Parallel programming with Fortran 2008 coarrays

Anton Shterenlikht

Mech Eng Dept, The Umérsity of Bristol, Bristol BS8 1TR
mexas@bris.ac.uk

ABSTRACT

Coarrays are a Fortran 2008 standard feature intended for single program - multiple
data (SPMD) type parallel programming. The runtime environment starts a number of
identical executable images of the coarray program, on multiple processors, which could
be actual physical processors or threddach image has a unique number and it&sari
address space. Ordinary variables argaito an image. Coarray variables aveila
able for read/write access fromyanther image. HPC literature coarrays are sometimes
considered to be an example of partitioned global address space (PGAS) parallel pro-
gramming model. Coarray communications are of "single sided" type, i.e. a remote call
from image A to image B does not need to be accompanied by a corresponding call in
image B. This feature makes coarray programming a lot simpler than Melstandard
provides synchronisation intrinsics to hehwl race conditions or deadlockény ordi-
nary variable can be made into a coarray - scalars, arrays, intrinsicved diztia types,
pointers, allocatables are all alled. Coarraygan be declared in, and passed to, proce-
dures. Coarrayare thus very flexible and can be used for a number of purpéses.
example a collection of coarrays from all or some images can be thought of ge sittar
gle array This is the opposite of the model partitioning logic, typical in MPI programs.

A coarray program can exploit functional parallelism too, bygitileg distinct tasks to
separate images or teams of images. Coarray culiecte expected to become a part of
the next version of thedftran standard A major unresolved problem of coarray pro-
gramming is the lack of standard parallel 1/O facility ortFan. Inthis talk s&eral pro-
gram fragments and complete coarray programs amrsh@omparisoris made with
alternatve parallel technologies - OpenMRIPI and Fortran 2008 intrinsic "do coneur
rent". Interimage communication patterns and data transfer are illustrated.

28 January 2015

1. Coarray images

The runtime environment swas a number of identical copies of thee@utable, calledmages.
Hence coarray programs foddSPMD model.

runtime environment

image 1 image 2 s image n

$ cat one.f90
use iso_fortran_env, only: output_unit
inmplicit none
integer :: inmg, nings
img = this_imge()
ni ngs = num.i mages()

wite (output_unit,"(2(a,i2))") "image: ", ing, " of ", nings
end

$

$ifort -0 one.x -coarray -coarray-numimges=5 one.f90
$./one.x

imge: 1 of 5

imge: 3 of 5

imge: 4 of 5

imge: 2 of 5

imge: 5 of 5

$

i so_fortran_env is the intrinsic module, introduced in Fortran 2003, and expandedriraf
2008. Themodule provides seral named constants, such mgput _unit, out put_unit and
error _unit,and a dened type.

All I/O units, excepti nput _uni t, are private to an imageHowever the runtime environment typi-
cally meges output _unit and error_unit streams from all images into a single stream.
i nput _uni t is preconnected only on image 1.

thi s_i nage andnum_i mages are n& intrinsics in Fortran 2008t hi s_i nage() with no
arguments returns the indlef the invoking image, starting from Inum_ i mages() , used alvays without
arguments, returns the total number of images.

With Intel compiler one can set the number of images with the environment variable:

$ FOR_COARRAY_NUM | MAGES=3

$ export FOR_COARRAY_NUM | MAGES
$./one.x

imge: 1 of 3

imge: 2 of 3

imge: 3 of 3

$

Note: as with MPI the order of output statements is unpredictable.

2. Intel Fortran compiler on BlueCrystal
The course materials areaable via sulversion, so you need to load this module:

t ool s/ subversion-1.8.4
Make a drectory for the course, and download the materials, e.g.

$ nkdir zzz
$ cd zzz
$ svn co https://svn.ggy. bris. ac. uk/ subversi on-open/ pgas .

