
ACRC How-To: Running MATLAB on BlueCrystal Phase 3

Table of Contents
ACRC How-To: Running MATLAB on BlueCrystal Phase 3...1

Introduction..1
Available Toolboxes...1
Submitting a Batch Job: An Example M-file and Submission Script..2
Packaging Your Code using the MATLAB Compiler..5
High Performance MATLAB...6

Discovering Where Your Code Spends its Time...6
Strategies for Accelerating Serial Code..7
Using Compiled Code through MEX Files...9
A Preamble to Parallelisation: Amdahl's Law...9
Multi-threaded Intrinsics...10
Execute Loop Iterations in Parallel with Parfor..11
Summary...12

Introduction

This document is not an introduction to MATLAB itself. However, it is an introduction to running
MATLAB on a cluster. The intended audience are those who are comfortable running MATLAB
but who are new to running their jobs on BlueCrystal.

If you are new to MATLAB, the following web-page provides links to a lot of very good tutorial
information: http://www.mathworks.co.uk/academia/student_center/tutorials/launchpad.html

In order to access MATLAB on BlueCrystal phase 3 you will need to load the following module
(this command is best added to your .bashrc file):

Available Toolboxes

Since the functionality of MATLAB is influenced by which toolboxes are installed, the following is
a handy list of those available of BlueCrystal phase 3, as of the 4th of March 2014:

MATLAB
Simulink
Bioinformatics Toolbox
Communications System Toolbox
Computer Vision System Toolbox
Control System Toolbox
Curve Fitting Toolbox
DSP System Toolbox
Econometrics Toolbox
Embedded Coder
Financial Toolbox
Fixed-Point Designer
Fuzzy Logic Toolbox
Global Optimization Toolbox
HDL Coder

HDL Verifier
Image Acquisition Toolbox
Image Processing Toolbox
Instrument Control Toolbox
MATLAB Coder
MATLAB Compiler
Mapping Toolbox
Model Predictive Control Toolbox
Neural Network Toolbox
Optimization Toolbox
Parallel Computing Toolbox
Partial Differential Equation Toolbox
RF Toolbox
Robust Control Toolbox
Signal Processing Toolbox

SimElectronics
SimHydraulics
SimMechanics
SimPowerSystems
Simscape
Simulink 3D Animation
Simulink Coder
Simulink Control Design
Simulink Design Optimization
Simulink Verification and Validation
Stateflow
Statistics Toolbox
Symbolic Math Toolbox
System Identification Toolbox
Wavelet Toolbox

Gethin Williams, 2014. 1

module add apps/matlab-r2013b

http://www.mathworks.co.uk/academia/student_center/tutorials/launchpad.html

If you would like to check the current situation, simply type ver at the MATLAB prompt. The
University of Bristol web page detailing our MATLAB licence is:
https://www.bris.ac.uk/it-services/locations/zones/zonee/matlab.html

NB (especially for those used to using the MATLAB cluster in Electrical and Electronic
Engineering) BlueCrystal does not have the MATLAB distributed computing server installed.

Submitting a Batch Job: An Example M-file and Submission Script

We are all probably most familiar with running MATLAB in interactive mode, perhaps using the
GUI interface. This gives us the option of typing commands at the interpreter prompt and also
executing sequences of pre-prepared commands contained in an M-file or a MEX-file. Please do
not run computationally intensive MATLAB jobs on BlueCrystal's login nodes. The system
was not designed to work in that way and you will be hindering the work of others if you try.

To run a MATLAB job on a compute cluster, such as BlueCrystal, you will need to create a batch
job that can be submitted to the queuing system and subsequently executed when resource on the
cluster becomes available. Since this may be when you are not at your computer, the job must be
able to run without human intervention. A simple way to achieve this is to encode your task into an
M-file.

The quintessential first example for a programming tutorial is, “hello, world.” Let's not buck that
trend. Our M-file will be hello.m:

Gethin Williams, 2014. 2

% A simple M-file
y = 'hello, world'
exit;

https://www.bris.ac.uk/it-services/locations/zones/zonee/matlab.html

In order to execute this M-file in batch mode on the cluster, we will need to submit a job to the
queuing system. Here is the submission script that I used for the purpose. I named it
matlab_submit:

and submitted the job at the command line by typing:

Note that I have deliberately included the -singleCompThread option, to limit MATLAB to using
only one processor. More on this topic in a later section. The -nodesktop and -noFigureWindows
are sensible options when running in a batch environment.

