colors” lists the default colors.

To modify a bar chart or attribute color, click on its radio button. Next, choose a color from the
Swatches, HSB, or RGB pane. Press the left mouse button on the OK button to accept the changes and
close the dialog box. Click Reset to reset the selected bar chart or attribute to its previously selected color.
Closing the window will also accept the changes. PGPROF will save color selections for subsequent runs
unless the Save Settings on Exit box is unchecked (see discussion on this option below).

Font… – This menu option opens the Font Chooser dialog box (Figure 2-8 , “Font Chooser Dialog
Box”). A new font may be chohsen from a list of fonts in this dialog’s top combo box. A new font size may
also be chosen from a list of sizes in this dialog’s bottom combo box. The font is previewed in the Sample
Text pane to the left. The font does not change until the OK button is selected. Click Cancel or close the
dialog box to abort any changes. The default font is monospace size 12.

Show Tool Tips – Select this check box to enable tool tips. Tool tips are small temporary messages that
pop-up when the mouse pointer is positioned over a component in the GUI. They provide additional
information on what a particular component does. Unselect this check box to turn tool tips off.

Restore Factory Settings…– Use this option to restore the default look and feel of the GUI to the original
settings. The PGPROF GUI will appear similar to the example in Figure 2-1 , “Profiler Window” after
selecting this option.

Restore Saved Settings… – Use this option to restore the look and feel of the GUI to the previously saved
settings. See the Save Settings on Exit option for more information.

Graphical User Interface

169

Save Settings on Exit – When this check box is enabled, PGPROF will save the current look and feel
settings on exit. These settings include the size of the main window, position of the horizontal/vertical
dividers, the bar chart colors, the selected font, the tools tips preference, and the options selected in the
View menu. When the PGPROF GUI is started again on the same host machine, these saved settings are
used. To prevent saving these settings on exit, uncheck this box. Unchecking this box disables the saving
of settings only for the current session.

The PGPROF Profiler

170

Table 2-1: Default Bar Chart Colors

Bar Chart Style/Attribute Default Color

1-25% Brown

26-50% Red

51%-75% Orange

76%-100% Yellow

Filled Text Color Black

Unfilled Text Color Black

Background Color Grey

Graphical User Interface

171

Figure 2-7: Bar Chart Color Dialog Box

Figure 2-8: Font Chooser Dialog Box

The PGPROF Profiler

172

Help Menu

The Help menu contains the following items:

PGPROF Help… – This option invokes PGPROF’s integrated help utility as shown in Figure 2-9 ,
“PGPROF Help”. The help utility includes an abridged version of this manual. To find a help topic, use
one of the follow tabs in the left panel: The “book” tab presents a table of contents, the “index” tab
presents an index of commands, and the “magnifying glass” tab presents a search engine. Each help
page (displayed on the right) may contain hyperlinks (denoted in underlined blue) to terms referenced
elsewhere in the help engine. Use the arrow buttons to navigate between visited pages. Use the printer
buttons to print the current help page.

About PGPROF… – This option opens a dialog box with version and contact information for PGPROF.

Graphical User Interface

173

Figure 2-9: PGPROF Help

Processes Menu

The Processes menu is enabled for multi-process programs only. This menu contains three check boxes:
Min, Max, and Avg. They represent the minimum process value, maximum process value, and average
process value respectively. By default Max, is selected.

When Max is selected, the highest value for any profile data in the Top Right Table is reported. For
example, when reporting Time, the longest time for each profile entry gets reported when Max is
selected. When the Min process is selected, the lowest value for any profile data is reported in the Right
Table. AVG reports the average value between all of the processes. Any, all, or none of these check boxes
may be selected. When no check boxes are selected, the Top, Left and Right Tables are empty. If the
Process check box under the View menu is selected, then each row of data in the Right Table is labeled
max, avg, and min respectively.

Figure 2-10 , “PGPROF with Max, Avg, Min rows”, illustrates max, avg, and min with the Process check
box enabled.

The PGPROF Profiler

174

Figure 2-10: PGPROF with Max, Avg, Min rows

View Menu

Use the View menu to select which columns of data to view in the Top Left, Top Right, and Bottom tables.
This selection also affects the way that tables are printed to a file and a printer (see Print in “File Menu”
on page 166).

