ACRC How-To: Using Intel VTune Amplifier on BlueCrystal

Phase 3

Table of Contents

ACRC How-To: Using Intel VTune Amplifier on BlueCrystal Phase 3..........cccoeevveevienviieecireeennnenn. 1
I ETOAUCTION. ¢ttt ettt ettt sttt ettt b e b st esb e et eat e sbe e bt st e satebeenbesaeensesasesaeenaeens 1
Preparing your apPliCatiON.........cccuieicieeiiieieiieeeiiee et e esteeesteeeseteeesaeessaaeessaeessseesssseesnsseesnsseesennnns 1
Performing a Hotspot Analysis in Batch Mode...........cccociiriiiiiiiniieniiiieceerteeieeseee e 1
Profiling Multi-threaded Code...........ceieuieiiiieiieiicieeeece ettt et ete et eebeessaesbaesaeeenaaeens 6
Profiling IMPT COde........cooiuiieiiiiieeieeiteeieete ettt et ste e st e st e satessbe e s st e esbeesssesnsaenssesssaesssesnseesns 7
SUITIIMIATY ..ttt e st e e sttt e e s s bt e e e esabaeeessbbaeesasssaaeeensssaeeesnssaeesnsssnaesanssnssnnnns 7

Introduction

This document is not intended to be a comprehensive introduction to using performance analysis
software, or a tutorial on using Intel's Vtune Amplifier. Rather it is a practical guide to getting
started with the VTune profiler on BlueCrystal Phase 3.

Profiling applications such as VTune are key tools for any researcher who is serious about not
waiting over long for their results. They help us find the poorly performing parts of our
applications and so help us to identify bottlenecks in our work, which we can then fix.

A comprehensive collection of tutorials and other documentation about VTune, is at:
* http://software.intel.com/en-us/intel-vtune-amplifier-xe

In order to access VTune, you will need to load the following module (preferably in your .bashrc):

module add intel-cluster-studio/vtune/vtune-2013

Preparing your application

You should compile your code with all your usual optimisations for speed (-O3 etc.), but you should
also instrument your executable with extra symbolic information using (typically) -g. This will
allow you to see the source code (rather than the assembly code) when viewing the line-by-line
profile.

Performing a Hotspot Analysis in Batch Mode

Much of the tutorial material for VTune focusses on the tool's graphical front-end. However, this
implies profiling your code in interactive mode, which is in tension with the use of a scheduler to
submit jobs to the compute nodes of BlueCrystal. Happily, however, we can easily use the
command line interface to VTune. I will show you how to use VTune in batch mode and then how
to subsequently inspect the results of the profile (using theVTune GUI).

VTune can perform many different analyses of your code. In this document, I will demonstrate the
use of the most popular—a hotspot analysis. This will tell you which parts of your program took
the longest time to run.

I will start by showing you how to profile a single-threaded executable, but will also walk through
how you can profile multi-threaded and MPI programs.

Gethin Williams, 2014. 1 EAKC University of

BRISTOL

http://software.intel.com/en-us/intel-vtune-amplifier-xe

Once I had built my executable, I was able to submit my profiling run to the queuing system with
only a few small additions to my submission script, which are shown below.

I added module add intel-cluster-studio/vtune/vtune-2013 , to ensure that I had access to VTune
on the compute node, and then prefixed my usual launch command with amplxe-cl -quiet -collect
hotspots -result-dir r001hs, where:

* amplxe-cl launches the command line interface to VTune,

* -quiet suppresses extraneous output,

* -collect hotspots specifies the kind of analysis to perform, and

* -result-dir r001hs indicates that the profile results will be saved in a sub-directory
of the current directory called r001hs. Note that this dir will not be
overwritten by a subsequent call to VTune, so you will need to
either delete the directory are provide another, e.g. r002hs, r003hs, if
you are performing a sequence of profile runs.