We will use ifort v.15 on phase 3. Load these modules:

| anguages/intel -conpil er-15
| anguages/intel -conpil er-15-i npi

Also set the environment variables for ifoFor Bourne shell and related shells do:

source /cnif shared/ | anguages/ | nt el - Compi | er - XE- 15/ bi n/ conpi | ervars. sh intel 64
For C shell and related shells do:

source /cni shared/ | anguages/ | nt el - Conpi | er - XE- 15/ bi n/ conpi | ervars. csh intel 64

The example problems and the solutions are under

exanpl es/ coarr ay
exanpl es/ coarray/ sol

3. Example program: printing image number

cd exanpl es/ coarray/ li ng
make

Tasks:

. Try running the compiled program a number of timB& the messages appear in image ordsr?
the order of the messages the same for all runs? Explain these observations.

. Change the number of images usFOR_COARRAY_NUM | MAGES ervironment \ariable. Doyou
need to recompile the program?

. Change the number of images usingoar r ay- num i mages compiler switch. Recompile and
re-run the program. Does the number of images match what you set? foom(1) man page:

"Note that when a setting is specified in environment variable
FOR_COARRAY_NUM | MAGES, it overrides the compiler option setting."

. Havea look at the f ort (1) man page. Search fooarr ay.

4. Coarray syntax

The standartd? 3uses the square bratk[] , to denotes a coarrayaviable. Acoarray variable can
be also declared witbodi nensi on attribute. Ary image has read/write access to all coarayables
on all images. It makes no sense to declare coarray parameters.

The last upper cobound isaglys an* , meaning that it is only determined at run time.
Examples of coarray variables:

integer :: i[*] I scalar integer coarray with a single
I codi mensi on
i nteger, codinension(*) :: i I equivalent to the above

| ower upper
cobound cobound

!
!
!
!
! upper
!
!
!
I

I
||
||
bound | |
| ower | [
bound | [
! || |
complex :: ¢(7,0:13) [-3:2,5,*] ! conmplex array coarray of corank 3
! | I
! subscripts cosubscripts
I

Similar to ordinary Fortran arraysprank is the number of cosubscriptEachcosubscript runs from
its lower cobound to its upper cobound. New intrinsics are introduced to return thesdues:! cobound
anducobound.

11SO/IEC 1539-1:2010Information technology - Programming languages - Fortran - Part 1: Base lan-
guage.

2ISO/IEC 1539-1:2010/Cor 1:201P;formation technology - Programming languages - Fortran - Part 1:
Base language TECHNICAL CORRIGENDUM 1.

31SO/IEC 1539-1:2010/Cor 2:2018&formation technology - Programming languages - Fortran - Part 1:
Base language TECHNICAL CORRIGENDUM 2.

5. Cosubscript sets

t hi s_i mage can tale a @array variable as angument. Inthis case it returns st of cosubscripts
corresponding to the woking image. New intrinsic i mage_i ndex is the irverse oft hi s_i mage.
Given a walid set of cosubscripts as an inputyage_i ndex returns the inde of the invoking image.
Note that there can be subscript sets which do not map to a valid image Fodsuchinvalid cosubscript
setsi mage_i ndex returns0.

% cat cob. f90
pr ogram cob
inmplicit none
character(len=10) :: i[-2:2,2,1:%*]
if (this_imge() .eq. num.inmages()) then
wite (*,*) "this_image()", this_imge()
wite (*,*) "this_image(i)", this_inmage(i)
wite (*,*) "lcobound(i)", |cobound(i)
wite (*,*) "ucobound(i)", ucobound(i)
wite (*,*) "image_index(ucobound(i))", image_index(i, ucobound(i))
end if
end program cob
%ifort -o cob.x -coarray cob.f90
% set env. FOR_COARRAY_NUM | MAGES 20
% ./ cob. x
this_i mage() 20
this_inmage(i) 2 2 2
| cobound(i) -2 1
ucobound(i) 2 2 2
i mage_i ndex(ucobound(i)) 20
% set env. FOR_COARRAY_NUM | MAGES 24
% ./ cob. x
this_i mage() 24
this_image(i) 1 1 3
| cobound(i) -2
ucobound(i) 2 2 3
i mage_i ndex(ucobound(i)) 0
%

=Y

=Y
=Y

6. Example program: cobounds and cosubscript sets

cd exanpl es/ coarray/ 2cob
make

Tasks:

. What number of images must be useduoobound(i) to return a valid cosubscript set?