The following lists View menu items and their definition. Note that not all items may be available for a
given profile.

• Count – Enables the Count column in the Top Right and Bottom tables. Count is associated with
the number of times this profile entry has been visited during execution of the program. For
function level profiling, Count is the number of times the routine was called. For line level
profiling, Count is the number of times a profiled source line was executed.

Graphical User Interface

175

• Time – Enables the Time column in the Top Right and Bottom tables. The time column displays
the time spent in a routine (for function level profiling) or at a profiled source line (for line level
profiling).

• Cost – Enables the Cost column in the Top Right and Bottom tables. Cost is defined as the
execution time spent in this routine and all of the routines that it called. The column will contain
all zeros if cost information is not available for a given profile.

• Coverage – Enables the Cover column in the Top Right and Bottom tables. Coverage is defined as
the number of lines in a profile entry that were executed. By definition, a profiled source line will
always have a coverage of 1. A routine’s coverage is equal to the sum of all its source line
coverages. Coverage is only available for line level profiling. The column will contain all zeros if
coverage information is not available for a given profile.

• Messages – Enables the message count columns in the Top Right and Bottom tables. Use this menu
item to display total MPI messages sent and received for each profile entry. This menu item
contains Message Sends and Message Receives submenus for separately displaying the sends and
receives in the Top Right and Bottom tables. The message count columns will contain all zeros if
no messages were sent or received for a given profile.

• Bytes – Same as Messages except message byte totals are displayed instead of counts.

• Scalability – Enables the Scale column in the Top Right table. Scalability is used to measure the
linear speed-up or slow-down of two profiles. This menu contains two check boxes: Metric and Bar
Chart. When Metric is selected, the raw Scalability value is displayed. When Bar Chart is selected, a
graphical representation of the metric is displayed. Scalability is discussed in “Scalability
Comparison” on page 182.

• Processes…(control P) – This menu item is enabled when profiling an application with more
than one process. Use the Processes menu item to select individual processes for viewing in the
Bottom table. When this item is selected, a dialog box will appear with a text field. Individual
processes or a range of processes can be entered for viewing in this text field. Individual processes
must be separated with a comma.

A range of processes must be entered in the form: [start]-[end]; where start represents the first process of
the range and end represents the last process of the range. For example:

 0,2-16,31

The PGPROF Profiler

176

This tells the profiler to display information for process 0, process 2 through 16, and process 31. These
changes remain active until they are changed again or the profiler session is terminated. Leave the text
field blank to view all of the processes in the Bottom table.

• Threads… (control T) – Same as Processes... except it selects the threads rather than the
processes viewed in the Bottom table.

• Filename – Enables the Filename column in the Top Left table.

• Line Number – Enables the Line column in the Top Left table.

• Name – Enables the Function (routine) name column in the Top Left table when viewing function
level profiling.

• Source – Enables the Source column in the Top Left table when viewing line level profiles. If the
source code is available, this column will display the source lines for the current routine.
Otherwise, this column will be blank.

• Statement Number – Enables the Stmt # column in the Top Right table. Sometimes more than one
statement is profiled for a given source line number. One example of this is a “C” for statement.
The profiler will assign a separate row for each substatement in the Top Left and Right tables. In
line level profiling, duplicate line numbers display in the Line column. Each substatement is
assigned a statement number starting at 0. Any substatement numbered one or higher will have a
‘.’ and their statement number tacked onto the end of their profile address. For example, in
Figure 2-11 , “Source Lines with Multiple Profile Entries”, source lines 9 and 17 both have
multiple profile entries. As shown in the Profile Entry Combo Box, the second entry for line 9 has
the following address:

pgprof.out@omp.c@main@9.1

• This line numbering convention is also reflected in the Bottom table of Figure 2-11 , “Source Lines
with Multiple Profile Entries”, where the line number is enclosed in parentheses.

• Process – This menu option is enabled when more than one process was profiled for a given
application. When this check box is selected, a column labeled Process is displayed in the Top
Right table. The values for the Process column depend on whatever was enabled in the Processes
menu discussed in “Processes Menu” on page 173.