#!/bin/bash

#PBS -N D2Q9

#PBS -0 OUT

#PBS -1 nodes=1:ppn=1,walltime=00:01:00
#PBS -m abe

#! application name

application="d2q9-bgk.exe"

#! Run options for the application
options="input_300x200.params obstacles_300x200_circ.dat"
load the VTune module

module add intel-cluster-studio/vtune/vtune-2013

#! change the working directory (default is home directory)
cd $PBS_O_WORKDIR

echo Running on host “hostname’

echo Time is "date’

echo Directory is ‘pwd"

echo PBS job ID is $PBS_JOBID

echo This jobs runs on the following machines:
echo “cat $PBS_NODEFILE | uniq

#! Profile the executable
amplxe-cl -quiet -collect hotspots -result-dir r001hs $application $options

My submission script looked like:
After the job has run, you have the choice of inspecting the result using either the command line
interface again, or the GUI. A simple, top-level summary report can be produced by typing:

amplxe-cl -report hotspots -r r001hs

Gethin Williams, 2014. 2 A University of

AL BRISTOL

I

To launch the GUI, type (remember to enable X11 forwarding when connecting to the cluster):

amplxe-gui

and, after the splash screen, you will see the welcome screen:

View Help

New » l

Project... Shift+Ctrl+0
Project Properties... S*lt... hd
Close Project Comipare Results... Ctrl+Alt+0

T

Import Result... Ctri+A+N
Recent Projects 13
Recent Results »
Options...

Welcome to Intel VTune Amplifier XE 2013

9 New Project... To start an analysis, click the
£ Open Project. toolbar button New Analysis.
D

Recent Projects: Recent Results:
| d2qo } o1hs

} rooahs

} rooshs

} roozhs

} o1hs

@ Getting Started

Gethin Williams, 2014. 3 A University of

AL BRISTOL

i

By choosing File | Open | Result, you can proceed to selecting the profile results that you would
like to view:

:’l 1 ||E| ggdagw | hpc-course | practicals | D2Q9-BGK ||r00olhs

Places | Name - | Size | Modified |;
T, Search [archive 12:02
& Recently Used | config 12:02
= ggdagw [= data.0 12:02
File System [~ sqlite-db 12:12

s.amplxe ytes 12
I r001h | 629 bytes 12:02

bt

Add | Bemmfel Intel VTune Amplifier XE 2013 (*.amplxe;*.amplxelink) [vl

Cancel | [Open

and from there to viewing the top-level results of the hotspot analysis:

File View Help
TINEERIEEYY

Project Navigator

® Welcome | roolhs & =
(=] 1jisy: plxe/pr..

= @ Hotspots - Hotspots # @ Intel VTune Amplifier XE 2013
s
& rooths [=]
& roazhs (@ Elapsed Time: 16.743s
& rooshs CPU Time: 16,6605
& roodhs Total Thread Count: 1
> (& testl.bak Paused Time: 0s

@ Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application
performance.

Function CPU Time

collision 7.8505
propagate 5.820s
av_velocity 2.440s
rebound 0.4505

write_values 0.090s

[Others] 0.010s

@ Collection and Platform Info
This section provides information about this collection, including result set size and collection platform data.
Application Command Line: d2q9-bgk.exe "input_300x200.params" "obstacles_300x200_circ.dat"

Frequency: 2.6 GHz

Logical CPU Count: 16 L
CPU Name: Intel(R) Xeon(R) processor E5-2xxx series

Operating System: Linux

Computer Name: node31-042 =

Gethin Williams, 2014. 4 A University of

AL BRISTOL

i

The Bottom-up tab shows you a breakdown by function:

File View Help
‘AR oge b S e

Project Navigator ® | Welcome | roolhs @ =
—— Liisy: el & Hotspots - Hotspots £ © Intel VTune Amplifier XE 2013

& r000hs @ Analysis Target Analysis Type & Bottom-up JEARCTE:LI)

@& roolhs Grouping: Function / Call Stack B ‘ CPU Function/CPU Stack - CPU Ti| w ‘
ro0zhs PR
gmosns Function / Call Stack Module ‘VIEWIHQ 4 1of1p selected stack(s
[100.0% (7.850s of 7.850s)]
& ro04hs .
> [testl.bak » propagate -bgk.exe propagate d2q9-bgk.exelcollision - d2q9-bgk.c
b av_velocity 14.6% [d2q9-bgk.exe av_velocity d2q9-bgk.exeltimestep+0x357 - ...
b rebound 2.7% (] d2q9-bgk.exe rebound d2q9-bgk.exe!main+0x443 - d2g...
b write_values 0.5% d2q9-bgk.exe write_values d2q9-bgk.exe!_start+0x28 - [Un
b accelerate_flow 0.1% d2q3-bgk.exe accelerate_flow
Selected 1 row(s): 47.1%
< | T | |
PO+C-Ce 1s 25 35 as 55 65 7s 8s 95 10s 11s 12s 13s 14s 15s 16s & | Thread
EEe———————————— ————— ——————— ———— ———— & B Running
iduls CPU Time
E CPU Usage
£ Lk CPU Time