The requested wall-clock time for the job is set to 10 minutes in the above example. Be sure to
reset this appropriately if you re-purpose the submission script for your own jobs.

Use qstat -u <your-username> to monitor the progress of your job through the queue. A 'Q' is the
'S' column indicates that the job is queued and is waiting to run. An 'R' indicates that the job is
running, and a 'C' shows that it has completed.

Gethin Williams, 2014. 3

#!/bin/bash
#! Sample PBS submission script for a MATLAB job

#! Requesting resource (processors and wall-clock time):
#! nodes=1:ppn=1 indicates a single processor.
#! nodes=1:ppn=16 would request a whole node for BCp3.
#! 02:30:00 indicates 02 hours and 30 minutes

#PBS -l nodes=1:ppn=1,walltime=00:10:00

#! change the working directory (default is home directory)
cd $PBS_O_WORKDIR

#! Record some useful job details in the output file
echo Running on host `hostname`
echo Time is `date`
echo Directory is `pwd`
echo PBS job ID is $PBS_JOBID
echo This jobs runs on the following nodes:
echo `cat $PBS_NODEFILE | uniq`

#! add the MATLAB module (as per BCp3)
module add apps/matlab-r2013b

#! NB have limited MATLAB to a single thread
options="-nodesktop -noFigureWindows -singleCompThread"

#! Run MATLAB in batch mode
matlab $options -r hello

qsub matlab_submit

The output of a job run with the above submission script will collect in a file named,
matlab_submit.o<job-id>. Any errors will collect in matlab_submit.e<job-id>. In my case, the
contents of matlab_submit.o208407 are:

You can use multiple M-files. For example, if you had a file named triarea.m:

You could pass the following main.m to MATLAB in the submission script:

and, again, the contents of my output file are (without the header this time):

Gethin Williams, 2014. 4

% function to compute area of a triangle
function a = triarea(b,h)
 a = 0.5*(b.* h);

% calculate some areas of triangles
a1 = triarea(1,5)
a2 = triarea(2,10)
a3 = triarea(3,6)
exit;

Running on host node32-021
Time is Tue Mar 4 11:42:40 GMT 2014
Directory is /panfs/panasas01/isys/ggdagw/matlab
PBS job ID is 208407.master.cm.cluster
This jobs runs on the following nodes:
node32-021
Warning: No display specified. You will not be able to display graphics on the screen.
Warning: No window system found. Java option 'MWT' ignored.

 < M A T L A B (R) >
 Copyright 1984-2013 The MathWorks, Inc.
 R2013b (8.2.0.701) 64-bit (glnxa64)
 August 13, 2013

To get started, type one of these: helpwin, helpdesk, or demo.
For product information, visit www.mathworks.com.

y =

hello, world

a1 =
 2.5000

a2 =
 10

a3 =
 9

Packaging Your Code using the MATLAB Compiler

The MATLAB compiler lets you package your code as a standalone application, allowing you to
run your code on a machine that does not have MATLAB installed. Packaged code does not require
any licenses, so can be useful if you encounter a situation where the toolbox licenses on your
system are all used up. Two things to note are that your compiled code will still require the
MATLAB compiler runtime (MCR):
http://www.mathworks.co.uk/products/compiler/mcr/
and that most, but not all, toolboxes are supported when using the MATLAB compiler. A table
detailing support is provided at:
http://www.mathworks.co.uk/products/compiler/supported/compiler_support.html

The MATLAB compiler (mcc) accepts quite a complex set of command line arguments, the
documentation for which can be hard to find. However, I'll present a fairly general purpose recipe
below. Let's compile M-files from the previous example (main.m, which contains calls to the
function in triarea.m):

Where the options are:
• -m generate a standalone application
• -v verbose display of compilation steps
• -w enable report all warnings
• -R pass the following runtime option (-singleCompThread in this case)

Other runtime options which you may find useful include -nodisplay, -nojvm, -nosplash, and
-nodesktop.