Graphical User Interface

177

• Event1 – Event4 – If hardware event counters are supported on the profiled system, then up to four
unique events can be displayed in the Top Right and Bottom tables. In this case, menu items for
each counter will be enabled, with names corresponding to each particular event. Each event can
exist for some or all of the executing threads in the profiled application.

Figure 2-11: Source Lines with Multiple Profile Entries

The submenus Count, Time, Cost, Coverage, Messages, Bytes, and Event1 through Event4 contain three
check boxes for selecting how the data is presented in each column. The first check box enables a raw
number to be displayed. The second check box enables a percentage. The third check box is a bar chart.

When a percentage is selected, a percentage based on the global value of the selected statistic displays.
For example, in Figure 2-11 , “Source Lines with Multiple Profile Entries”, line 13 consumed 0.000579
seconds, or 42% of the total time of 0.001391 seconds.

The PGPROF Profiler

178

When the bar chart is selected, a graphical representation of the percentage is displayed. The colors are
based on this percentage. For a list of default colors and their respective percentages, see the Bar Chart
Colors option under the Settings menu (“Settings Menu” on page 168).

Sort Menu

The sort menu can be used to alter the order in which profile entries appear in the Top Left, Top Right,
and Bottom tables. The current sort order is displayed at the bottom of each table. In Figure 2-11 ,
“Source Lines with Multiple Profile Entries”, the tables have a “Sort by” clause followed with “Line No”
or “Process”. This indicates the sort order is by source line number or by process number respectively. In
PGPROF, the default sort order is by Time for function level profiling and by Line No (source line
number) for line level profiling. The sort is performed in descending order, from highest to lowest value,
except when sorting by filename, function name, or line number. Filename, function name, and line
number sorting is performed in ascending order; lowest to highest value. Sorting is explained in greater
detail in “Selecting Profile Data” on page 179.

Search Menu

The search menu can be used to perform a text search within the Top Left table. The search menu
contains the following items:

• Forward Search… (control F)

• Backward Search… (control B)

• Search Again (control G)

• Clear Search (control Q)

The PGPROF GUI displays a dialog box when you invoke the Forward Search… or Backward Search…
menu items. The dialog box will prompt for the text to be located. Once the text is entered and the OK
button selected, PGPROF will search for the text in the Top Left table. Select Cancel to abort the search. If
Forward Search was selected, PGPROF will scroll forward to the next occurrence of the text entered in the
dialog box. If Backward Search was selected, PGPROF will scroll backwards to the first previous
occurrence of the text in the Top Left table. Top Left table columns that contain matching text are
displayed in red. To repeat a search, select the Search Again menu item. To clear the search and turn the
color of all matching text back to black, select the Clear Search menu item.

Graphical User Interface

179

Selecting and Sorting Profile Data

Selecting and sorting affects what profile data is displayed and how it is displayed in PGPROF’s Top Left,
Top Right, and Bottom tables. The Sort menu, explained in “Sort Menu” on page 178, can be used to
change the sort order. The sort order can also be changed by left-clicking a column heading in the Top
Left, Top Right, and Bottom tables. The Select Combo Box, introduced in “Sort Menu” on page 178, may
be used to select which profile entries are displayed based on certain criteria.

Selecting Profile Data

By default, PGPROF selects all profile entries for display in the Top Left and Right tables. To change the
selection criteria, left mouse click on the Select Combo Box next to the Select label.

The following options are available:

• All – Default. Display all profile entries.

• Coverage – Select entries based on Coverage. When Coverage is selected, an additional text field
will appear with up and down arrow keys. Use the up and down arrow keys to increase the
minimum coverage a profile entry needs before PGPROF will display it. The desired minimum may
be entered directly into the text field. The value in the text field represents a percentage. Profile
entries with coverage that exceed the input percentage are displayed in the tables. In Figure 2-12 ,
“Selecting Profile Entries with Coverage Greater Than 3%”, the example shows selecting all
routines that have coverage greater than 3% of the coverage for the entire program.

• Count – Select entries based on a count criteria. This is the same as Coverage except this selects the
minimum count required for each profile entry. Profile entries with counts greater than the
entered count value are displayed in the tables.

