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Introduction

The majority of compute nodes in BlueCrystal phase 3 contain 64GB of RAM and 16 processor 
cores.  That works out at 4GB/core.  This is fine for the majority of jobs that run on the cluster. 
However there will be some jobs that require more memory per core.  To accommodate these jobs, 
BlueCrystal phase 3 also contains a number of large-memory nodes, each with 256GB of RAM. 
These nodes are accessed via the himem queue. (Type qstat -q to see all available queues.)

Ordinarily this is where provision for large-memory jobs would stop.  However, BlueCrystal phase 
3 can support jobs with even larger memory footprints using a technology called ScaleMP.  This 
product allows us to combine nodes together such that they appear to be a single node but with a 
memory capacity equal to the combined RAM of the subsumed nodes.  For example, taking 4 of the 
large-memory nodes and combining them together yields a node with an apparent RAM of around 
1TB (the total will be a little less than 4 x 256GB due to some overheads).  Virtual large memory 
nodes created using ScaleMP can be accessed via the vsmp queue.  At the date of writing the sSMP 
is configured to have ~2.5TB of RAM.

In the following sections I'll describe how to run large-memory jobs (serial, multi-threaded and 
MPI), complete with example submission scripts, on each of the 3 types of node—standard, high-
memory and vSMP.

Running Large Memory Jobs on Standard Nodes

As mentioned in the introduction, the standard compute nodes in BlueCrystal phase 3 contain 64GB 
of RAM and 16 cores, giving a nominal 4GB of RAM for each core.  I say nominal, however, as the 
RAM in a single node is a shared resource for all the cores in that node and there are no barriers 
segregating the memory “belonging” to one core from that of another.  In the absence of any such 
partitioning, we must all be good citizens and request the resource that we actually need to run our 
jobs.  The upside to this arrangement is flexibility.  For example, we can arrange for a core to use 
more than 4GB by creating an appropriate request.
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Serial Jobs

Imagine that we have a serial job which we want to run on a standard compute node.  The program 
does not require more than 4GB of RAM.  In this case, the appropriate resource to request in our 
submission script is a single core:

Now, let's imagine that we have another serial job.  This time the program requires 8GB of RAM in 
order to run successfully.  To accommodate it, we must modify our resource request.  This time we 
will request 2 cores on a given node:

Note that we still run a serial job, which will run on a single core.  The resource request that we 
lodge with the queuing system and the actual number of cores that we run on are separate things and 
are both under our control.  By requesting two cores, we have secured ourselves access to two cores 
worth of RAM—8GB in total.  Anyone else running a job on the same node as your job will be able 
to enjoy the benefits of a maintained ratio of 4GB/core.  The same logic applies in 4GB chunks up 
to the 64GB total RAM for a standard node; if you need 32GB, request 8 cores; if you need 64GB, 
request the full node.

Multi-threaded Jobs

The logic of resource requests for serial jobs applies in exactly the same way for multi-threaded 
jobs.  Let's imagine that we have an OpenMP program that requires 8GB per thread and that we 
wish to use 2 threads.  In this case we'll need to formulate our resource request such that we reserve 
16GB of RAM—four cores worth.  We can control the number of threads spawned by setting the 
OMP_NUM_THREADS  environment variable in our submission script:
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#!/bin/bash
#PBS -l nodes=1:ppn=1
…
./my_serial_prog.exe

#!/bin/bash
#PBS -l nodes=1:ppn=2
…
./my_serial_prog.exe

#!/bin/bash
#PBS -l nodes=1:ppn=4
…
export OMP_NUM_THREADS=2
./my_openmp_prog.exe



Similarly, if we needed 16GB/thread, we could request the full node and run, 4 threads:

MPI Jobs

In principle, with some deft manipulation of the machine file created in your submission script, you 
can apply the same control over the amount of RAM available to each of the processes in your MPI 
job.  However, in the vast majority of cases this would be an unnecessary complication.  This is 
because MPI programs are typically designed around a principle of data domain decomposition. 
Each of the processes in an MPI job typically stores and works on a fraction of the overall data.  For 
example, each MPI rank may only be concerned with a portion of the cells contained within a 
larger, overall grid.  Thus, if you find that your MPI job is exceeding the RAM of a standard node, 
you can usually remedy this by simply requesting more nodes in your submission script and leaving 
the nodes fully populated with processes.

