
ACRC How-To: Using Accelerators—GPUs and Co-processors
—on BlueCrystal Phase 3

Table of Contents
ACRC How-To: Using Accelerators—GPUs and Co-processors—on BlueCrystal Phase 3...............1

Introduction..1
Applications and Packages..2
Libraries...2
Compiler Directives...2
Languages..4
Summary..6

Introduction

BlueCrsytal phase 3 was designed to support accelerator technologies. These include GPUs
(Graphics Processor Units), from manufactures such as NVIDIA and AMD, as well as co-
processors, such as Intel's Xeon Phi. At the date of writing, the cluster contains 70 NVIDIA Kepler
GPUs, which have a peak processing power of around 70 Tflops. This is a significant
computational resource when we compare it to the figure of around 112 Tflops provided by the
standard X86 CPUs contained within the system. The number and type of accelerators installed on
the cluster is likely to evolve through time.

This document aims to provide you with an overview of the physical make-up of these accelerators,
their computational strengths and weaknesses and how you can practically make use of them.

A common feature of all accelerators is that they are comprised of processor cores that are far less
complex than the x86 CPUs employed by the host machine. These simpler cores can efficiently
perform a narrower range of calculations than those that can be performed on their x86
counterparts. However, because they are simpler, they occupy far less space on a silicon die and so
many more of them can be placed on a single silicon chip. This is the strength of the accelerator. If
you have the right kind of task, the many processor cores can be set to work in parallel and by
working in tandem can complete the required calculations in less time. The details of the different
accelerators may vary, but this general principle holds for all of them.

So far so good, but what is the right kind of task for an accelerator? If your task involves a loop
over many iterations and the calculations in that loop are independent—i.e. the inputs for one
iteration are not dependent upon the outputs of another—then there is a good chance that you can
profitably employ an accelerator.

However, there are two more key factor that we must also attend to when using an accelerator.
Since the compute device is physically separated from the host memory, typically by a PCIe bus,
any data that is required for the calculations must first be moved over to the accelerator's own
memory and then carried back once all the required computations are complete. The time taken by
these data transfers is significant and can upset the unwary by nullify any gains made through
concurrent calculations. We must also be sure not to exceed the memory capacity of the accelerator,
which is typically far less than the capacity of the host's memory.

The rest of the document is given over to providing tasters of how you can make use of the
accelerators installed in BlueCrystal phase 3. The approaches range from using accelerator enabled
applications and libraries, through to incorporating compiler directives in your existing code or

Gethin Williams, 2014. 1

writing new code in languages designed to help the programmer express the parallelism in a task.

Applications and Packages

Many packages and applications are becoming accelerator-enabled. Molecular dynamics simulators
have been quick to exploit accelerator technologies. Packages such as GROMACS, AMBER and
CHARMM, can all make use of GPUs. Applications from other fields that can use GPUs include
Abaqus and LS-DYNA, used in structural mechanics, the BUDE protein docking engine, and the
quantum chemistry simulator MOLPRO.

A useful list of GPU accelerated applications has been provided by NVIDIA.

Some general purpose applications are also accelerator-enabled, notably MATLAB. Many of
MATLAB's built in functions can be run on a GPU. The gpuArray() and gather() functions are
provided to transfer data to and from the accelerator. For more information about using GPUs in
MATLAB, see the ACRC How-To document for MATLAB.

Libraries

The call to a library function can provide a very useful separation between bespoke, domain specific
code and more common, general purpose routines which are involved in performing the overall
task. The task specific code need only conform to the interface for a library routine, and the details
of routine's implementation can remain opaque. As new compute technologies emerge, libraries can
evolve to exploit those devices. If the interface to the library remains constant, however, the
domain specific code need not change. Instead it can reap the rewards of adopting the new
technologies but without any code changes. An example of such a library evolution is the LAPACK
linear algebra package. Implementations exist in serial, multi-threaded and accelerator-enabled
form.

Examples of libraries that have been accelerator-enabled include; CULA, cuBLAS and MAGMA,
which perform linear algebra routines; the Intel Math Kernel Library and AMD's Core Math
Library, which provide not only linear algebra, but also FFTs and random number generators; the
PETSc solver library; and OpenMM, for molecular simulation.

