
ACRC How-To: Getting Started with Compiler Flags
Compiler flags can help us to:

• optimize our programs for execution speed,

• analyse program performance, and

• find bugs in our code.

Below is a sample from the wide array of possible flags to help you get started on these tasks using
three popular compilers—GNU, Intel and PGI.

Compiling for Speed

GNU (gcc, g++, gfortran) (version 4.4.6 and above)
For later compiler versions, you can load the modules:

• gcc/4.4.6 on bluecrystal phase 1.

• languages/gcc-4.6.2 or languages/gcc-4.7 on bluecrystal phase 2.

Optimisation flags of the form -O<level> are the first port of call when compiling for
speed.

-O2 This level of optimization is safe for most programs. You can see which individual flags
are triggered when using this composite level by typing: gcc -c -Q -O2 –help=optimizers |
less.

-O3 Will enable more optimization flags, but may not suit some programs.

-Ofast NB This level enables the -ffast-math setting which should be used with caution. It will
cause incorrect output from programs which require strict adherence to the IEEE floating-
point arithmetic standard.

-funroll-loops Unrolls loops. May or may not make your program run faster.

The following two flags are important for making best use of the particular hardware you
will be running your program on. For example, they can be used to ensure code
vectorization to make best use of wide registers.

-march=native Will enable all instruction subsets supported by the local machine.

-mtune=native Will produce code optimized for the local machine under the constraints of the selected
instruction set.

Intel (version 10.1 and above)

For Bluecrystal phases 2 & 3 (which contain Intel processors), the Intel compiler is likely to give
you the fastest running executable.

-O2 The default optimization level. Suits most programs.

-O3 Enables more aggressive loop and memory access optimizations—such as scalar
replacement—loop unrolling, code replication to eliminate branches, loop blocking to
allow more efficient use of cache and additional data prefetching. NB This level of
optimization also includes a setting akin to GNU's -ffast-math and so comes with all
the attendant warnings about IEEE floating-point compliance. -fp-model precise can
be used in conjunction to ensure only value-safe optimizations.

Gethin Williams, 2013.

-xHOST Generates specialized code to run exclusively on the host processor type.

PGI (version 7.2 and above)

-fast Enables a generally optimal set of flags. See pgcc -fast -help, for the list of inividual
flags.

Compiling to Assess Performance

All three compilers will instrument executables for use with the GNU profiler, gprof. When
instrumented in this way, a running executable will record, for example, the frequency and duration
of each function call within the progam. The compilers can additionally provide information
regarding any automatic vectorization of code.

GNU

-pg Instrument for gprof.

-ftree-vectorizer-verbose=2 Report vectorization diagnostics including loops which were and loops
which were not vectorized.

Intel

-p Instrument for gprof.

-vec-report3 Report vectorization diagnostics including loops which were and loops
which were not vectorized.

PGI

-pg Instrument for gprof.

-Minfo=vect Report vectorization diagnostics.

Compiling to Debug

In a similar vein to profiling, all the compilers can instrument executables such that they can be
interrogated by a debugger such as the GNU debugger, gdb. Note that instrumenting for debugging
usually implies that all optimizations for speed are removed. Compilers can also provide other
useful facilities, such as calling stack backtraces and array-bounds checks.

GNU

-g Instrument code for GNU debugger.

-Wall Enable all warnings.

-ftraceback Fortran only: Produce a traceback of the calling stack if a runtime error is encountered.
(Best used with -g, for more intelligible results).

-fbounds-check Fortran only: generate additional code to check that indices used to access arrays are
within the declared range.

Gethin Williams, 2013.

Intel

-g Instrument code for GNU debugger.

-Wall Enable all warnings.

-traceback Fortran only: Produce a traceback of the calling stack if a runtime error is encountered.
(Best used with -g, for more intelligible results).

-CB Fortran only: Enable runtime array-bounds checking.

-CU Fortran only: Enable runtime checks for use of uninitialized variables.

-CA Fortran only: Enable runtime checks for pointers.

PGI

-g Instrument code for GNU debugger.

-Mbounds Add array bounds checking.

-traceback Produce a traceback of the calling stack if a runtime error is encountered. (Best used with -g,
for more intelligible results).

Further Information

GNU http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html

Intel http://software.intel.com/sites/products/collateral/hpc/compilers/compiler_qrg12.pdf

PGI http://www.pgroup.com/doc/pgiug.pdf

Gethin Williams, 2013.

	ACRC How-To: Getting Started with Compiler Flags
	Compiling for Speed
	GNU (gcc, g++, gfortran) (version 4.4.6 and above)
	Intel (version 10.1 and above)
	PGI (version 7.2 and above)

	Compiling to Assess Performance
	GNU
	Intel
	PGI

	Compiling to Debug
	GNU
	Intel
	PGI

	Further Information