Checking How Much Memory is Used by Your Job

It is important that we check how much memory our jobs are actually using for two reasons:

• We don't want to encroach on memory that is required by other peoples jobs, and
• Exceeding the limits of RAM on a particular node will result in very poorly performing 

processes.
Once a job is running on the cluster, we can see how much memory it is using, and how well it is 
running using the top command. First, we must discover which node(s) a job is running on.  You 
can use:

replacing <your-username> with, in my case ggdagw, to see what jobs you have running on the 
cluster.

Then you can use:

replacing <jobid> with an appropriate value for one of your jobs, to find which node(s) it is running 
on.  For example:

indicates a job with allocated 16 cores, all on the same node, namely node46-009.
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#!/bin/bash
#PBS -l nodes=1:ppn=16
…
export OMP_NUM_THREADS=4
./my_openmp_prog.exe

qstat -n <jobid>

qstat -u <your-username>

[ggdagw@newblue2 ~]$ qstat -n 832192 
...
   node46-009/0+node46-009/1+node46-009/2+node46-009/3+node46-009/4 
   +node46-009/5+node46-009/6+node46-009/7+node46-009/8+node46-009/9 
   +node46-009/10+node46-009/11+node46-009/12+node46-009/13+node46-009/14 
   +node46-009/15



Then you can ssh to the listed node(s) and run top. For example:  

In this first case, I am running a serial executable called foo.exe.  The program (written in C) 
allocates a single, large array of integers and randomly accesses various cells in that array.  We can 
see that the program uses approximately 2GB (out of a total of 64GB—I requested the whole node). 
We can see that the program is performing well as the %CPU column is 100, indicating the that 
program is able to utilise the CPU to the maximum.

Next, I increased the memory demands of the program, and allocated 80GB of memory.  Running 
top a second time, we see:

80GB is well over the 64GB limit of a standard node and we can see that the performance of the 
program is significantly degraded.  In this case, it can only utilise 25% of the CPU.  Any program in 
this situation will run very slowly and consequently will take much more time to complete than 
another which is able to better utilise the CPU.

(The difference between the VIRT and RES columns shows that the operating system has done its 
best to limit the amount of memory required by the process.  Despite the operating system's best 
efforts, the performance of the process is very poor.)

NUMA and Processor Affinity

At this point it is useful to introduce the concept of processor affinity, where a thread or process 
may be assigned to a particular processor (or range of processors).  Ordinarily the operating system 
is at liberty to schedule threads or processes on the processor core of its pleasing.  Indeed, the 
threads or processes can even be moved from core to core as the program progresses, if the 
operating system deems it.  This behaviour can be fine for some programs, but can severely limit 
the performance of others.

The reason why some programs can perform badly when subject to arbitrary core selection is down 
to a memory design principle called NUMA, which stands for Non-Uniform Memory Access. 
Most modern computers attempt to avoid memory access bottlenecks by adopting a NUMA design. 
A consequence, however, is that portions of the overall memory can be more readily accessed by 
some cores than by others.  Since memory access is often a significant factor in the performance of 
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Tasks: 475 total,   2 running, 473 sleeping,   0 stopped,   0 zombie 
Cpu(s):  6.5%us,  0.0%sy,  0.0%ni, 93.5%id,  0.0%wa,  0.0%hi,  0.0%si,  0.0%st 
Mem:  66046116k total,  8519432k used, 57526684k free,   217720k buffers 
Swap: 11999224k total,    19828k used, 11979396k free,  5230276k cached 

   PID   USER      PR  NI  VIRT   RES  SHR S %CPU %MEM    TIME+  COMMAND           
 39043 ggdagw    20   0    1911m 1.9g  320   R 100.0   3.0            0:19.19  foo.exe
... 