• Profiled – Select all entries in the Top Left table that have a corresponding entry in the Top Right
table. See the discussion below for more information.

• Time – Same as Coverage except the criteria is based on percent of Time a profile entry consumes
rather than Coverage.

• Unprofiled – Select all entries in the Top Left table that do not have a corresponding entry in the
Top Right table. See the discussion below for more information.

The PGPROF Profiler

180

NOTE

For applications compiled with –Mprof=hwcts or –Mprof=mpi,hwcts, a hardware event may
be selected from the list above as well.

When Profiled is selected , profile entries that have a corresponding entry in both the Top Left and Right
tables are selected. A profile entry may be listed in the Top Left table but not in the Top Right table. In
this case, the entry is an Unprofiled entry. A Profiled entry is a point in the program in which profile
information was collected. Depending on the profiling method used, this could be at the end of a basic
block (e.g., –Mprof=[func | line], –Mprof=mpi,[func | lines] instrumented profiles) or when the
profiling mechanism saved its state (e.g., –pg, –Mprof=time, –Mprof=hwcts, –Mprof=mpi,[time, hwcts
] sample based profiles).

Graphical User Interface

181

Figure 2-12: Selecting Profile Entries with Coverage Greater Than 3%

Sorting Profile Data

The current sort order is displayed at the bottom of each table. For example, the message Sort By Time is
present at the bottom of each table in Figure 2-12 , “Selecting Profile Entries with Coverage Greater
Than 3%”. The Bottom table will display one of the following messages when sorting by Filename,
Name, or Line Number:

• Sort By Process

• Sort By Processes

• Sort By Threads

• Sort By Process.Threads

The PGPROF Profiler

182

• Sort By Processes.Threads

If one of these messages appears in the Bottom table, then the profiler is treating the process/thread
number as the major sort key and the Filename, Name, or Line Number as the minor sort key. This can
be used to easily compare two different profile entries with the same process/thread number. Use the
check boxes under the View column in the Top Left table to compare more than one profile entry in the
Bottom table. This is demonstrated in Figure 2-11 , “Source Lines with Multiple Profile Entries”.

Scalability Comparison

PGPROF has a Scalability Comparison feature that can be used to measure linear speed-up or slow-down
between multiple executions of an application. Scalability between executions can be measured with a
varying number of processes or threads. To use scalability comparison, first generate two or more
profiles for a given application. For best results, compare profiles from the same application using the
same input data. Also, scalability comparison works best for serial or multi-process (MPI) programs. To
measure scalability for a multi-threaded program, profiling with –Mprof=func or –Mprof=lines is
recommended. See “Profiling Multi-threaded Programs” on page 146 and “Measuring Time” on page
152 for more information on multi-threaded profiling.

The number of processes and/or threads used in each execution can be different. After generating two or
more profiles, load one of them into PGPROF. Select the Scalability Comparison item under the File
menu and choose another profile for comparison (“File Menu” on page 166). A new profiler window will
appear with a column called Scale in its Top Right table (“View Menu” on page 174).

Figure 2-13 , “Profile of an Application Run with 1 Process” shows a profile of an application that was
run with one process. Figure 2-14 , “Profile with Visible Scale Column”, shows a profile of the same
application run with two processes. The profile in Figure 2-14 , “Profile with Visible Scale Column”, also
has a Scale column in its Top Right table. Each profile entry that has timing information has a Scale
value. The scale value measures the linear speed-up or slow-down for these entries across profiles. A
scale value of zero (or one for serial/multi-threaded programs) indicates no change in the execution
time between the two runs. A positive value means the time improved by that scaled factor. A negative
value means that the time slowed down by that scaled factor.

Bar charts in the Scale column show positive values with bars extending from left to right and negative
values with bars extending from right to left (Figure 2-14 , “Profile with Visible Scale Column”). If there
is a question mark (‘?’) in the Scale column, then PGPROF is unable to perform the scalability
comparison for this profile entry. This may happen if the two profiles do not share the same executable
or input data.

