ACRC How-To: Recipes for Using Allinea's DDT Parallel
Debugger on BlueCrystal Phase 3

Table of Contents

ACRC How-To: Recipes for Using Allinea's DDT Parallel Debugger on BlueCrystal Phase 3.......... 1
| Fa Lol L1 TaduTo) FON OO PP SRRRUSPRRRPRRRRN 1
BUuilding YOUI PrOZIAIM......ceiitiieieeiienieeiieenieeiteste st eeiteeteesetesbeessaessseesseesssessssesssseesnnssesssnseessnnses 1
Enabling X11 Forwarding from the CIUSLET..........c.cccieriieriiiiieeiieerteeie et ecieeeeeeeveeeeevreeesvneeenns 2
Recipe #1: Using DDT to Submit a Job to the Queuing SyStem............cccceeviercuerriersieenieeenireennns 3
Recipe #2: Attaching DDT to a Job Already RUNNING.........cccoceeiiiiiiiiiiiiieeeiieeeiieeeieeeevee e 10
SUITIITIATY .ttt ettt e ettt e s ettt e e e sttt e e seaast e e e e nsteeesnsaaeesesnnteesesnsnaeeeeesennnnn 13
F N)01 116 | USRSt 14

Introduction

This document is not intended to be an introduction to using debuggers or, for that matter, an
introduction to Allinea's DDT debugger. Rather, it is a practical guide on how you can start to use
the DDT parallel debugger on BlueCrystal Phase 3. Allinea produce very good documentation and
I would recommend that anyone new to DDT starts by reading their user guide:

* http://content.allinea.com/downloads/userguide.pdf

Those new to debugging altogether might like to read a more general introduction to the topic. Two
guides that could be considered as primers are:

* http://www.dirac.org/linux/gdb/01-Introduction.php

* http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Debug.html

There is an inherent tension between an interactive activity like debugging and the way in which we
typically run jobs on a compute cluster, such as BlueCrystal. Since there are many users and
competition for the compute resource of BlueCrystal, we submit our jobs to a fair-share scheduler
which decides when those jobs are going to to be run (and on which compute nodes). Thus it can be
difficult to simply start up DDT and begin your debugging session. In response to this, I will
present two different recipes for initiating a debugging session—one where we ask DDT to submit
the job in question to the queue (and to wait until it is running), and another where we attach DDT
to a job that we had previously queued and that is now running. Bear in mind, however, that neither
approach is a panacea to the competition for compute resource—you will always have to wait
longer if you wish to run a job using many processors.

Building your Program
OK. Enough of the preamble, let's get going. You can access DDT by loading the module:

module add allinea/tools/4.0

When compiling your code, be sure to use the -g flag, so that your executable is instrumented with
extra symbol information. Also be mindful that flags, such as -O3, which strongly optimise for
speed, can make many changes to your code and hence make debugging harder. For example, -O3

Gethin Williams, 2014. 1 EAKC University of

BRISTOL

http://content.allinea.com/downloads/userguide.pdf
http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Debug.html
http://www.dirac.org/linux/gdb/01-Introduction.php

may actually delete lines of your code, which will make adding a breakpoint to them rather tricky!
For the examples below, I've used MVAPICH2 as my MPI library (set in my .bashrc):

module add mvapich2/gcc/64/1.7-qlc

At this point we reach the nub of why I've used the word recipe in the title of this document. DDT
will be harder or easier to use depending upon which of the MPI libraries available on BlueCrystal
phase 3 you've selected. Through a process of trial and error, I've discovered that the default
settings of DDT will work well with the above module loaded. This is not to say that DDT will not
work with other MPI libraries, but that you'll have to work a bit harder to find the right
configuration. One approach may be to follow my recipes to get started and then to branch out
when you're comfortable.

