
ACRC How-To: Linking to Libraries (on Linux)

Introduction

The process of creating an executable program has three steps:
• Preprocessing: Source code manipulation by file & conditional inclusion and macro

substitution.
• Compilation: Transformation of (human readable) source code into (binary) object code.
• Linkage: Combination of one or more files of object code to create an executable program.

For convenience, several object files can be collected together, prior to linkage, to form libraries.
This offers the programmer several advantages. Notably:

• Libraries need only be compiled once and thereafter may be used many times. This can
significantly shorten the compilation time for any executable using the library.

• A programmer can make use of code which someone else has invested time in writing,
debugging and optimising. Given an API (Application Programmer Interface) we can use
libraries 3rd party libraries with little or no knowledge of the details of their implementation.

There are two forms of linkage:
• Static: All symbols are resolved at link-time. The effect of this is that all objects are copied

and combined to form a stand-alone executable.
• Dynamic: Some symbols are left unresolved until run-time. In practice, this means that the

executable must locate and complete linkage to any objects when it is run.
There are pros and cons for both approaches. Statically linked executables are large, but you can be
certain that all libraries are present and of the correct version. Dynamically linked executables are
smaller and can be updated on-the-fly (to maintain operating system security, for example), but
their dependencies are not guaranteed to be satisfied at run-time.

Libraries suitable for these two different forms of linkage are prepared differently. For dynamic
linkage the libraries are called shared-objects and are given the file extension .so. For static
linkage the files are called archives and are given the .a file extension.

Examples

In this section I will demonstrate how to create an executable which calls a routine from a library. I
will show examples—in both Fortran and C—of calling LAPACK's dgesv routine (to solve a linear
system of equations via the method of LU decomposition). The examples will use GNU compilers.
By default, dynamic linkage will be preferred by the compiler and so I will demonstrate that process
first.

Dynamic Linkage using OpenBLAS

Let's suppose that I have a version of OpenBLAS (http://xianyi.github.com/OpenBLAS) installed
under my home directory and two sample programs; dgesv.f90 and dgesv.c. (See the appendix for
more details of the source code and how to compile and install the library.) I can compile and link
either of these programs to the library as shown below.

Gethin Williams 2013

http://xianyi.github.com/OpenBLAS

The OpenBLAS build creates both shared-objects and archives:
% ls $HOME/openblas/0.2.5/lib
libopenblas.a libopenblas_nehalemp-r0.2.5.a libopenblas_nehalemp-
r0.2.5.so libopenblas.so libopenblas.so.0

Fortran
gfortran dgesv.f90 -L$HOME/openblas/0.2.5/lib -lopenblas \
-o dgesv-fort-openblas.exe

C
gcc dgesv.c -I$HOME/openblas/0.2.5/include \
-L$HOME/openblas/0.2.5/lib -lopenblas -o dgesv-c-openblas.exe

Modern compilers can perform both the compile and link steps and the above commands show both
these steps done in a single invocation of the respective compilers.

Notice that paths to directories containing library files are given with the -L option and the names
of particular libraries to link to are given with the -l option (minus the lib prefix and any file
extension).

Common Problems

As stated above, dynamic linkage will be preferred by the compiler. At this point, the executable
cannot be run if the requisite shared-objects cannot be located at run time. For example:

% ./dgesv-fort-openblas.exe
./dgesv-fort-openblas.exe: error while loading shared libraries:
libopenblas.so.0: cannot open shared object file: No such file or
directory

We can check whether the dependencies of a dynamically linked executable can be located using
the ldd command:

% ldd dgesv-fort-openblas.exe
linux-vdso.so.1 => (0x00007ffff97ff000)
libopenblas.so.0 => not found
libgfortran.so.3 => /usr/lib64/libgfortran.so.3

(0x0000003f8e400000)
libm.so.6 => /lib64/libm.so.6 (0x00000033c9800000)
libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x0000003f8f200000)
libc.so.6 => /lib64/libc.so.6 (0x00000033c9400000)
/lib64/ld-linux-x86-64.so.2 (0x00000033c9000000)

Corroborating the run-time error, we see that libopenblas.so.0 cannot be found, in this case.