Graphical User Interface

183

Figure 2-13: Profile of an Application Run with 1 Process

The PGPROF Profiler

184

Figure 2-14: Profile with Visible Scale Column

PGPROF uses the two formulas shown below for computing scalability. Formula 2-1 computes scalability
for multiprocess programs and Formula 2-2 computes scalability for serial and multi-threaded
programs.

In Formula 2-1, a scalability value greater than zero indicates some degree of speed-up. A scalability
value of one indicates perfect linear speed-up. Anything greater than one, indicates super speed-up.
Similar negative values indicate linear slow-down and super slow-down respectively. A value of zero
indicates that no change in execution time occurred between the two runs.

Graphical User Interface

185

Formula 2-1: Scalability for Multiprocess Programs

P1 = number of processes used in first run of

application

P2 = number of processes used in second run of application

where P2 > P1

Time1 = Execution time using P1 processes

Time2 = Execution time using P2 processes

Scalability = log(Time1 ÷ Time2) ÷ log(P2 ÷ P1)

In Formula 2-2, a scalability value greater than zero indicates some degree of speed-up. A scalability
value equal to the ratio (T2 / T1) indicates perfect linear speed-up. Anything greater than one, indicates
super speed-up. Similar negative values indicate linear slow-down and super slow-down respectively. A
value of one indicates that no change in execution time occurred between the two runs.

Formula 2-2: Scalability for Serial and Multi-threaded Programs

T1 = number of threads used in first run of application

T2 = number of threads used in second run of application

where T2 ≥ T1
Time1 = Execution time using T1 threads

Time2 = Execution time using T2 threads

Scalability = Time2 ÷ Time1

Viewing Profiles with Hardware Event Counters

If you executed your program under the control of pgprof -collect or if you compiled your program with
the -Mprof=hwcts or the -Mprof=mpi,hwcts option, then you can profile up to four event counters and
view them in PGPROF (use -Mprof=dwarf or -Mprof=mpi,dwarf option when generating profiles via the
OProfile interface). See “Profiling with Hardware Event Counters (Linux Only)” on page 146 for more
details.

Figure 2-15 , “Profile with Hardware Event Counter”, shows a profile of one event counter called
TOT_CYC, which counts the number of CPU cycles the program consumed. This event is enabled by
default or by adding PAPI_TOT_CYC to your PGPROF_EVENTS environment variable (“Profiling with
Hardware Event Counters (Linux Only)” on page 146). Each entry under the Time column represents
CPU time computed by its corresponding TOT_CYC entry. PGPROF will not report any time for hardware
counter profiles unless one of the hardware events is PAPI_TOT_CYC.

The PGPROF Profiler

186

Each event can be toggled for viewing and sorting under the View (“View Menu” on page 174) and Sort
(“Sort Menu” on page 178) menus respectively. Hardware event criteria may also be selected under the
Select combo box (“Selecting Profile Data” on page 179).

Figure 2-15: Profile with Hardware Event Counter

Command Language

The user interface for non-GUI (Win32) versions of the PGPROF profiler is a simple command language.
This command language is available in GUI versions of the profiler using the –s or –text option. The
language is composed of commands and arguments separated by white space. A pgprof> prompt is
issued unless input is being redirected.

Command Language

187

Command Usage

This section describes the profiler’s command set. Command names are printed in bold and may be
abbreviated as indicated. Arguments enclosed by brackets (‘[‘’]’) are optional. Separating two or more
arguments by ‘|’ indicates that any one is acceptable. Argument names in italics are chosen to indicate
what kind of argument is expected. Argument names that are not in italics are keywords and should be
entered as they appear.

display

d[isplay] [display options] | all | none

Specify display information. This includes information on minimum values, maximum values, average
values, or per processor/thread data. Below is a list of possible display options:

[no]calls [no]cover [no]time [no]timecall [no]cost [no]proc [no]thread [no]msgs [no]msgs_sent
[no]msgs_recv [no]bytes [no]bytes_sent [no]name [no]file [no]line [no]lineno [no]visits [no]scale
[no]stmtno

help

he[lp] [command]

Provide brief command synopsis. If the command argument is present only information for that
command will be displayed. The character "?" may be used as an alias for help.

history

h[istory] [size]

Display the history list, which stores previous commands in a manner similar to that available with csh
or dbx. The optional size argument specifies the number of lines to store in the history list.