Enabling X11 Forwarding from the Cluster

In both the following recipes, we will start up the graphical user interface to DDT. So that the DDT
windows can be seen on your screen, you will need to enable X11 forwarding when you connect to
the cluster. From a Linux machine, or a Mac, you can do this by passing the -X flag to SSH:

ssh -X user@bluecrystalp3.acrc.bris.ac.uk

To connect from a computer running Windows, you'll need to start xming, which is the window
manager and just runs in the background, and also putty, to make the SSH connection. When you
start up putty, you will need to enter bluecrystalp3.acrc.bris.ac.uk as the hostame. In addition,
you will need to expand the SSH menu entry (near the bottom in the left-hand pane), select the X11
sub-menu and click the Enable X11 forwarding tickbox:

g ==
Categony:

- Keyboard - Options controling S5H %11 forwarding
Eegt forwarding
- Features , —

& Window il Jnable £11 forwarding
- Appearance 2 display location
- Behaviour Remote X171 authentication protocaol
- Translation @ MIT-Magic-Cookie-1 (71 ¥XDM-Authorization-1
- Selection ¥ authority file for local display
- Colours

=~ Connection
- Data

Gethin Williams, 2014. 2 EAKC University of

BRISTOL

Recipe #1: Using DDT to Submit a Job to the Queuing System

In this first recipe, we will ask DDT to submit our job to the queuing system. First we start up the
DDT GUI by simply typing ddt.

After the splash screen, you will see the following interface. For this recipe, we're going to click
'Run':

File View Control Search Tools Window Help

Run
Frf?n and debug a program.

Attach
Attach to an already running program.

Open Core
COpen a core file from a previous run.

Manual Launch (Advanced)
Manually launch the backend yourself

Options

Remote Launch:

[or =]

Quit

Available Tools:

Allinea DDT Support Expires 2016-02-26
« Allinea MAP Trial Licence (30 Second Time Limit) Sales

Licence Serial Number: 7279 _7| Support Tutorials allinea.com

Allinea DOT 4.1.1 4

Gethin Williams, 2014. 3 A University of

AL BRISTOL

i

Clicking Run will bring up the following configuration window. Set the path to your executable in
the Application field of the Application (top) pane. Next click the Change button in the MPI pane.

Application: /panfs/panasas0l/isys/ggdagw/hpc-course/mpifexample Details

@|sjggdagwfhpc-cnurgejmpijexample5jexamplelfhellc:_wc:rld_cj ﬁl

Arguments: |

[

[stdin file: |

]|

Working Directory: |

¥ MPI: 4 processes, MVAPICH 2

Number of processes: I 4 5:

Implementation: MVAPICH 2, no queu

mpirun arguments |

[} OpenMP

[T cubpa

T Memory Debugging

Environment Variables: none

Plugins: none

Help |

Gethin Williams, 2014.

ai)

Details

[
Details
Details
Details...
Details

Details

Run Cancel

i

i | A4 University of
AL BRISTOL

On the System tab of the spawned window, set the MPI implementation to MVAPICH 2:

jﬁﬂ Job Submission

‘ ‘ Code Viewer

()
I=| Appearance

___g Vislt

Help |

Gethin Williams, 2014.

System Settings

MPIJUPC Implementation: MVAPICH 2

™ override default mpirun path: |

Debugger: |q?;'-\utomatic (recommended)

k=]
g

[T Create Root and Workers groups automatically
[Use shared symbol cache
[Heterogeneous system support

Default groups file:

What is the shared symbol cache?

Attach hosts file:

k=]

|fpanfsfpanasasOlfisysfggdagwf.allineamodes

k=]

oK I Cancel

4

i

i | A4 University of
AL BRISTOL

Next move to the Job Submission tab. Here you will need to:
Tick the Submit job through queue or configure own “mpirun” command box.

* Change the Regexp for jod id field from, “our job (\d+)” to just, “(\d+)”.
* Click the Specify in Run window radio buttons in both the Number of nodes and
Processes per node panes.
EE System Job Submission Settings

r ¥ Submit job through queue or configure own "mpirun" command

Submission template file: |fcmfsharedfappsfaIIinea}“tools}“templatesfpbs.qtf = |

Code Viewer .
_‘ Submit command: |qsub

— Regexp for job id:|{
s Appearance e : W
Cancel command: | gdel JOB_ID_TAG

é Vislt Display command: |qstat

Number of processes (NUM_PROCS_TAG)

& Specify in Run window

¢ Calculate from number of nodes and processes per node

Number of nodes (NUM_NODES_TAG)

.+ Specify in Run window
k

¢ Calculate from number of processes and processes per node

Processes per node (PROCS_PER_NODE_TAG)

Edit Queue Submission Parameters...

™ Also submit scalar jobs through the queue

¥ Quick Restart What is Quick Restart?