A list of GPU enabled libraries, also provided by NVIDIA.

Compiler Directives

If you have some source code that you wish to run directly on an accelerator, the addition of
compiler directives can be a convenient way to generate a suitable executable with minimal code
changes. Compiler directives are particularly useful when working with a language such as Fortran,
which has immature bindings to other, accelerator oriented languages such as OpenCL or CUDA.

Version 4.0 of the OpenMP API contains many features which enable the use of accelerators.
However the implementation of this standard by popular compilers, such as those from GNU and
Intel, are still incomplete.

The OpenACC standard is supported by the PGI compiler, which is available on BlueCrystal phase
3.

Below is an example code, vecAdd.f90, (from Oak Ridge National Laboratory), which mixes
Fortran90 and OpenACC. Instructions for compilation on BlueCrystal phase 3 and an example
submission script are also given.

Gethin Williams, 2014. 2

http://www.gromacs.org/
https://www.olcf.ornl.gov/tutorials/openacc-vector-addition/#vecAdd.f90
http://www.pgroup.com/index.htm
http://www.openacc-standard.org/
https://software.intel.com/en-us/videos/performance-essentials-using-openmp-40-vectorization
http://gcc.gnu.org/wiki/openmp
http://openmp.org/wp/
https://developer.nvidia.com/gpu-accelerated-libraries
https://simtk.org/home/openmm
http://www.mcs.anl.gov/petsc/petsc-as/features/gpus.html
http://developer.amd.com/community/blog/2014/04/16/acml-beta-6-0-released/
http://developer.amd.com/community/blog/2014/04/16/acml-beta-6-0-released/
https://software.intel.com/en-us/intel-mkl
http://icl.cs.utk.edu/MAGMA/software/index.html
https://developer.nvidia.com/cuBLAS
http://www.culatools.com/
http://www.nvidia.co.uk/content/tesla/pdf/gpu-accelerated-applications-for-hpc.pdf
http://www.molpro.net/
http://www.bristol.ac.uk/biochemistry/research/bude
http://www.lstc.com/products/ls-dyna
http://www.3ds.com/products-services/simulia/portfolio/abaqus/overview/
http://www.charmm.org/
http://ambermd.org/

vecAdd.f90:

Gethin Williams, 2014. 3

program main

 ! Size of vectors
 integer :: n = 100000

 ! Input vectors
 real(8),dimension(:),allocatable :: a
 real(8),dimension(:),allocatable :: b
 ! Output vector
 real(8),dimension(:),allocatable :: c

 integer :: i
 real(8) :: sum

 ! Allocate memory for each vector
 allocate(a(n))
 allocate(b(n))
 allocate(c(n))

 ! Initialize content of input vectors, vector a[i] = sin(i)^2 vector b[i] = cos(i)^2
 do i=1,n
 a(i) = sin(i*1D0)*sin(i*1D0)
 b(i) = cos(i*1D0)*cos(i*1D0)
 enddo

 ! Sum component wise and save result into vector c

 !$acc kernels copyin(a(1:n),b(1:n)), copyout(c(1:n))
 do i=1,n
 c(i) = a(i) + b(i)
 enddo
 !$acc end kernels

 ! Sum up vector c and print result divided by n, this should equal 1 within error
 do i=1,n
 sum = sum + c(i)
 enddo
 sum = sum/n
 print *, 'final result: ', sum

 ! Release memory
 deallocate(a)
 deallocate(b)
 deallocate(c)

end program

The two lines of OpenACC compiler directives are highlighted in bold. We can see that the
surrounded loop iterations are obligingly independent.

To compile use:

and an example submission script:

However, if you compare the runtime of vecAdd.f90 solely on the host to the time taken when also
employing a GPU, you will discover that this simple loop does contain enough work to justify the
data transfer overheads and, as a result, the accelerator-enabled code takes longer to run.

Languages

If you are happy to write your own code, designed for use with an accelerator, you stand the best
chance of achieving a useful speed-up. The two dominant languages in this area are OpenCL, and
CUDA.