lines

l[ines] function [[>] filename]

Print (display) the line level data together with the source for the specified function. If the filename
argument is present, the output will be placed in the named file. The '>' means redirect output, and is
optional.

asm

a[sm] routine [[>] filename]

The PGPROF Profiler

188

Print (display) the instruction and line level data together with the source and assembly for the specified
routine. If the filename argument is present, the output will be placed in the named file. The '>' means
redirect output, and is optional. This command is only available on platforms that support instruction
level profiling.

load

lo[ad] [datafile]

Load a new dataset. With no arguments reloads the current dataset. A single argument is interpreted as a
new data file. With two arguments, the first is interpreted as the program and the second as the data file.

merge

m[erge] datafile

Merge the profile data from the named datafile into the current loaded dataset. The datafile must be in
standard pgprof.out format, and must have been generated by the same executable file as the original
dataset (no datafiles are modified.)

process

pro[cess] processor_num

For multi-process profiles, specify the processor number of the data to display.

print

p[rint] [[>] filename]

Print (display) the currently selected function data. If the filename argument is present, the output will
be placed in the named file. The '>' means redirect output, and is optional.

quit

q[uit]

Exit the profiler.

select

sel[ect] calls | timecall | time | cost | cover | all [[>] cutoff]

Command Language

189

Display data for a selected subset of the functions. This command is used to set the selection key and
establish a cutoff percentage or value. The cutoff value must be a positive integer, and for time related
fields is interpreted as a percentage. The '>' means greater than, and is optional. The default is all.

sort

so[rt] [by] [max | avg | min | proc | thread] calls | cover | timecall | time

| cost | name | msgs | msgs_sent | msgs_recv | bytes | bytes_sent | bytes_recv

| visits | file

Function level data is displayed as a sorted list. This command establishes the basis for sorting. The
default is max time.

srcdir

src[dir] directory

Set the source file search path.

stat

s[tat] [no]min|[no]avg|[no]max|[no]proc|[no]thread|[no]all]

Set which process fields to display (or not to display when using the arguments beginning with “no”).

thread

th[read] thread_num

Specify a thread for a multi-threaded process profile.

times

t[imes] raw | pct

Specify whether time-related values should be displayed as raw numbers or as percentages. The default is
pct.

! (history)

!!

Repeat previous command.

! num

The PGPROF Profiler

190

Repeat previous command numbered num in the history list.

!-num

Repeat the num-th previous command numbered num in the history list.

! string

Repeat most recent command starting with string from the history list.

191

Index
Numerics
1.1

3 112

A
AMD64 Register Symbols 91
Arrays 95
Audience Description xiii

C
C++ Instance Methods 98
Caveats 154
Clock Granularity 154
Command set 119
Compiler Options for Debugging 2
Configurable Stop Mode 122
Conformance to Standards xiii
Constants 32
Conventions xv
Conversions 79

D
Debugging C++ 98
Dynamic p/t-set 112

E
Events 22, 36, 56
Expressions 38

F
Floating-Point Stack Registers Symbols

90
Fortan debugging 94
Fortran 90 module 97

G
General Register Symbols 90
Global commands 121

H
HPF xiii

I
Invocation and Initialization 2

L
Lexical blocks 34

M
Main routine 95
Manual organization xiv
MPI

Debugging 137
Groups 138
Listener process 139
Message queues 137
MPI-CH support 105

Multilevel debugging 109

N
Nested subroutines 96

O
OpenMP xiii

Serial vs parallel region 133
Operators 95

P
P/t-set

Commands 113
Current 113

Parallel events 129
Parallel Statements 131

Return statements 132
PGDBG

Buttons 20
C++ debugging 98
Combo boxes 20
Command prompt 128
Command-Line Arguments 4
Commands 32, 51
Commands Summary 40
Conversions 79
Custom Subwindow 31
Debug modes 107
Debugger 1
Disassembler Subwindow 28
Events 36, 56
Expressions 38
File Menu 13
Focus Panel 9
Fortran arrays 95
Fortran common 95
Fortran debugging 94
Graphical user interface 5
Help Menu 14
Invocation 2
Main Window 5, 21, 24
Memory access 77
Memory Subwindow 28
Messages Subwindow 25