CPU Usage

I No filters are apj -Any Process ‘vIAny Thread ‘vIAny Module |vIOnIy userfunctlvlon ‘v-

and double clicking on the blue bar will take you down to a line-by-line profile:

File view Help

-MEEEIEED

Project Navigator

®|Welcome | r000hs | r00lhs) 5
@ Hotspots - Hotspots # @

=] 1fisy plxefpr...
~ @d2q9

& rooohs Analysls Target Analysls Type ;-! Collection Log w m % Top-i duwn Tree

& Source | Assembly | CPU Function/CPU Stack - CPU Ti v |
> @ testL.bak Snu..‘ CPU Time Viewing 4 10of 1> selected stack(s
328 1.2005 (I [100.0%(6.936s of 6.936s) |
329 d2q9-bgk.exe!collision - d2g9-bgk.c
330 d2qg9-bgk.exeltimestep+0x357 - ...
331 d2qg9-bgk.exe!main+0x443 - d2g...
332 J d2qg9-bgk.exe!_start+0x28 - [Un
333 0.130 a
334
335 0.180s i
4336
1337 0.020s
22a
Selected 1 row(s): =
[s] | | 2l
CoQkC-(e 055 1s 155 25 255 3s 355 45 4.55 55 555 65 655 75 T.5s 8s 855 95 955 105 10.5s 1ls 11.5¢& |2 Thread
|_start (0x32a E 8 Running
V] duk CPU Time
E CPU Usage
= ik CPU Time
CPU Usage

' No filters are apj -Any Process ‘ IAny Thread |v IAny Module ‘ - IOnIy user functi| « if

Gethin Williams, 2014. 5 University of

BRISTOL

Profiling Multi-threaded Code

Profiling your multi-threaded code with VTune is very similar to profiling serial code. Compile
your code with the appropriate flags (I'm using OpenMP example code below, so I passed -fopenmp
to gcc), and run as per the batch job submission example above. Once the job is complete, you can
again view the results through the VTune GUI, e.g.:

File View Help

FINEERIEE
Project Navigator

(=]
v @d2qs

rooghs

& welcome

Bl @ Hotspots - Hotspots # @

1/isy

@ Analysis Target Analysis Type| |E Collection Log YL LT Y |+ Top-down Tree

2q9-bgk.c

ntel VTune Amplifier XE 2013

& roaohs
@& roolhs Grouping: Function / Call Stack CPU Function/CPU Stack - CPU Ti v‘
& ro02hs -
& roo3hs Function / Call Stack CPU Timew L4 Module Wizl § 1620 cEiElEnE e
= - \ 50.6% (3.4705 of 6.8605) \
& collision.omp_fn.0 d2q9-bgk.exe collision.omp_fn.0 —
b (G testl.bak » [libgomp.s0.1.0.0] 29.1% (I libgomp.50.1.0.0 [libgomp.s0.1.0.0] d2q9-bgk.exelcollision.omp_fn.0 ...
b propagate 20.2% [d2q9-bgk.exe propagate libgomp.s0.1.0.0![libgomp.s0.1....
P av_velocity 6.9% [l d2q9-bgk.exe av_velocity libpthread-2.12.50!start_thread...
¥ rebound 1.5% | d2q9-bgk.exe rebound libc-2.12.50!clone+0x6¢ - [UNKN...
b write_values 0.4% d2q9-bgk.exe write_values
b collision 0.3% d2g9-bgk.exe collision
;] ¥ accelerate_flow 0.1% d2q9-bgk.exe accelerate_flow
A > 10 file_xsputn 0.1% libc-2.12.50 _lo_file_xsputn
Selected 1 row(s): 41.4%
0| 7| |
PO+C-Ce 05s 1s 155 25 255 35 355 4s 455 55 555 65 655 75 7.55 Bs "& |7 Thread
|_start (0x3f6f E 8 Running
[libgomp.so.1 ks CPU Time
E CPU Usage
£ 1 Wk CPUTime
CPU Usage
[l
n No filters are applied. -Any Process ‘vIAny Thread ‘vIAny Module ‘vIOnIy userfun:‘ vlun ‘v

(If you are using OpenMP and would like to control the number of threads your program uses,
adding export OMP_NUM_THREADS=<num-desired-threads>, to your submission script is
useful.)