Help | oK I Cancel

Gethin Williams, 2014. 6

i

i | A4 University of
AL BRISTOL

Below is the resulting customised job configuration window. I've deliberately chosen to run the job
with a modest number of processes so that I stand a chance to progressing quickly though the
queue.

Application: /panfs/panasas0l/isys/ggdagw/hpc-course/mpifexample Details

Application: |5fggdagwfhpc-caursefmpifexamplesfexarnplelfhello_world_c_j =
Arguments: | j
™ stdin file: | = =
Working Directory: | j o
¥ MPI: 4 processes, 2 nodes, 2 ppn, MVAPICH 2 Details

Mumber of processes: I 4 32 MNumber of Modes: I 2 3:

¥ Processes per Node: |2 -

Implementation: MVAPICH 2, use queue Change.. | [:}

mpirun arguments | =]
I OpenMP Details
T cubpa Details
[T Memory Debugging Details...

Queue Submission Parameters: Wall Clock Limit=00:30:00, Queue: Details...
Environment Variables: none Details

Plugins: none Details

Help | Submit Cancel

A

Gethin Williams, 2014. 7 EAKC University of

BRISTOL

Clicking the Submit button will bring up a window showing the status of your job in the queue:

Your job has been submitted to the queue. Allinea DDT will continue automatically once the job has been

started.

234F04.master
234F05.master
234P06.master
234P07 .master
234FP0F .master
234FP09.master
234F10.master
234F11.master
234P12 .master
23413 .master
234F14.master
234F15.master
234F16.master
234817 .master
234P2F .master
234F31.master
234F34.master
234F3F.

Gethin Williams, 2014.

Gl0t

6110

6111

6112

6114

6115

6116

G117

6119

6121

6123

6124

6125

G126
run_remd. pha
submit_gpu.sh
incline.4lev.sh
allingeK&3b
allinSUVESX

tEad60
tE6460
tE6460
tf&460
tE&460
tf&460
tEad60
tE6460
tE6460
tf&460
tE&460
tf&460
tEad60
tE6460
chgijb
jblE05
ggs lo 04:08:40
goclacs 00:00:00

[I o R o o I o O o O o Y Y O o o Y o o

]
ANoOoo0oo000000000O00

aogdacp

[yl §
P
gpPu
L= =]k §
L= =]k §
Op1
[yl §
el
gpPu
L= =]k §
L= =]k §
Op1
[yl §
el

[

veryshort &

L= =]k §

glaciaol
veryshort

a

fn,

i

Cancel |

4

A University of
BRISTOL

Once your job has started, you will be presented with the debugging interface below and you will be
able to set breakpoints, step your code and inspect the values of variables, as per normal. Notice the
clickable pink/red boxes at the top of the window. These indicate the rank of the process in the MPI
cohort which you are currently debugging.

File

View Control Search Tools Window Help

| & [w & & = F D EL

TEJIEE ' O-5~

|| current Group: |AH =l

Focus on current: & Group ¢ Process Thread ||_ Step Threads Together |

IAH

Create Group

DEEE

|fun node31-006, pid 120592, main thread IWP 120592]|

Project Files 8% | £ hello_worldc) | locals Current Linefs) | Current Stack |
arch [Ctrl+K < 38 MPI_Comm_size (MPI_COMM _WORLD, &size); ;I Current Line(s) 5 X
- & Application Code 40 * determine the RANE of the current process [0:SIZE-1] * _’ar'able Name LVEIU_Q I
L@y 41 MPI_Comn_rank (MPI_COMM_WORLD, &rank); r-hostname node31-006
. B Sources 12 i-rank 2
=8 £ hello v 43 * infinite loop * ~size —4
22l mainlint arge, char* arg 44 *while (wait) ;*
#- & External Code a5
46 &
47 * make use of these values in our print statement
48 * note that we are assuming that all processes can
49 write to the scre=n
51 | printf ("Hello, world; from host %s: process %d of %d\n", host
53 * finialise the MPI enviromsnt *
54 MPI_Finaliz=();
* and exit the program *
return EXIT_SUCCESS;
i
4 | Kl | *| [Type: none selected
Input/Cutput | Breakpoints | Watchpoints ~ Stacks I Tracepoints | Tracepoint Qutput Logbook| Evaluate g X
Stacks & X | Expression Ivalue |
Processes |Thread5 |Funct\on /l
4 4 ips_ptl_pollintr (ptl_rcvthread.c:324)
Ready
Gethin Williams, 2014 9 EA Universi
’ University of
AL BRISTOL
d)