192

Index

Miscellaneous commands 80
Name of main routine 95
Operators 39, 95
Options Menu 19
Parallel commands 119
Printing and setting variables 67
Process control commands 51
Process/Thread Grid 9
Program I/O Window 7
Program locations 65
Register access 76
Register symbols 33
Registers Subwindow 29
Scope 74
Scope rules 32
Settings Menu 13
Source code locations 33
Source Panel menus 15
Statements 35
Status messages 127
Subwindows 24
Symbols and expressions 71
Wait modes 124

PGDBG Commands
/ (search forward) 67
?(search backward) 67
addr 79
alias 80
arrive 65
ascii 69
assign 71
attach 51
bin 70
break 56
breaki 57
breaks 57
call 71
catch 58
cd 65
clear 58
cont 52
cread 77
debug 52

dec 70
declaration 72
decls 74
defset 55
delete 58
detach 52
directory 81
disable 58
disasm 65
display 70
do 59
doi 59
down 74
dread 77
dump 77
edit 65
enable 59
enter 74
entry 72
file 66
files 75
focus 55
fp 76
fread 78
function 80
global 75
halt 52
help 81
hex 70
history 81
hwatch 59
hwatchb 60
hwatchr 60
ignore 60
iread 79
language 82
line 80
lines 66
list 66
log 82
lread 79
lval 73
mqdump 79

names 75
next 52
nexti 52
noprint 83
oct 70
pc 76
pgienv 83
print 67
printf 69
proc 52
procs 53
pwd 66
quit 53
regs 76
repeat 86
rerun 53
retaddr 76
run 53
rval 73
scope 75
script 86
set 73
setenv 87
shell 87
sizeof 73
sleep 87
source 87
sp 77
sread 79
stackdump 67
stacktrace 66
status 60
step 53
stepi 54
stepout 54
stop 61
stopi 61
string 70
sync/synci 54
thread 54
threads 54
trace 62
tracei 62

Index

193

track 61
tracki 61
type 73
unalias 87
unbreak 62
unbreaki 62
undefset 55
undisplay 70
up 75
use 87
viewset 55
wait 55
watch 63
watchi 64
when 64
wheni 64
where 67
whereis 75
which 76
whichsets 55

PGPROF 159
Command Usage 187
Command-line options 151
Commands 186
Compilation 143
Definition of terms 142
File 166
Graphical User Interface 156
GUI customization 159
GUI Layout 157
Help 172
Invocation 150
Menus 166
Optimization 154
Overview 141
Processes menu 173
Profile Data 153
Profiling Process 141
Scalability Comparison 182
Setting 168
Sort menu 178
Sorting Profile Data 181
View menu 158, 174

PGPROF Commands
! (history) 189
asm 187
display 187
help 187
history 187
lines 187
load 188
merge 188
print 188
process 188
quit 188
select 188
sort 189
srcdir 189
stat 189
thread 189
times 189

Process
Process and thread control 122
Process control 136
Process level commands 119
Process/thread set 110
Process-only debugging 109
Process-parallel debugging 104
Process-thread sets 55

Profiling
Basic block 143
Command-level interface 186
Compilation 143
Coverage 143
Function level 142
Line level 142
Optimization 154
PGPROF 141
Virtual Timer 152

Program execution 145

R
Register Access 76
Register Symbols 89
Register symbols 33
Related Publications xvii

S
Scope 17, 74
Scope rules 32
Segment Registers 90
Signals 88
Source code locations 33
Special Purpose Register Symbols 91
SSE Register Symbols 93
Statements 35
Symbols 32
Symbols and Expressions 71
System Requirements xviii

T
Terms 1
Thread level commands 120
Threads

Thread-parallel debugging 107
Threads-only debugging 108

W
Wait mode 123

X
X86 Register Symbols 89

	Preface
	Intended Audience
	Supplementary Documentation
	Compatibility and Conformance to Standards
	Organization
	Conventions
	Related Publications
	System Requirements

	1 The PGDBG Debugger
	Definition of Terms
	Building Applications for Debug
	PGDBG Invocation and Initialization
	Invoking PGDBG
	Selecting a Version of Java
	PGDBG Command-Line Options