This situation can be addressed in one of two ways. The first is to augment your
LD_LIBRARY_PATH environment variable. We can do this in the BASH shell using:

% export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/openblas/0.2.5/lib
(Where it is best to place this command in your ~/.bashrc file, if you intend on using the library
regularly).

Gethin Williams 2013

Another approach is to tell the executable where it can find the shared-object come run-time. In this
case, we augment our compile-and-link command with an option of the form
-Wl,-rpath,/path/to/lib:

%gcc dgesv.c -I$HOME/openblas/0.2.5/include -L$HOME/openblas/0.2.5/lib \
-Wl,-rpath,$HOME/openblas/0.2.5/lib -lopenblas -o dgesv-c-openblas.exe

In both cases, if we re-run the ldd command, we will see that all the dependencies have been
resolved:

% ldd dgesv-c-openblas.exe
linux-vdso.so.1 => (0x00007fff199ff000)
libopenblas.so.0 =>

/home/ggdagw/openblas/0.2.5/lib/libopenblas.so.0 (0x00002ae93bbf1000)
libc.so.6 => /lib64/libc.so.6 (0x00000033c9400000)
libm.so.6 => /lib64/libm.so.6 (0x00000033c9800000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00000033ca000000)
libgfortran.so.3 => /usr/lib64/libgfortran.so.3

(0x0000003f8e400000)
/lib64/ld-linux-x86-64.so.2 (0x00000033c9000000)

and the executable will run successfully:

% ./dgesv-c-openblas.exe
-15.000000
8.000000
2.000000

Static linkage using Netlib's LAPACK

For this example, I'll use the reference distribution of LAPACK from Netlib
(http://www.netlib.org/lapack), as it builds only archive files by default.

Fortran
gfortran dgesv.f90 -L$HOME/lapack/lapack-3.4.2 -llapack -lrefblas \
-o dgesv-fort-netlib.exe

C
gcc dgesv.c -I$HOME/lapack/lapack-3.4.2/lapacke/include \
-L$HOME/lapack/lapack-3.4.2 -llapacke -llapack -lrefblas -lgfortran \
-o dgesv-c-netlib.exe

liblapacke.a contains the LAPACK C interface. Notice that we must also link our executable
the gfortran library (as it contains routines injected by the compiler into the other archive files).

We can verify that static linkage has occurred by comparing file sizes. Statically-linked executable
files are larger than their dynamically-linked counterparts:

% ls -lh dgesv-fort-*.exe
-rwxr-xr-x 1 ggdagw isys 29K Mar 25 16:47 dgesv-fort-netlib.exe
-rwxr-xr-x 1 ggdagw isys 9.4K Mar 22 15:41 dgesv-fort-openblas.exe

Gethin Williams 2013

http://www.netlib.org/lapack

Common Problems

The successful linkage above relies upon the given order of the libraries. In the abstract case, if a
library A depends upon symbols defined in library B, then A must appear first in the list supplied to
the linker. In our case, LAPACK routines call BLAS routines and so liblapack.a must be
appear before librefblas.a in the given list. If we disrupt that ordering we will precipitate an
error:

% gfortran dgesv.f90 -L$HOME/lapack/lapack-3.4.2 -lrefblas -llapack -o
dgesv-fort-netlib.exe
/home/ggdagw/lapack/lapack-3.4.2/liblapack.a(dgetrf.o): In function
`dgetrf_':
dgetrf.f:(.text+0x3f3): undefined reference to `dtrsm_'
dgetrf.f:(.text+0x4d0): undefined reference to `dgemm_'
/home/ggdagw/lapack/lapack-3.4.2/liblapack.a(dgetrs.o): In function
`dgetrs_':
dgetrs.f:(.text+0x18b): undefined reference to `dtrsm_'
dgetrs.f:(.text+0x1fd): undefined reference to `dtrsm_'
dgetrs.f:(.text+0x375): undefined reference to `dtrsm_'
dgetrs.f:(.text+0x3e7): undefined reference to `dtrsm_'
/home/ggdagw/lapack/lapack-3.4.2/liblapack.a(dgetf2.o): In function
`dgetf2_':
dgetf2.f:(.text+0x1cb): undefined reference to `idamax_'
dgetf2.f:(.text+0x21d): undefined reference to `dswap_'
dgetf2.f:(.text+0x38c): undefined reference to `dger_'
dgetf2.f:(.text+0x3f0): undefined reference to `dscal_'
collect2: ld returned 1 exit status

Another problem commonly encountered is mismatched symbols. When a source code file is
compiled and turned into object code, the names of routines are 'mangled'. They are typically
decorated with leading or trailing underscore (which we can see in the last example). Unfortunately
different compilers often use different mangling strategies and so libraries compiled with compiler
A are not guaranteed to link with other objects compiled with compiler B. In general it is highly
advisable to ensure that all objects given to the linker have been prepared using the same compiler.

If you receive ' undefined reference' errors, and have passed the linker all the required
libraries, then different name-mangling is a likely source of the problem. We can simulate the use
of different compiler by instructing gcc to adopt a different name-mangling strategy for the
program code compared to that used when creating the library:

% gcc dgesv.c -fleading-underscore -I$HOME/lapack/lapack-
3.4.2/lapacke/include -L$HOME/lapack/lapack-3.4.2 -llapacke -llapack
-lrefblas -lgfortran -o dgesv-c-netlib.exe
/usr/lib/gcc/x86_64-redhat-linux/4.4.6/../../../../lib64/crt1.o: In
function `_start':
(.text+0x20): undefined reference to `main'
/tmp/ccaognV1.o: In function `_main':
dgesv.c:(.text+0x11a): undefined reference to `_LAPACKE_dgesv'
dgesv.c:(.text+0x146): undefined reference to `_printf'

Gethin Williams 2013

Forcing Static Linkage

If a library build contains both shared-objects and archives, we can force static linkage with the
-static flag.

Fortran
% gfortran dgesv.f90 -L$HOME/openblas/0.2.5/lib -lopenblas -lpthread \
-lgfortran -static -o dgesv-fort-openblas-static.exe

C
% gcc dgesv.c -I$HOME/openblas/0.2.5/include \
-L$HOME/openblas/0.2.5/lib -lopenblas -lpthread -lm -static \
-o dgesv-c-openblas-static.exe

Notice, that we have had to augment the list of libraries passed to the linker (-lpthread
-lgfortran). If the corresponding archives are not found on your system, you will receive an
error. Upon successful linkage, when we examine the executable using ldd we see:

% ldd dgesv-fort-openblas-static.exe
not a dynamic executable

Gethin Williams 2013

Appendix

Example code

dgesv.f90:

Gethin Williams 2013

Program DirectSolve

 ! LAPACK
 ! Perform a direct solve for the equation A*x=b, using LU decomposition.
 ! A is a general, double precision matrix.
 implicit none

 ! declarations, NB double precision
 integer, parameter :: N = 3
 integer, parameter :: LDA = N ! leading dimension of A
 integer, parameter :: LDB = N ! leading dimension of B
 integer, parameter :: NRHS = 1 ! no. of RHS, i.e columns in b
 integer, dimension(N) :: IPIV
 integer :: INFO
 integer :: ii
 logical, parameter :: verbose = .false.
 real(kind=8), dimension(LDA,N) :: A ! LDAxN matrix
 real(kind=8), dimension(LDB,NRHS) :: B ! LDBxNRHS matrix

 ! insert values into matrix A:
 ! (1 3 -2)
 ! (3 5 6)
 ! (2 4 3)
 A(1,1) = 1.0d+0
 A(1,2) = 3.0d+0
 A(1,3) = -2.0d+0
 A(2,1) = 3.0d+0
 A(2,2) = 5.0d+0
 A(2,3) = 6.0d+0
 A(3,1) = 2.0d+0
 A(3,2) = 4.0d+0
 A(3,3) = 3.0d+0