Tasks: 475 total,   2 running, 473 sleeping,   0 stopped,   0 zombie 
Cpu(s):  0.0%us,  1.7%sy,  0.0%ni, 93.1%id,  5.2%wa,  0.0%hi,  0.0%si,  0.0%st 
Mem:  66046116k total, 47509104k used, 18537012k free,     2552k buffers 
Swap: 11999224k total,  4147976k used,  7851248k free,    82268k cached 

   PID   USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND 
 44801 ggdagw    39  19   80.0g  44g  320   R  25.5     70.1          0:18.38   foo.exe 
... 



a program the matching of cores to banks of memory can be crucial for best performance.  In cases 
where some cores share a level of cache, and where the program has a particularly high memory 
bandwidth requirement, it can also be beneficial to spread threads or processes out over a sparsely 
utilised pool of cores.

Happily processor affinity can be set using one of several tools at our disposal.  I will introduce one 
of several options in turn.

The first tool is called taskset and is available for most Linux distributions.  You can use it to pin 
threads (or processes) to cores.  From a portability perspective, it has the advantage of being widely 
available but has the disadvantage that cores IDs must be explicitly specified—what if you switched 
machines and the core topology or core count was different?

You can discover the how core IDs map onto the physical makeup of you machine by consulting 
/proc/cpuinfo.  In that file, physical id refers to the socket.  The standard compute nodes on 
BlueCrystal phase 3 have two sockets, each supporting 8 cores—16 cores in total.  Cores  0-7 are on 
one socket and 8-15 are on the other.  (Note that the login nodes of the cluster also have two sockets 
and 16 cores, but that the assignment is different—even core IDs on one socket, odd IDs on the 
other.)

As an example of its use, in the submission script below we specify that the 8 threads must be run 
on cores 0 through to 7 (i.e. resident on a single socket):

Alternatively, we could specify that two threads must be run on cores located on different sockets:

A word of caution, however.  When using taskset we must explicitly pin threads (or processes) 
to individual cores.  If another user on the same machine also explicitly sets processor affinity, 
then there is a risk that the operating system will have no choice but to schedule two threads 
on the same core, with a resulting catastrophic loss of performance, which would nullify again 
gains that you had made in aligning processors and memory banks.

Fortunately, there is a Linux portable alternative to explicitly pinning threads to cores.  numactl 
allows you to bind threads to sockets.  This looser arrangement gives the operating system scope to 
load balance.  (You can still pin explicitly to cores using numactl, should you wish.)
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#!/bin/bash
#PBS -l nodes=1:ppn=8
…
export OMP_NUM_THREADS=8
taskset -c 0-7 ./my_openmp_prog.exe

#!/bin/bash
#PBS -l nodes=1:ppn=2
…
export OMP_NUM_THREADS=2
taskset -c 0,8 ./my_openmp_prog.exe



A portion of a submission script using numactl instead of to place threads on a single socket (ID 0) 
and to ensure that only the memory directly associated with that socket is used would look like:

numactl --hardware is a useful command for discovering the core and socket topology of a 
machine.  Both taskset and numactl have useful man pages.

A third way to specify thread affinity is the use of the KMP_AFFINITY environment variable. 
This can only be used with OpenMP code compiled with an Intel compiler, however.  By 
setting the value of the environment variable appropriately, you have the option to explicitly pin to 
cores, or to specify looser patterns of affinity, such as a compact grouping or to scatter widely.

An example of requesting that threads be placed as close together as possible using 
KMP_AFFINITY in a submission script is:

To scatter the threads evenly over the whole machine you would use:
• export KMP_AFFINITY=scatter,verbose

Or to explicitly pin to cores:
• export KMP_AFFINITY='proclist=[0,2,4,6],explicit,verbose'

Adding verbose to the option list is useful if you want to see where the threads were run.