. Change the cobounds of coarriayfo male sureucobound(i) will return a valid cosubscript set
when run on 8 images.

7. Remote oper ations, execution segments and image control statements

Remote operations are easily expressed in coarray notation. If a caaniehjesdoes not ka the
square braalds,[], then the reference is to the variable of theoking image. The syntax thus clearly
indicates which statements/olve remote operations.

integer :: i[*], |

real :: r(3,8) [4,*]

!

i[5] =i I renmote wite

r(:,:) =r(:,:) [3,3] ! renote read

i = I both i and j taken fromthe invoking inmge

There are seeral rules goerning remote callsOnly one image can be referenced in each statement.
For array coarray the bracket notatidn), , must be used if a coarragnable is an arrayA valid set of
cosubscripts must be used to refer to an image, not the image index.

A Coarray program consists of one or mexecution segments. The segments are separated by
image control statements. If there are no image control statements in a program, then this program has a
single execution sgment. sync al | is a simple image control statemeffo use it, each image must
execute this statementOn reaching this statement each image waits for each dtkeffect is in ordering
the eecution segments on all images. All statements on all images b&fore al | must complete
before agy image startsxecuting statements aftatync all. In other words all imagesynchronise
with each otherThussync al | is a global barriesimilar to MPI routine MPI_Barrier.

integer :: i[*] I Segnent 1 start
if (this_inage() .eq. 1) & ! Image 1 sets its value for i.
i = 100 I Segnment 1 end
I
I All images nust wait for image 1 to set its i,
I before reading i fromimage 1.
sync all I I mage control statenent
i = i[1] I Segnent 2 start - all images read i fromimge 1
end I Segnment 2 end

Note that not using the image control statement in ttamele will result in a race condition - some
images might try to read from image 1 before image 1 finished setting akig. Havever, the standard
does not allw this:

"if a variable is defined on an image in a segment, it shall not be referenced, defined or become
undefined in a segment on another image unless the segments are ordered"”

Thus a standard conforming coarray program should not suffer from races.
All coarray programs implicitly synchronise at start and at termination.

Another nev image control statement $g/nc i mages. It provides a more flexible means for
image control.sync i mages takes a list of image indices with which it must synchronise:

if (this_image() .eq. 3) sync images((/ 2, 4, 51/))

There must beorresponding sync i mages statements on the images referencegppc i nages
statement on image 3, e.g.:

if (this_image() .eq. 2) sync imges(3)

if (this_image() .eq. 4) sync imges(3)

if (this_image() .eq. 5) sync imges(3)
Asterisk,*, is an dlowed input. The meaning is that an image must synchronise with all other images:

if (this_image() .eq. 1) sync images(*)

if (this_image() .eq. 1) sync images(1)

In this example all images must synchronise with imagetindt with each otheas would hare been the
case witbsync al | .

For cases when there are multigdgnc i mages statements with identical sets of image indices,
the standard sets the rules which determine wéyeoit i mages statements correspond:

"Executions of SYNC IMAGES statements on images M and T correspond if the number of
times image M hasxecuted a SYNC IMAGES statement with T in its image set is the same as
the number of times image T haseuted a SYNC IMAGES statement with M in its image
set. Thesggments thatxecuted before the SYNC IMBES statement on either image precede
the segments thatxecute after the corresponding SYNC IMAGES statement on the other
image."

Heres an aample of swapping coarray values between itwages.

$ cat swap.f90
integer :: ing, nings, i[*], tnp
I inplicit sync all
i mgy this_i mage()
ni ngys num_ i nages()
i = inyg ' i is ready to use

if (im.eqg. 1) then

sync i nmages(nings) I explicit sync 1 with last inyg
tnp = i[ninmgs]

sync i nmages(nings) I explicit sync 2 with last inyg
i =tnp

end if

if (img .eq. ninmgs) then

sync inmages(1) I explicit sync 1 with ing 1
tmp = i[1]

sync inmages(1) I explicit sync 2 with ing 1
i =tnp

end if

wite (*,*) ing, i
I all other images wait here
end
$ ifort -coarray swap.f90
$ setenv FOR_COARRAY_NUM | MAGES 5

$./a.out
3 3
1 5
2 2
4 4
5 1
$

How mary execution segments are there on each image?
Whichsync i nages statements correspond?