The performance, aggregate or per-thread, is seen in the top pane. The lower pane provides a per-
thread trace of CPU usage. You can view the profile information for each individual thread in the
top pane by clicking on that thread in the lower pane.

You can drill down and view the time spent in various OpenMP work-sharing constructs:

File View Help
FINEERIEET)

Project Navigator

o
< E@d2q9

B welcome | rooahs

Bl @ Hotspots - Hotspots # @

Liisy: Intel VTune Amplifier X€ 2013

d2q9-bg...

@ Analysis Target|| © Analysis Type| | Collection Log «; Top-down Tree

& roaohs
& roolhs lm Assembly ‘ e mo®® @ |CPU Function/CPU Stack - CPUTI v |
& roozhs guu_‘ e ” CPU Time ﬁ'E Viewing 4 1of 2 b selected stack(s
g r003hs 300 [50.6% (3.470s of 6.8605) |
b (@ testl.bak d2g9-bgk.exelcollision.omp_fn.0 ...
libgomp.s0.1.0.0![libgomp.so.1....
0.130s libpthread-2.12.50!start_thread...
libc-2.12.s0!clone+0x6¢ - [UNKn...
0.050s
306
307
4308
1309 x + ji].speeds(kkl; 0.330s [§
210
Selected 1 row(s): i
JETI | I3 | T | o
CoQ#-Ce 055 1s Lss 25 255 35 355 45 455 55 555 65 655 s L5s 85 & | Thread
|_start {0x3f6f E [] @8 Running
[libgomp.so.1 j luk CPU Time
E |FIcPu usage
£ 1 ik CPU Time
CPU Usage
[ET | =
I No filters are applied. -Any Process ‘ - IAny Thread ‘ - IAny Module ‘ vIOnIy userfun[‘ - Inn ‘ -

Gethin Williams, 2014. EAKC University of

BRISTOL

In addition to finding hotspots, VTune to can perform many other useful analyses of your threaded
application. You may like to explore results from the locksandwaits and concurrency analyses.

Profiling MPI Code

You can also use VTune to profile MPI applications. In order to do this, you must modify your
submission script so that you are running your program through VTune, which is, in turn, launched
via mpirun or mpiexec. The launch line(s) in your submission script thus form a chain similar to,

e.g.:

nnodes="wc $PBS_NODEFILE | awk '{ print $1 }"
mpiexec -np $nnodes amplxe-cl -quiet -collect hotspots -result-dir r001hs ./my-mpi-prog.exe

where, mpirun/mpiexec and amplxe-cl take their usual options.

When the job is complete, VTune will create separate results folders for each rank of the MPI job.
For example, the sub-directories created by the above launch line will be:

r001hs.<rank>

where, <rank>, will be filled out accordingly. You can then use the VTune GUI to inspect the
profile for any chosen rank.

For those running hybrid MPI/threaded programs, it will be apparent from the examples seen so far
that profile information for all the threads associated with a given rank can be inspected.

If your MPI cohort is large and you would like to only collect statistics for a single process, then
you can use the host specific syntax of various process managers so that only a subset of your
processes are launched through VTune. (Look for more information on, e.g. the '--host' option for
OpenMPI and the use of 'argument sets' for the HYDRA process manager, used by e.g. the
MVAPICH2 and Intel MPI libraries.)

Summary

I have deliberately not attempted to document the full feature set of Intel's VTune profiler. Rather, I
have focused on providing a quick-start guide to help you start using VTune on BlueCrystal Phase
3. VTune is an excellent tool and I hope I have given a flavour of its versatility. Like any new tool,
starting out with VTune has an associated learning curve, but I hope the examples above help you
along that path. Profiling your application (and re-profiling, as you develop it) is key to identifying
inefficient portions of code and hence accelerating your research.

Gethin Williams, 2014. 7 A University of

AL BRISTOL

i

	ACRC How-To: Using Intel VTune Amplifier on BlueCrystal Phase 3
	Introduction
	Preparing your application
	Performing a Hotspot Analysis in Batch Mode
	Profiling Multi-threaded Code
	Profiling MPI Code
	Summary