	PGDBG Graphical User Interface
	Main Window
	Command Prompt Panel
	Focus Panel
	Process/Thread Grid
	Source Panel
	Main Window Menus

	Source Panel
	Source Panel Menus
	Source Panel Buttons
	Source Panel Combo Boxes
	Source Panel Messages
	Source Panel Events

	Source Panel Pop-Up Menus
	Subwindows
	Standard Subwindow Controls
	Memory Subwindow
	Disassembler Subwindow
	Registers Subwindow
	Custom Subwindow
	Messages Subwindow

	PGDBG Command Language
	Constants
	Symbols
	Scope Rules
	Register Symbols
	Source Code Locations
	Lexical Blocks
	Statements
	Events
	Expressions

	Commands Summary
	PGDBG Command Reference
	Notation Used in this Section
	Process Control
	Process-Thread Sets
	Events
	Program Locations
	Printing Variables and Expressions
	Symbols and Expressions
	Scope
	Register Access
	Memory Access
	Conversions
	Miscellaneous

	Signals
	Control-C
	Signals Used Internally by PGDBG
	Signals Used by Linux Libraries

	Register Symbols
	X86 Register Symbols
	AMD64/EM64T Register Symbols
	SSE Register Symbols

	Debugging Fortran
	Fortran Types
	Arrays
	Operators
	Name of the Main Routine
	Fortran Common Blocks
	Nested Subroutines
	Fortran 90 Modules

	Debugging C++
	Calling C++ Instance Methods

	Debugging with Core Files
	Debugging Parallel Programs
	Summary of Parallel Debugging Features
	OpenMP and Multi-thread Support
	MPI and Multi-Process Support
	Graphical Presentation of Threads and Processes

	Basic Process and Thread Naming
	Multi-Thread and OpenMP Debugging
	Multi-Process MPI Debugging
	Invoking PGDBG for MPI Debugging
	Using PGDBG for MPI Debugging
	MPICH Support
	LAM-MPI Support

	Thread and Process Grouping and Naming
	PGDBG Debug Modes
	Threads-only Debugging
	Process-only Debugging
	Multilevel Debugging
	Process/Thread Sets
	p/t-set Notation
	Dynamic vs. Static p/t-sets
	Current vs. Prefix p/t-set
	p/t-set Commands
	Command Set
	Process Level Commands
	Thread Level Commands
	Global Commands

	Process and Thread Control
	Configurable Stop Mode
	Configurable Wait Mode
	Status Messages
	The PGDBG Command Prompt
	Parallel Events
	Parallel Statements
	Parallel Compound/Block Statements
	Parallel If, Else Statements
	Parallel While Statements
	Return Statements

	OpenMP Debugging
	Serial vs. Parallel Regions
	The PGDBG OpenMP Event Handler
	Debugging OpenMP Private Data

	MPI Debugging
	Process Control
	Process Synchronization
	MPI Message Queues
	MPI Groups
	MPI Listener Processes
	SSH and RSH

	2 The PGPROF Profiler
	Introduction
	Definition of Terms
	Compilation
	Program Execution
	Profiling MPI Programs
	Profiling Multi-threaded Programs
	Profiling with Hardware Event Counters (Linux Only)
	Profiling with Hardware Event Counters using PGPROF -collect.
	Profiling with Hardware Event Counters using PAPI

	Profiler Invocation and Initialization
	Selecting a Version of Java
	Command Line Options
	Measuring Time
	Profile Data
	Caveats (Precision of Profiling Results)
	Accuracy of Performance Data
	Clock Granularity
	Souce Code Correlation
	Overhead of -Mprof=lines

	Graphical User Interface
	The PGPROF GUI Layout
	GUI Customization

	Profile Navigation
	PGPROF Menus
	File Menu
	Settings Menu
	Help Menu
	Processes Menu
	View Menu
	Sort Menu
	Search Menu

	Selecting and Sorting Profile Data
	Selecting Profile Data
	Sorting Profile Data

	Scalability Comparison
	Viewing Profiles with Hardware Event Counters

	Command Language
	Command Usage

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