OpenMP code compiled using the GNU compiler can use a similar environment variable to pin 
explicitly to cores, e.g.:

• export GOMP_CPU_AFFINITY='0,2,4,6'
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#!/bin/bash
#PBS -l nodes=1:ppn=8
…
export OMP_NUM_THREADS=8
numactl --cpunodebind=0 --membind=0 ./my_openmp_prog.exe

#!/bin/bash
#PBS -l nodes=1:ppn=8
…
export OMP_NUM_THREADS=8
export KMP_AFFINITY=compact,verbose
./my_openmp_prog.exe



Running Large Memory Jobs on High Memory Nodes

BlueCrystal phase 3 contains 16 nodes high-memory nodes, each of which has 256GB of RAM. 
You can use these nodes if your program cannot be run on the standard compute nodes.  However, 
be aware that since there relatively few of them (compared to more than 300 standard compute 
nodes) your jobs on the high-memory nodes may be queued for longer as the competition for them 
may be stronger.

All of the details from the previous section on standard compute nodes—resource requests, 
controlling the number of threads, processor affinity etc.—are transferable to jobs run on the high-
memory nodes.  The only difference is that the jobs should be submitted to the himem queue.  A 
submission script for a serial job which required a full 256GB of would look like:

If you are compelled to use the high-memory nodes due to the RAM requirements of your program 
but are concerned about queuing time, it could be worthwhile searching for alternative software that 
makes more intelligent use of standard compute nodes.  The mpiBLAST program is an example of 
some software that can efficiently perform a typically high-memory task on generic computational 
hardware.

Running Large Memory Jobs on a vSMP Node

Using ScaleMP technology, we can combine high-memory nodes in BlueCrystal phase 3 to create 
virtual nodes with even larger memories.  For example, four high-memory nodes can be combined 
to create a node with around 1TB of RAM, twelve would yield a vSMP with ~3TB of memory.  The 
vSMP is a very flexible device.  It can be used to run serial jobs, multi-threaded jobs and even MPI 
jobs, should the need arise.  The VSMP can support multiple jobs running at the same time.  The 
queuing system will apportion only as much of the vSMP as is requested in the submission script. 
Example submission scripts are given in the sections below.  However, since we have only one 
vSMP, competition for this resource may be stronger than for other nodes in the cluster.

Serial Jobs

The simplest scenario that I can think of is the need to run a serial program with a very large 
memory requirement.   Below is an example submission script:
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#!/bin/bash
#PBS -q himem
#PBS -l nodes=1:ppn=16
…
./my_serial_prog.exe



Looking at each of the lines relevant to our very large memory job:
• The vSMP nodes have their own queue and #PBS -q vsmp ensures that the job is submitted 

to the correct queue.
• Although we are only using one processor in this case, we must remember to request 

sufficient memory to run the job.  The smallest unit of resource we can reserve on a vSMP 
node is a socket, which supports 8 cores for BlueCrystal phase 3.  This equates to 128GB of 
RAM.  You should request 16 cores for 256GB of RAM, 32 cores for 512GB of RAM etc. 
You must also allow some margin—around 12.5%—since the vSMP infrastructure itself 
requires some memory in which to operate.  So, for example, if we request 32 cores worth of 
RAM we would expect to be able to run a job which requires  (512 - 64) 448GB of RAM. 
If your job consumes more memory than that requested for it, it will be killed by the 
queuing system.

• The export LD_PRELOAD=... line loads a special library which cuts out some system 
calls that are unnecessary on a vSMP node.

