
ACRC How-To: Recipes for Using Allinea's DDT Parallel
Debugger on BlueCrystal Phase 3

Table of Contents
ACRC How-To: Recipes for Using Allinea's DDT Parallel Debugger on BlueCrystal Phase 3..........1

Introduction..1
Building your Program..1
Enabling X11 Forwarding from the Cluster..2
Recipe #1: Using DDT to Submit a Job to the Queuing System..3
Recipe #2: Attaching DDT to a Job Already Running..10
Summary..13
Appendix..14

Introduction

This document is not intended to be an introduction to using debuggers or, for that matter, an
introduction to Allinea's DDT debugger. Rather, it is a practical guide on how you can start to use
the DDT parallel debugger on BlueCrystal Phase 3. Allinea produce very good documentation and
I would recommend that anyone new to DDT starts by reading their user guide:

• http://content.allinea.com/downloads/userguide.pdf

Those new to debugging altogether might like to read a more general introduction to the topic. Two
guides that could be considered as primers are:

• http://www.dirac.org/linux/gdb/01-Introduction.php
• http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Debug.html

There is an inherent tension between an interactive activity like debugging and the way in which we
typically run jobs on a compute cluster, such as BlueCrystal. Since there are many users and
competition for the compute resource of BlueCrystal, we submit our jobs to a fair-share scheduler
which decides when those jobs are going to to be run (and on which compute nodes). Thus it can be
difficult to simply start up DDT and begin your debugging session. In response to this, I will
present two different recipes for initiating a debugging session—one where we ask DDT to submit
the job in question to the queue (and to wait until it is running), and another where we attach DDT
to a job that we had previously queued and that is now running. Bear in mind, however, that neither
approach is a panacea to the competition for compute resource—you will always have to wait
longer if you wish to run a job using many processors.

Building your Program

OK. Enough of the preamble, let's get going. You can access DDT by loading the module:

When compiling your code, be sure to use the -g flag, so that your executable is instrumented with
extra symbol information. Also be mindful that flags, such as -O3, which strongly optimise for
speed, can make many changes to your code and hence make debugging harder. For example, -O3

Gethin Williams, 2014. 1

module add allinea/tools/4.0

http://content.allinea.com/downloads/userguide.pdf
http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Debug.html
http://www.dirac.org/linux/gdb/01-Introduction.php

may actually delete lines of your code, which will make adding a breakpoint to them rather tricky!
For the examples below, I've used MVAPICH2 as my MPI library (set in my .bashrc):

At this point we reach the nub of why I've used the word recipe in the title of this document. DDT
will be harder or easier to use depending upon which of the MPI libraries available on BlueCrystal
phase 3 you've selected. Through a process of trial and error, I've discovered that the default
settings of DDT will work well with the above module loaded. This is not to say that DDT will not
work with other MPI libraries, but that you'll have to work a bit harder to find the right
configuration. One approach may be to follow my recipes to get started and then to branch out
when you're comfortable.

Enabling X11 Forwarding from the Cluster

In both the following recipes, we will start up the graphical user interface to DDT. So that the DDT
windows can be seen on your screen, you will need to enable X11 forwarding when you connect to
the cluster. From a Linux machine, or a Mac, you can do this by passing the -X flag to SSH:

To connect from a computer running Windows, you'll need to start xming, which is the window
manager and just runs in the background, and also putty, to make the SSH connection. When you
start up putty, you will need to enter bluecrystalp3.acrc.bris.ac.uk as the hostame. In addition,
you will need to expand the SSH menu entry (near the bottom in the left-hand pane), select the X11
sub-menu and click the Enable X11 forwarding tickbox:

Gethin Williams, 2014. 2

module add mvapich2/gcc/64/1.7-qlc

ssh -X user@bluecrystalp3.acrc.bris.ac.uk

Recipe #1: Using DDT to Submit a Job to the Queuing System

In this first recipe, we will ask DDT to submit our job to the queuing system. First we start up the
DDT GUI by simply typing ddt.

After the splash screen, you will see the following interface. For this recipe, we're going to click
'Run':

Gethin Williams, 2014. 3

Clicking Run will bring up the following configuration window. Set the path to your executable in
the Application field of the Application (top) pane. Next click the Change button in the MPI pane.