A useful site enumerating the list of mcc options is:
http://www.ling.ohio-state.edu/~kyoon/cowork/splee/HowToConvertM2Exe/mcc-reference.html

The compilation process produces a wrapper script through which we can launch the standalone
application, e.g.:

The path points to the root directory for the MCR.

It should be noted that the MATLAB compiler does not necessarily improve the performance of
your MATLAB jobs. For more information on accelerating your MATLAB code, see the next
section.

Gethin Williams, 2014. 5

mcc -m -v -w enable -R -singleCompThread main.m

./run_main.sh /cm/shared/apps/Matlab-R2013b

http://www.ling.ohio-state.edu/~kyoon/cowork/splee/HowToConvertM2Exe/mcc-reference.html
http://www.mathworks.co.uk/products/compiler/supported/compiler_support.html
http://www.mathworks.co.uk/products/compiler/mcr/

High Performance MATLAB

It is a mistake to jump straight to parallelisation if you would like faster running MATLAB code.
There are several reasons for this. First, it is likely that your serial code can be accelerated, perhaps
significantly. If you do not explore this first, you will just be multiplying out inefficiencies.
Secondly, parallel code is harder to develop, maintain and deploy, so it should really be your last
port of call when searching for additional performance.

Discovering Where Your Code Spends its Time

Your first task when looking for performance gains is to find the portions of your code that consume
the majority of the run-time. That way, you can focus your improvements efforts on areas that will
yield rewards.

Perhaps the simplest approach to this is to use the MATLAB built-in stopwatch timer. The M-file
below uses the tic and toc functions:

After it has run, my output file contains (omitting the header):

MATLAB also provides a more sophisticated profiling tool. Since we will be running our jobs in a
batch environment, we cannot use an interactive tool to view the results (since we can't predict
when the job will be run). We'll see how we can save the results for viewing at a later date in the
example below.

First, let's store the code for a function to convert Cartesian to polar coordinates in an M-file called
cart2plr.m:

Gethin Williams, 2014. 6

% time a portion of code using the
% MATLAB built-in stopwatch timer
tic;
n=1500;
A=rand(n);
B=pinv(A);
toc
exit;

Elapsed time is 4.326572 seconds.

function [r,theta] = cart2plr(x,y)
% cart2plr Convert Cartesian coordinates to polar
coordinates
%
% [r,theta] = cart2plr(x,y) computes r and theta with
%
% r = sqrt(x^2 + y^2);
% theta = atan2(y,x);

r = sqrt(x^2 + y^2);
theta = atan2(y,x);

As before, the control sequence for our job is contained in main.m:

The profsave function will create a subdirectory called profile_results containing a breakdown of
where the run-time was spent, in HTML form. When we subsequently view view the HTML using
a browser:

we see that, in this case, the trigonometric function took the lion's share of the runtime, and that we
would not have gained any performance gain—no matter how hard we tried—if we had attempted
to improve the calculation of the root of the sum of the squares.

Strategies for Accelerating Serial Code

It's obviously difficult to prescribe a universal panacea. Undaunted, however, I will outline two
strategies that commonly result in performance gains.

Gethin Williams, 2014. 7

% Profiling some MATLAB operations
% and saving the results to view later
profile on;
for i=1:10000

cart2plr(rand(),rand());
end
profile off;
profsave;
exit;

Preallocation of vectors

Let's populate an array in two different ways. First, we add to an array of undetermined size in
noprealloc.m:

And secondly, we pre-size the storage and then populate in prealloc.m:

The difference in performance is striking:

Switch from scalar to vector and array operators

In the above example, we used a loop. If you value performance, however, you should avoid loops
in your MATLAB code as much as possible.

Given the two arrays—x and y—from the previous example, let's assume that we now want to
multiply all the elements by three. Again, we compare two methods: one which uses a loop and one
which does not. First loop.m:

Gethin Williams, 2014. 8

% incrementally adding values
% to an array
tic;
for i=1:3000,
 for j=1:3000,
 x(i,j)=i+j;
 end
end
toc

% adding values to an array
% that was pre-sized
tic;
y=zeros(3000);
for i=1:3000,
 for j=1:3000,
 y(i,j)=i+j;
 end
end
toc

Elapsed time is 14.537684 seconds.
Elapsed time is 0.161670 seconds.