Gethin Williams 2013

 ! insert values into matrix B:
 ! (5)
 ! (7)
 ! (8)
 B(1,1) = 5.0d+0
 B(2,1) = 7.0d+0
 B(3,1) = 8.0d+0

 ! solve (using LU decomposition) using LAPACK's DGESV routine.
 ! NB the known vectors B will be exchanged, in place, with the
 ! solution vectors X, on exit.
 call dgesv(N, NRHS, A, LDA, IPIV, B, LDB, INFO)

 ! check the value of info
 if (INFO .ne. 0) then
 write(*,*) 'ERROR calling DGETRF'
 stop
 endif

 ! Print the result vector X.
 ! It should be:
 ! (-15)
 ! (8)
 ! (2)
 do ii=1,LDB
 write(*,*) B(ii,1)
 end do

if (verbose) then
 ! Also print out A, the encoding of the LU decomposition:
 write (*,*) ''
 write (*,*) 'LU decomposition as encoded in matrix A:'
 do ii=1,N
 write(*,*) A(ii,:) ! all cols for a given row
 end do

 write (*,*) ''
 write (*,*) '..and the IPIV vector:'
 write (*,*) IPIV
 end if

end Program DirectSolve

degsv.c:

How to build the libraries

OpenBLAS:

% cd $HOME
% mkdir openblas
% cd openblas
% wget http://github.com/xianyi/OpenBLAS/tarball/v0.2.5 \
-O openblas.tar.gz
% tar -xzf
% cd xianyi-OpenBLAS-93dd133
% make FC=gfortran
% make PREFIX=$HOME/openblas/0.2.5 install

Netlib's LAPACK:

% cd $HOME
% mkdir lapack
% cd lapack
% wget http://www.netlib.org/lapack/lapack-3.4.2.tgz
% tar -xzf lapack-3.4.2.tgz
% cd lapack-3.4.2
% cp make.inc.example make.inc
% make lapacklib blaslib
% cd lapacke; make

Gethin Williams 2013

#include <stdio.h>
#include <lapacke.h>

int main (int argc, const char * argv[])
{
 double a[3*3] = {1,3,2,3,5,4,-2,6,3};
 double b[3*1] = {5,7,8};
 lapack_int info,n,lda,ldb,nrhs,ipiv[3];
 int ii;

 n = 3;
 nrhs = 1;
 lda = 3;
 ldb = 3;

 info = LAPACKE_dgesv(LAPACK_COL_MAJOR,n,nrhs,a,lda,ipiv,b,ldb);

 for(ii=0; ii<n; ii++)
 {
 printf("%lf\n",b[ii]);
 }
 return(info);
}

http://www.netlib.org/lapack/lapack-3.4.2.tgz

SLATEC:

Not referenced in the above examples, I will additionally describe how to build the SLATEC
(http://www.netlib.org/slatec/) library:

% cd $HOME
% mkdir slatec
% wget http://www.netlib.org/slatec/slatec_src.tgz
% tar -xzf slatec_src.tgz
% cd src
% wget http://www.netlib.org/slatec/slatec4linux.tgz
% tar -xzf slatec4linux.tgz
% export FC=gfortran
% make

Following this procedure you will have built the following archive and shared object:

• $HOME/slatec/src/static/libstatic.a
• $HOME/slatec/src/dynamic/libstatic.so

Gethin Williams 2013

http://www.netlib.org/slatec/slatec4linux.tgz
http://www.netlib.org/slatec/slatec_src.tgz

	ACRC How-To: Linking to Libraries (on Linux)
	Introduction
	Examples
	Dynamic Linkage using OpenBLAS
	Static linkage using Netlib's LAPACK
	Forcing Static Linkage

	Appendix
	Example code
	How to build the libraries