Recipe #2: Attaching DDT to a Job Already Running

This recipe will be useful when you anticipate that your job will not start running until you are
elsewhere (perhaps asleep at home!), or when you have a long running job that you might like to
periodically attach to, inspect it's progress, and then detach from again. Clicking Attach from the
DDT start screen will bring up the following configuration window:

Agplicatiunzl /panfsfpanasas0lfisys/ggdagw/hpc-course/mpifexamplesfexamplel/hello_world c g

MPl: mvapich 2 Change MPI...l I~ Debug CUDA

Hosts: Choose Hosts..

Automatically-detected jobs List of all processes | GDB Server

Filter for process names containing: |he|l0_world_c

¥ Hide forked children (these may not be part of your job)

Process name I Host | PID | PFID | Fcl Executable

Invert selection| Clear selection| Remove selected

[T Use LaunchMON to rapidly attach to MPI jobs (not installed)

MNo nodes to scan.

Help | Rescan nodes| Attach to listed processes

Again we choose MVAPICH2 as our MPI implementation. The code I used for this example is
given the the Appendix. It is a simple 'hello, world' MPI program written in C. Since it is a very
short program I have added an (empty) infinite loop to the code. If I had not done this, the job
would have completed before I had the chance to connect DDT up to it.

After compiling the code, I submitted it to the queue and waited for it to start running (monitoring
the queue using gstat or showq). Once running, I could determine which nodes it was running on
using qstat -n -u <username>. Armed with this knowledge, I could click the Choose Hosts button
and add the appropriate node names to the list:

Host Name

node32-014
node31-005

Remowve | Import...

Gethin Williams, 2014. 10 EAKC University of

BRISTOL

Once the hosts are set, and the Filter field filled out with the name of your executable, the relevant
processes will automatically appear in the window and you can click the Attach to listed processes
button.

Agplicatiun:| fpanfsjpanasas0lfisys/ggdagw/hpc-course/mpifexamplesfexamplel/hello_world_c g

MPl: mvapich 2 Change MPI...l " Debug CUDA

Automatically-detected jobs List of all processes GDB Server

Filter for process names containing: |he|l0_world_c

¥ Hide forked children (these may not be part of your job)

Process name I Host | PID | PFID | Fcl Executable

-hello_world _c node31-005 963 938 no fpanfs/panasasilfisys/..
E----helln_world_c node31-005 964 938 no fpanfs/panasasilfisys/..
§----he|ln_wurld_c node32-014 99073 99071 no /panfs/panasasilfisys/..
E----heIIu::u_'.-.u::rII:i_I: node32-014 99074 99071 no /panfs/panasas0lfisys/..

Invert selection| Clear selection| Remove selected

I Use LaunchMON to rapidly attach te MPI jobs (not installed)

2 nodes scanned.

Help | Rescan nodes| Attach to listed processes Cancel

A

Gethin Williams, 2014. 1 A University of

AL BRISTOL

i

Once DDT has successfully attached itself to the list of processes, you will be presented with the
debugging window.

Before we can start any meaningful debugging, however, we must first release processes from the
infinite loop. To do this, right-click on the 'wait' in 'while(wait)' and select Add to Evaluations:
File View Control Search Tools Window Help

[o[u B8 BE BEEIS ! B-D~

||current Group: |AII

[D EE[E

Create Group

jFocus on current: ¢ Group { Process (" Thread ||_ Step Threads Together |

Project Files 8 X | ¢ hello_world.c I Locals Current Line(s) | current Stack |
[Search itk € a2 _~||current Line(s) B x
a3 * infinits loop * s
£+ & Application Code 44 hile (wajtds Varla.b\e Name [valve [
I B | - ~wait —0
/ 4 wait [Add to Evaluations
P e e dd Watchpoint
-1 i.C 3 * mak= 1| Add breakpoint for Al Add Watchpoin
: *] * note View Arra
Lo " t arge, char* arg 4 X ne [[Add tracepoint for All (wait) aray
& External Code 49 write Compare Across Processes
50 r
§ # Runto h
o5 printf (" un to here Compare Across Threads bank, size
52 Find In Files.
. Copy Ctri+C -
53 * finial
54 MPI_Final select All Cirlya | PEISING
55 Value is: 0
* and e} Open in external editor PR—
return El Close Crriew View source for "wait
¥ Add breakpoint in "wait"
| | o4l l Y| [ype: none selected
Input/Qutput | Breakpoints | Watchpoints ~ Stacks | Tracepoints | Tracepoint Output | Logbook | Evaluate 8 x
Stacks & X | Expression |Value |
Processes [Threads Function / | 0
4 4] Eips_ptl_pollintr (ptl_rcvthread.c.324)
4 [4 [oll
Ready .