% multiply by 3 in a loop
for i=1:3000,
 for j=1:3000,
 y(i,j)=y(i+j)*3;
 end
end
toc

and secondly, vectorised.m:

again, the message is clear:

MATLAB contains a number of built-in functions which can save you from writing a loop.
Examples include:

• sum and prod: which compute the sum or product, respectively, of all the elements of
vector.

• cumsum and cumprod: both return a vector and are the cumulative counterparts of 'sum
and prod.

• min and max.
• any and all: will return true if any or all of the elements of a vector or matrix are true (>0),

respectively.
• find: returns the indices of a vector that satisfy the given expression. For example, find(vec

> 7) returns the indices of all elements of vec that are greater than 7.

Using Compiled Code through MEX Files

If you've tried the above strategies and your MATLAB code is still not running fast enough, there is
one more step that you should try before thinking about parallel code—using MEX files.

MATLAB allows you to create subroutines in C/C++ or Fortran and call them from MATLAB. If
you have identified that you have one or more subroutines in your MATLAB job that are taking the
majority of the time, re-writing them and compiling them could give you a useful speed-up. The
topic of creating a MEX file is relatively involved, so it is not possible to sensibly provide a small,
representative example here. Instead we will link to some very good material on the topic from the
Mathworks website:
http://www.mathworks.co.uk/help/matlab/create-mex-files.html

If you do not like the prospect of manually re-writing portions of your MATLAB application, you
could try out the new MATLAB coder tool, which automatically creates C/C++, and optionally
MEX files, from your existing MATLAB code. See:
http://www.mathworks.co.uk/products/matlab-coder/
for more details.

A Preamble to Parallelisation: Amdahl's Law

If we want to further accelerate MATLAB code, we should run it in parallel, right? and the more
processors that we throw at the problem, the better, yeah?

Not true. Thankfully, Gene Amdahl taught us to think more clearly.

Gethin Williams, 2014. 9

tic;
y=y*3;
toc

Elapsed time is 0.182269 seconds.
Elapsed time is 0.009551 seconds.

http://www.mathworks.co.uk/products/matlab-coder/
http://www.mathworks.co.uk/help/matlab/create-mex-files.html

Let's say that we have some code. We estimate that 50% can run in parallel. What's the best
possible speed-up that we can get on this code? Well the table below tells us:

parallelisable portion of your code 25% 50% 75% 90% 95%

Best possible speed-up x1.3 x2 x4 x10 x20

Let's also look at how we approach these best possible speed-ups, as we add in more processors
(graph courtesy of wikipedia):

The remaining sections describe how you might go about running MATLAB code in parallel. As
you read on, however, be sure to ask yourself, “how much of my MATLAB code will run in
parallel?” and, “how many processors is it sensible to use for my task?”

Multi-threaded Intrinsics

By far the simplest route to parallelism is to rely on the many MATLAB intrinsic functions that are
multi-threaded. The precise list of which functions are multi-threaded changes with each release of
MATLAB. However, a flavour is provided at the following URL:
http://www.mathworks.com/matlabcentral/answers/95958

It is important to note that all of MATLAB's multi-threaded functions will spread work to all of the
processors present in a node. For that reason, you should adjust your submission to request a full
node on the cluster. For BlueCrystal phase 3 you should use:

Gethin Williams, 2014. 10

http://www.mathworks.com/matlabcentral/answers/95958

and to remove -singleCompThread from the options which you use to invoke MATLAB:

Execute Loop Iterations in Parallel with Parfor

In this case, we consider the explicit creation of parallel workers in order to divide up the work of a
loop. We must be careful to note several properties of MATLAB workers:

• They are completely independent and have their own workspaces.
• They can communicate, but cannot access another's workspace.
• There will be (e.g. communication) costs associated with dividing the task among the

workers and so a speed-up is not guaranteed.