An attractive property of OpenCL is that it is highly portable. OpenCL code can be run on host
CPUs, GPUs from any vendor and co-processors alike. In contrast, CUDA code can only be run on
NVIDIA GPUs.

Gethin Williams, 2014. 4

module add pgi/64/13.5
pgf90 -acc vecAdd.f90 -o vecAdd.exe

#!/bin/bash

#! Submit job to the GPU queue and include a GPU in the resource request.
#PBS -q gpu
#PBS -l nodes=1:ppn=1:gpus=1

#! change the working directory (default is home directory)
cd $PBS_O_WORKDIR

#! Record some useful job details in the output file
echo Running on host `hostname`
echo Time is `date`
echo Directory is `pwd`
echo PBS job ID is $PBS_JOBID
echo This jobs runs on the following nodes:
echo `cat $PBS_NODEFILE | uniq`

#! Load the cuda and PGI compiler modules.
module add cuda50/toolkit/5.0.35
module add pgi/64/13.5

#! run the example code.
vecAdd.exe

http://www.nvidia.co.uk/object/cuda_home_new.html
https://www.khronos.org/opencl/

Introductions to programming in OpenCL and CUDA can be found at:

• HandsOnOpenCL , and

• Introduction to CUDA C

OpenCL has bindings to several languages, including Python via a package called PyOpenCL. The
boxes below provide a minimal set of instructions for installing PyOpenCL in your user space and
running an example job.

First download, unpack and install the python package:

and use the following submission script to submit an example job to a GPU node:

where the example script, benchmark.py, is provided as part of the PyOpenCL distribution.

Gethin Williams, 2014. 5

mkdir ~/pyopencl
cd ~/pyopencl
wget https://pypi.python.org/packages/source/p/pyopencl/pyopencl-2013.2.tar.gz
tar -xzf pyopencl-2013.2.tar.gz
cd pyopencl-2013.2
module add languages/python-2.7.5
python setup.py install –user

#!/bin/bash

#! Submit job to the GPU queue and include a GPU in the resource request.
#PBS -q gpu
#PBS -l nodes=1:ppn=1:gpus=1

#! change the working directory (default is home directory)
cd $PBS_O_WORKDIR

#! Record some useful job details in the output file
echo Running on host `hostname`
echo Time is `date`
echo Directory is `pwd`
echo PBS job ID is $PBS_JOBID
echo This jobs runs on the following nodes:
echo `cat $PBS_NODEFILE | uniq`

#! Load the cuda and python modules.
module add cuda50/toolkit/5.0.35
module add languages/python-2.7.5

#! run the example code.
python examples/benchmark.py

https://pypi.python.org/packages/source/p/pyopencl/pyopencl-2013.2.tar.gz
http://documen.tician.de/pyopencl/
http://www.nvidia.com/content/GTC-2010/pdfs/2131_GTC2010.pdf
https://github.com/HandsOnOpenCL

The output should look something like:

Summary

In this document, I have attempted to concisely describe; how accelerators are physically
constructed as the computational strengths and weaknesses which emerge as a direct consequence.
I have given a brief breakdown of the several different ways in which you may use accelerators on
BlueCrystal, together with as many useful links as I could find. Finally, I have include several short
examples to help you practically get started using accelerators on cluster.

Gethin Williams, 2014. 6

===
Platform name: NVIDIA CUDA
Platform profile: FULL_PROFILE
Platform vendor: NVIDIA Corporation
Platform version: OpenCL 1.1 CUDA 6.0.1

Device name: Tesla K20m
Device type: GPU
Device memory: 4799 MB
Device max clock speed: 705 MHz
Device compute units: 13
Device max work group size: 1024
Device max work item sizes: [1024, 1024, 64]
Data points: 8388608
Workers: 256
Preferred work group size multiple: 32
Execution time of test: 0.000754048 s
Results OK

	ACRC How-To: Using Accelerators—GPUs and Co-processors—on BlueCrystal Phase 3
	Introduction
	Applications and Packages
	Libraries
	Compiler Directives
	Languages
	Summary