Gethin Williams, 2014. 12 4

fn,

i

A University of
BRISTOL

Then right-click on 'wait' from the Evaluate pane and select Edit value. Setting the wait variable to
a value of zero will release processes from the infinite loop and allow you to debug your code in the
normal fashion:

File View Control Search Tools Window Help
oo O % RO RECEIE ! B-D-

”Current Group: |AII ancus on current: & Group ¢ Process (" Thread ||— Step Threads Together |

IA” EI Add Expression.

Edit Expression...
Create Group

Edit Value..

Project Files 8 X | ¢ hello_worldc [I Loc

Edit Type/Language
2 - X
3 * infinite loop * B ﬂ Copy Value 5
4 hile (wait); |Vari add wiatchpoint
2 W view As 3
B . . View Array

** make use of these wvalues in our print statement -
] * nots that ws are assuming that all procssses can Compare Across Processes
J * write to the sc

[search ictri+k <

Application Code
!

i B ¥ Sources

: I B hello world.c

: “- (= mainlint argc, char* arg
& External Code

1
4
4
4
4
4
4
4

een Compare Across Threads
View As Vector (C/C++ only)
Get Address

* finialise the MPI enviroment * Dereference Pointer
54 MPI_Finalize();
55

© 51 printf("Hello, world; from host %s: process %d of %¥d\n", hostname, rank, size

View Pointer Details

* and exit the program * Find Variable In Files
return EXIT_SUCCESS;

} Delete
Delete All

4 | Kl | *| [lype Load Evaluations...

x

Input/Output | Breakpoints | Watchpoints — Stacks | Tracepoints | Tracepoint Output | Logbook | Evaluate Save Evaluations. =
Stacks & X | Expressi

Sort Members Alphabetically |
Processes |Threads |Funct|on / | _m -
ptl_pollintr (ptl_rcvthread.c:324)
|

Ready .

Summary

We are fortunate to have access to a powerful parallel debugger such as Allinea's DDT on
BlueCrystal phase 3. In this document, I have aimed to provide two concrete recipes for getting
started with DDT, as well as pointers to further documentation for the tool. There is a learning
curve associated with using any new tool and DDT is no different (although the GUI nature of the
tool significant aids rapid familiarisation). However, I believe that time invested in learning how to
use a debugger will be repaid many times over and I hope these recipes help you along that road.

Gethin Williams, 2014. 13 A University of

AL BRISTOL

i

Appendix

Below is the code for a simple 'hello, world' MPI program that I used when writing this document:

#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

int main(int argc, char* argv[])

{
int rank; /* 'rank’ of process among it's cohort */
int size; /* size of cohort, i.e. num processes started */
int flag; /* for checking whether MPI_Init() has been called */
int strlen; /* length of a character array */
int wait = 1; /* flag for infinite loop */

enum bool {FALSE,TRUE}; /* enumerated type: false = 0, true = 1 */
char hostname[MPI_MAX_PROCESSOR_NAME]; /* character array to hold hostname */

MPI_Init(&argc, &argv);

MPI_Initialized(&flag);

if (flag != TRUE) {
MPI_Abort(MPI_COMM_WORLD,EXIT_FAILURE);

}

MPI_Get_processor_name(hostname,&strlen);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* infinite loop */
/*while(wait);*/

printf("Hello, world; from host %s: process %d of %d\n", hostname, rank, size);
MPI_Finalize();

return EXIT_SUCCESS;

}
Gethin Williams, 2014. 14 EAKC University of
BRISTOL

	ACRC How-To: Recipes for Using Allinea's DDT Parallel Debugger on BlueCrystal Phase 3
	Introduction
	Building your Program
	Enabling X11 Forwarding from the Cluster
	Recipe #1: Using DDT to Submit a Job to the Queuing System
	Recipe #2: Attaching DDT to a Job Already Running
	Summary
	Appendix