8. Example program: segments and image control statements

cd exanpl es/ coarray/ 3swap

make
Tasks:
. Make the program standard conforming witfinc al | image control statements.
. Make the program standard conforming witfinc i nages statements.
. Can you mak the program deadlock?

9. Example program: deadlock

cd exanpl es/ coarray/ 4deadl ock
make

Tasks:
. Try to run the programTerminate with CTRL/C if stuck.
. Explain why the program deadlocks in terms @beution segments and image control statements.
. Modify the program towaid the deadlock.

10. New Fortran 2008 construct: do concur r ent

This do loop is intended for cases when the order of loop iterations is of no importance. The idea is
that such loops can be optimised by a compiler.

integer :: i, al(100)=0, a2(100)=1
do concurrent(i=1, 100)

al(i) =i I valid, independent

az2(i) = sum az2(1:i)) I invalid, order is inportant
end do

The act list of restrictions on what can appear insidibaconcur rent loop is long. These restric-

tions seerely limit the usefulness of ttdo concurrent construct. Whilghis nev construct is poten-

tially a portable parallelisation tool, there might or might not be a performance gain, depending on the
implementation. Irthis tutorialdo concurrent is used for comparison with coarrays in thealcula-

tion example.

11. Implementation and performance
The standard deliberately (and wisely) says nothing on this.

A variety of underlying parallel technologies can be, and some are, used - MPI, Q[SeiWEM,
GASNet, ARMCI, etc. As aVays, performance depends on a multitude of faétors.

The Standardxpects, but does not require it, that coarrays are implemented iayahat each image
knows the address of all coarrays in memories of all images, somethintpdiknteger coarray in the
illustration belav. This is sometimes calledymmetric memory. An ordinary non-coarray variable r
might be stored at dédrent addresses by different processes. Cray compiler certainly does this, other com-
pilers likely do too.

some image image 5
real :: r addr real :: r addr
i(:)[5]=i i(:)[5]=i
A xb5a r AR 06
i(1)
Oe i(2)
/XfOf
xf 3d r

Example: calculation ofr using the Gregory - Leibniz series:

(_1)n—1

A2 g

Given the series upper limit, each image sums the terms beginning with its image number and with a
stride equal to the number of images. Then image 1 sums the contributions from all iffa@egments
are ordered bgync all to male are all images finish calculating their partial sums before image 1
reads the values from all other images and adds those together.

Below is a @ample scaling performance with ifort on 16-core nodes with 2.6Hz SandyBridge cores.
As alays, a great manthings affect performance, coarrays are no exception.

time, s speed-up
10 ~ - 10

X time, s ——
speed-up - x

il e i A Bl Rl el i o
B I N N e

1% ______ i ______ J____I__.L_L_L_J.__ J_J._I__l_i__L_I_J._‘ 1
1 2 4 8 16 32 64

images

4 A. Fanfarillo, T. Burnus, S. Filippone, \Cardellini, D. Nagle, and D. W. Rouson, “OpenCoarrays: open-
source transport layers supporting coarray Fortran compilersPGAS conf. (2014). http://opencoar
rays.org/yahoo_site_admin/assets/docs/pgasl4_submission_7.30712505.pdf.