• As with other machines, NUMA effects are important on the vSMP.  Indeed, given that 
some portions of memory are accessed via a network cable, cpu affinity becomes even more 
important.  The queuing system will keep a record of the cores assigned to a job run on the 
vSMP.  If all the cores are contiguous, this information will be stored as a range, e.g. 0-31. 
We would like to set the cpu affinity for our serial job and I have arbitrarily chosen to pin 
the computation to the first core in the given range.  The FIRST environment variable and 
it's associated perl 'one-liner' captures that core ID (after first turning the range into an 
explicit list of cores), so that it can be used with tasket, on the last line.

Multi-threaded Jobs

Of course, we are not limited to running serial jobs on the vSMP.  Perhaps its greatest use will be to 
run very memory hungry multi-threaded jobs.  Here is another example submission script which we 
can use to run an OpenMP program:
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#!/bin/bash 

#PBS -q vsmp
#PBS -l nodes=1:ppn=32

cd $PBS_O_WORKDIR

export LD_PRELOAD=/opt/ScaleMP/libvsmpclib/0.1/lib64/libvsmpclib.so

CORES=/dev/cpuset/torque/${PBS_JOBID}/cpus
# Torque lists the cores as a range, e.g. 0-31
# The perl oneliner turns that range into a list.  We take the first core to set cpu affinity
FIRST=`cat $CORES | perl -nle '@a=split(/-/); foreach ($a[0]..$a[1]) {print "$_"}' | head -1`

time taskset -c ${FIRST} ./my_very_large_serial_job.exe



You will notice that after all the talk of cpu-affinity, no attempt has been made to pin threads to 
cores in the above submission script.  The reason for this is that the queuing system will assign the 
most compact set of cores to the job.  This being the case, adding a line such as, 
KMP_AFFINITY=compact, will have no additional effect.  However, if you will to use fewer cores 
that the amount requested, and wish to spread them around evenly (and you have compiled using 
Intel),  you will want to use KMP_AFFINITY=scatter.

If your job makes use of Intel's Math Kernel Library (MKL), there is an additional environment 
variable, MKL_VSMP, that will give you some additional performance:  

The reason for this is that setting MKL_VSMP=1 causes the library to use memory in a way which 
is better suited to the vSMP makeup.
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#!/bin/bash 

#PBS -q vsmp
#PBS -l nodes=1:ppn=32

cd $PBS_O_WORKDIR

export LD_PRELOAD=/opt/ScaleMP/libvsmpclib/0.1/lib64/libvsmpclib.so
export OMP_NUM_THREADS=32

./my_very_large_openmp_job.exe

#!/bin/bash 

#PBS -q vsmp
#PBS -l nodes=1:ppn=32

module add intel-cluster-studio/compiler/64/13.1/117 
module add intel-cluster-studio/mkl/64/13.1/117 

cd $PBS_O_WORKDIR

export LD_PRELOAD=/opt/ScaleMP/libvsmpclib/0.1/lib64/libvsmpclib.so
export OMP_NUM_THREADS=32
export MKL_VSMP=1

./my_very_large_threaded_MKL_job.exe



Summary

In this how-to document, I have attempted to provide a practical guide to running large-memory 
jobs on BlueCrystal phase 3, where the term large memory will vary in absolute terms, depending 
upon context.  I have shown you how to request (and check that you have) sufficient memory 
resources for your job, so that it can peacefully co-exist with other jobs running on the cluster. 
When providing example submission scripts, I have focussed on scenarios where you wish to run 
serial or multi-threaded programs.  The reason for this is that for many MPI programs, the solution 
to memory constraints is often to simply  run your job using more cluster nodes.  The topic of non-
uniform memory access (NUMA) was also introduced.  Most modern computational environments 
(including the standard two-socket compute nodes on BlueCrystal pahase 3) fall into the NUMA 
category and setting cpu-affinity appropriately is often important to achieve best performance. 
Several methods for setting cpu-affinity were introduced and examples given.  Lastly, the guide 
provided examples for submitting jobs to  three categories of compute node found in the cluster—
standard nodes, large memory nodes and the vSMP node.  I hope you found it useful!
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