
ACRC How-To: Using Intel VTune Amplifier on BlueCrystal
Phase 3

Table of Contents
ACRC How-To: Using Intel VTune Amplifier on BlueCrystal Phase 3..1

Introduction..1
Preparing your application...1
Performing a Hotspot Analysis in Batch Mode...1
Profiling Multi-threaded Code...6
Profiling MPI Code..7
Summary..7

Introduction

This document is not intended to be a comprehensive introduction to using performance analysis
software, or a tutorial on using Intel's Vtune Amplifier. Rather it is a practical guide to getting
started with the VTune profiler on BlueCrystal Phase 3.

Profiling applications such as VTune are key tools for any researcher who is serious about not
waiting over long for their results. They help us find the poorly performing parts of our
applications and so help us to identify bottlenecks in our work, which we can then fix.

A comprehensive collection of tutorials and other documentation about VTune, is at:
• http://software.intel.com/en-us/intel-vtune-amplifier-xe

In order to access VTune, you will need to load the following module (preferably in your .bashrc):

Preparing your application

You should compile your code with all your usual optimisations for speed (-O3 etc.), but you should
also instrument your executable with extra symbolic information using (typically) -g. This will
allow you to see the source code (rather than the assembly code) when viewing the line-by-line
profile.

Performing a Hotspot Analysis in Batch Mode

Much of the tutorial material for VTune focusses on the tool's graphical front-end. However, this
implies profiling your code in interactive mode, which is in tension with the use of a scheduler to
submit jobs to the compute nodes of BlueCrystal. Happily, however, we can easily use the
command line interface to VTune. I will show you how to use VTune in batch mode and then how
to subsequently inspect the results of the profile (using theVTune GUI).

VTune can perform many different analyses of your code. In this document, I will demonstrate the
use of the most popular—a hotspot analysis. This will tell you which parts of your program took
the longest time to run.

I will start by showing you how to profile a single-threaded executable, but will also walk through
how you can profile multi-threaded and MPI programs.

Gethin Williams, 2014. 1

module add intel-cluster-studio/vtune/vtune-2013

http://software.intel.com/en-us/intel-vtune-amplifier-xe

Once I had built my executable, I was able to submit my profiling run to the queuing system with
only a few small additions to my submission script, which are shown below.

I added module add intel-cluster-studio/vtune/vtune-2013 , to ensure that I had access to VTune
on the compute node, and then prefixed my usual launch command with amplxe-cl -quiet -collect
hotspots -result-dir r001hs, where:

• amplxe-cl launches the command line interface to VTune,
• -quiet suppresses extraneous output,
• -collect hotspots specifies the kind of analysis to perform, and
• -result-dir r001hs indicates that the profile results will be saved in a sub-directory

of the current directory called r001hs. Note that this dir will not be
overwritten by a subsequent call to VTune, so you will need to
either delete the directory are provide another, e.g. r002hs, r003hs, if
you are performing a sequence of profile runs.

My submission script looked like:
After the job has run, you have the choice of inspecting the result using either the command line
interface again, or the GUI. A simple, top-level summary report can be produced by typing:

Gethin Williams, 2014. 2

#!/bin/bash

#PBS -N D2Q9
#PBS -o OUT
#PBS -l nodes=1:ppn=1,walltime=00:01:00
#PBS -m abe

#! application name
application="d2q9-bgk.exe"
#! Run options for the application
options="input_300x200.params obstacles_300x200_circ.dat"
load the VTune module
module add intel-cluster-studio/vtune/vtune-2013

#! change the working directory (default is home directory)
cd $PBS_O_WORKDIR

echo Running on host `hostname`
echo Time is `date`
echo Directory is `pwd`
echo PBS job ID is $PBS_JOBID
echo This jobs runs on the following machines:
echo `cat $PBS_NODEFILE | uniq`

#! Profile the executable
amplxe-cl -quiet -collect hotspots -result-dir r001hs $application $options

amplxe-cl -report hotspots -r r001hs

To launch the GUI, type (remember to enable X11 forwarding when connecting to the cluster):

and, after the splash screen, you will see the welcome screen:

Gethin Williams, 2014. 3

amplxe-gui

By choosing File | Open | Result, you can proceed to selecting the profile results that you would
like to view:

and from there to viewing the top-level results of the hotspot analysis:

Gethin Williams, 2014. 4

The Bottom-up tab shows you a breakdown by function:

and double clicking on the blue bar will take you down to a line-by-line profile:

Gethin Williams, 2014. 5

Profiling Multi-threaded Code

Profiling your multi-threaded code with VTune is very similar to profiling serial code. Compile
your code with the appropriate flags (I'm using OpenMP example code below, so I passed -fopenmp
to gcc), and run as per the batch job submission example above. Once the job is complete, you can
again view the results through the VTune GUI, e.g.:

(If you are using OpenMP and would like to control the number of threads your program uses,
adding export OMP_NUM_THREADS=<num-desired-threads>, to your submission script is
useful.)

The performance, aggregate or per-thread, is seen in the top pane. The lower pane provides a per-
thread trace of CPU usage. You can view the profile information for each individual thread in the
top pane by clicking on that thread in the lower pane.

You can drill down and view the time spent in various OpenMP work-sharing constructs:

Gethin Williams, 2014. 6

In addition to finding hotspots, VTune to can perform many other useful analyses of your threaded
application. You may like to explore results from the locksandwaits and concurrency analyses.

Profiling MPI Code

You can also use VTune to profile MPI applications. In order to do this, you must modify your
submission script so that you are running your program through VTune, which is, in turn, launched
via mpirun or mpiexec. The launch line(s) in your submission script thus form a chain similar to,
e.g.:

where, mpirun/mpiexec and amplxe-cl take their usual options.

When the job is complete, VTune will create separate results folders for each rank of the MPI job.
For example, the sub-directories created by the above launch line will be:

where, <rank>, will be filled out accordingly. You can then use the VTune GUI to inspect the
profile for any chosen rank.

For those running hybrid MPI/threaded programs, it will be apparent from the examples seen so far
that profile information for all the threads associated with a given rank can be inspected.

If your MPI cohort is large and you would like to only collect statistics for a single process, then
you can use the host specific syntax of various process managers so that only a subset of your
processes are launched through VTune. (Look for more information on, e.g. the '--host' option for
OpenMPI and the use of 'argument sets' for the HYDRA process manager, used by e.g. the
MVAPICH2 and Intel MPI libraries.)

Summary

I have deliberately not attempted to document the full feature set of Intel's VTune profiler. Rather, I
have focused on providing a quick-start guide to help you start using VTune on BlueCrystal Phase
3. VTune is an excellent tool and I hope I have given a flavour of its versatility. Like any new tool,
starting out with VTune has an associated learning curve, but I hope the examples above help you
along that path. Profiling your application (and re-profiling, as you develop it) is key to identifying
inefficient portions of code and hence accelerating your research.

Gethin Williams, 2014. 7

nnodes=`wc $PBS_NODEFILE | awk '{ print $1 }'`
mpiexec -np $nnodes amplxe-cl -quiet -collect hotspots -result-dir r001hs ./my-mpi-prog.exe

r001hs.<rank>

	ACRC How-To: Using Intel VTune Amplifier on BlueCrystal Phase 3
	Introduction
	Preparing your application
	Performing a Hotspot Analysis in Batch Mode
	Profiling Multi-threaded Code
	Profiling MPI Code
	Summary