Let's look at our first example of using a parallel loop in MATLAB. Recall our investigation into
the use of loops, preallocation of storage and vectorised operations when trying to accelerate some
serial MATLAB code. Let's assume that we jumped in too early and assumed that using a parallel
loop would have to speed things up. Our M-file on this occasion is called naive-parallel.m:

If we call this from a main.m which looks like:

Instead of the elapsed time of ~0.16s for the serial code, we now see:

Almost an order of magnitude slower thanks to our parallel loop! (And remember that our serial
loop ran slower than the vectorised solution.) In order to use parfor profitably, we must be savvy.
Create loops that:

Gethin Williams, 2014. 11

#PBS -l nodes=1:ppn=16

options="-nosplash -nodesktop -noFigureWindows"

% adding values to an array
% that was pre-sized
% using a parallel for loop
tic;
y=zeros(3000);
parfor i=1:3000,
 for j=1:3000,
 y(i,j)=i+j;
 end
end
toc

matlabpool open;
naive_parallel
matlabpool close;
exit;

connected to 12 workers.
Elapsed time is 1.442114 seconds.
Parallel pool using the 'local' profile is shutting down.

• have independent iterations, where
• each iteration contains sufficient computational work to offset the cost of setting up and

managing the pool of MATLAB workers.

As is often the case, there are many good documents pertaining to this aspect of MATLAB out on
the web. For example, a very good introduction to using parfor is at:
http://sc.tamu.edu/shortcourses/SC-matlab/matlab-parallel.pdf

Also, the file-exchange area of the Mathworks website contains a nice example where using a
parallel loop does provide a useful speed-up:
http://www.mathworks.co.uk/matlabcentral/fileexchange/31336-demo-files-for-parallel-computing-
with-matlab-on-multicore-desktops-and-gpus-
webinar/content/ParallelODE_Example/html/paramSweep.html

When I ran this on BlueCrystal I got the following output:

The eagle-eyed among you will have noticed that, by default, MATLAB will not open a pool of
more than 12 workers.

Summary

The aim of this document was to provide an introduction to running MATLAB jobs in batch-mode
on BlueCrystal Phase 3. An example submission script was given including, for example, the
-singleCompThread flag, along with some very simple example jobs written as M-files.

The topic of profiling was introduced, so that you can identify the portions of your MATLAB jobs
that are running the slowest (every job has its bottleneck). Examples of the use of the tic and toc
functions and also the MATLAB profiler were given. Common areas where MATLAB jobs can be
accelerated were highlighted, including preallocation of storage, vectorisation and the use of MEX
files.

Lastly, the topic of parallel MATLAB jobs was covered. Amdahl's law was introduced, so that we
can be wise and realistic about what sort gains parallelism offers. Multi-threaded intrinsics were
described along with explicit parallelism using parfor—MATLAB's parallel loop construct.

Gethin Williams, 2014. 12

Computing in serial...
Elapsed time is 21.75 seconds.
Computing in parallel...
Starting parallel pool (parpool) using the 'local' profile ... connected to 12 workers.
Elapsed time is 2.65 seconds.
Parallel pool using the 'local' profile is shutting down.

http://www.mathworks.co.uk/matlabcentral/fileexchange/31336-demo-files-for-parallel-computing-with-matlab-on-multicore-desktops-and-gpus-webinar/content/ParallelODE_Example/html/paramSweep.html
http://www.mathworks.co.uk/matlabcentral/fileexchange/31336-demo-files-for-parallel-computing-with-matlab-on-multicore-desktops-and-gpus-webinar/content/ParallelODE_Example/html/paramSweep.html
http://www.mathworks.co.uk/matlabcentral/fileexchange/31336-demo-files-for-parallel-computing-with-matlab-on-multicore-desktops-and-gpus-webinar/content/ParallelODE_Example/html/paramSweep.html
http://sc.tamu.edu/shortcourses/SC-matlab/matlab-parallel.pdf

	ACRC How-To: Running MATLAB on BlueCrystal Phase 3
	Introduction
	Available Toolboxes
	Submitting a Batch Job: An Example M-file and Submission Script
	Packaging Your Code using the MATLAB Compiler
	High Performance MATLAB
	Discovering Where Your Code Spends its Time
	Strategies for Accelerating Serial Code
	Using Compiled Code through MEX Files
	A Preamble to Parallelisation: Amdahl's Law
	Multi-threaded Intrinsics
	Execute Loop Iterations in Parallel with Parfor
	Summary