Gethin Williams, 2014. 4

On the System tab of the spawned window, set the MPI implementation to MVAPICH 2:

Gethin Williams, 2014. 5

Next move to the Job Submission tab. Here you will need to:
• Tick the Submit job through queue or configure own “mpirun” command box.
• Change the Regexp for jod id field from, “our job (\d+)” to just, “(\d+)”.
• Click the Specify in Run window radio buttons in both the Number of nodes and

Processes per node panes.

Gethin Williams, 2014. 6

Below is the resulting customised job configuration window. I've deliberately chosen to run the job
with a modest number of processes so that I stand a chance to progressing quickly though the
queue.

Gethin Williams, 2014. 7

Clicking the Submit button will bring up a window showing the status of your job in the queue:

Gethin Williams, 2014. 8

Once your job has started, you will be presented with the debugging interface below and you will be
able to set breakpoints, step your code and inspect the values of variables, as per normal. Notice the
clickable pink/red boxes at the top of the window. These indicate the rank of the process in the MPI
cohort which you are currently debugging.

Gethin Williams, 2014. 9

Recipe #2: Attaching DDT to a Job Already Running

This recipe will be useful when you anticipate that your job will not start running until you are
elsewhere (perhaps asleep at home!), or when you have a long running job that you might like to
periodically attach to, inspect it's progress, and then detach from again. Clicking Attach from the
DDT start screen will bring up the following configuration window:

Again we choose MVAPICH2 as our MPI implementation. The code I used for this example is
given the the Appendix. It is a simple 'hello, world' MPI program written in C. Since it is a very
short program I have added an (empty) infinite loop to the code. If I had not done this, the job
would have completed before I had the chance to connect DDT up to it.

After compiling the code, I submitted it to the queue and waited for it to start running (monitoring
the queue using qstat or showq). Once running, I could determine which nodes it was running on
using qstat -n -u <username>. Armed with this knowledge, I could click the Choose Hosts button
and add the appropriate node names to the list:

Gethin Williams, 2014. 10

Once the hosts are set, and the Filter field filled out with the name of your executable, the relevant
processes will automatically appear in the window and you can click the Attach to listed processes
button.

Gethin Williams, 2014. 11

Once DDT has successfully attached itself to the list of processes, you will be presented with the
debugging window.

Before we can start any meaningful debugging, however, we must first release processes from the
infinite loop. To do this, right-click on the 'wait' in 'while(wait)' and select Add to Evaluations:

Gethin Williams, 2014. 12

Then right-click on 'wait' from the Evaluate pane and select Edit value. Setting the wait variable to
a value of zero will release processes from the infinite loop and allow you to debug your code in the
normal fashion:

Summary

We are fortunate to have access to a powerful parallel debugger such as Allinea's DDT on
BlueCrystal phase 3. In this document, I have aimed to provide two concrete recipes for getting
started with DDT, as well as pointers to further documentation for the tool. There is a learning
curve associated with using any new tool and DDT is no different (although the GUI nature of the
tool significant aids rapid familiarisation). However, I believe that time invested in learning how to
use a debugger will be repaid many times over and I hope these recipes help you along that road.

Gethin Williams, 2014. 13

Appendix

Below is the code for a simple 'hello, world' MPI program that I used when writing this document:

Gethin Williams, 2014. 14

#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

int main(int argc, char* argv[])
{
 int rank; /* 'rank' of process among it's cohort */
 int size; /* size of cohort, i.e. num processes started */
 int flag; /* for checking whether MPI_Init() has been called */
 int strlen; /* length of a character array */
 int wait = 1; /* flag for infinite loop */
 enum bool {FALSE,TRUE}; /* enumerated type: false = 0, true = 1 */
 char hostname[MPI_MAX_PROCESSOR_NAME]; /* character array to hold hostname */

 MPI_Init(&argc, &argv);

 MPI_Initialized(&flag);
 if (flag != TRUE) {
 MPI_Abort(MPI_COMM_WORLD,EXIT_FAILURE);
 }

 MPI_Get_processor_name(hostname,&strlen);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 /* infinite loop */
 /*while(wait);*/

 printf("Hello, world; from host %s: process %d of %d\n", hostname, rank, size);

 MPI_Finalize();

 return EXIT_SUCCESS;
}

	ACRC How-To: Recipes for Using Allinea's DDT Parallel Debugger on BlueCrystal Phase 3
	Introduction
	Building your Program
	Enabling X11 Forwarding from the Cluster
	Recipe #1: Using DDT to Submit a Job to the Queuing System
	Recipe #2: Attaching DDT to a Job Already Running
	Summary
	Appendix