The lkey ®gment of the code, - the loop for partial and the calculation of the totat value, is

shavn belav for the coarray code, and also for MPI, Fortran 2008 imérinsic DO CONCURRENT and

OpenMP.
Coarrays
doi =this_image(), limt, num.imges()
pi =pi + (-1)**(i+1) / real(2*i-1, kind=rk)
end do
sync all ! global barrier
if (img .eq. 1) then
doi =2, nings
pi = pi + pi[i]
end do
pi =pi * 4.0_rk
end if
MPI
do i = rank+1, limt, nprocs
pi =pi + (-1)**(i+1) / real(2*i-1, kind=rk)
end do

cal | MPI_REDUCE(pi, picalc, 1, MPI_DOUBLE_PRECI SION, &
MPl_SUM 0, MPI_COVM WORLD, ierr)

picalc = picalc * 4.0 _rk

DO CONCURRENT

loops =1limt / dc_limt
doj =1, loops
shift = (j-1)*dc_limt
do concurrent (i = 1:dc_limt)
pi (i) = (-1)**(shift+i+1) / real(2*(shift+i)-1, kind=rk)
end do
pi _calc = pi_calc + sum(pi)
end do

pi _calc = pi_calc * 4.0_rk

OpenMP

I $OVP PARALLEL DO DEFAULT(NONE) PRI VATE(i) REDUCTI ON(+: pi)
doi =1, limt
pi =pi + (-1)**(i+1) / real(2*i-1, kind=rk)
end do
I $OVP END PARALLEL DO

pi =pi * 4.0_rk

Coarray implementation is closest to MRUhen coarray colleates ae in the standard, the simiar

ity will be even greater.

The table belw is a sibjectve comparison of these four parallelisation methods.

-10-

Paallel Fortran shared distributed ease of use flexibility = performance
method/language standard memory memory
coarrays yes yes yes easy high high
do concurrent yes possibly possibly easy poor uncertain
OpenMP no yes no easy limited medium
MPI no yes yes hard high high

12. Example program: calculation of

cd examples/coarray/5pi
male dl
make run

For comparison, the same problem is solved with coarmgsconcurrent OpenMP and MPI.

The source code files are: (1) coarrapi- ca. f 90, (2) do concurrent pi _dc. f 90, (3) OpenMP -
pi _onp. f 90 and (4) MPIpi _npi . f 90.

Tasks

Examine the coarray source coge, ca.f 90, and add the necessary image control statements
where required.

Change the number of images and rerun the program, noting down the run time. What speed-up can
you achiee?

What is the relatie peed of the 4 programs?

Split the work between the images in an altervatiashion, by changing theéo loop todo i =
(ing-1)*cs+1l, inmg*cs wherecs=limt/nings. Iste accuragof the code maintained?
Does the code run faster or slower?

What happens when the series limit is not an exact multiple of the number of images?

Try using seeral nodes.For this you need to submit your job to the quepbs. sh is the template
job submission script. Ma&kwure to modify the path to where your course files are.

Intel compiler requires different options for shared and distributed memory compilation. The shared
memory &ecutable igpi _ca. xs. The distributed memoryxecutable ispi _ca. xd. Examine the
Makefi | e for more details.For distributed memory the Intel compiler needs a configuration file.
The template is provided ma. conf . The file must contain the number of processor and the name
of the executable as the lastgament. Thidile is updated fronpbs. sh.

-11-

13. Another scaling example

speed-up

5
3
:

\

[

: SYNC ALL —F— -
r SYNC | MAGES serial - X _Z
i SYNC | MAGES d&c — A\ —
|

100 &
E
N
L
L
L
|

10 X
£
',
r
B
F
|

1 L— T L L Lianla o ot oode o oo oabo oo aaado
8 64 512 4096 32768

Number of cores, Hector XE6

This scaling data was obtained on Hectioe previous generation UK national supercompuiére
code is a microstructure simulation cellular automata nodethree order magnitude speed has been
achieved between 8 and 32k cores, an efficign€ about 25%.

co_sumis at present a Cray&nsion to the standard. This igalective sum operation. Note that
even syncall shows very impresae saling, despite being the simplest image control statement, a global
barrier.

14. Allocatable coarrays and coarray components of derived types

Coarray variables can be allocatabllocatable coarrays are declared withfor each dimension
and each codimension:

real, allocatable :: r(:) [:] ! real allocatable array coarray

conpl ex, allocatable :: c[:] I conpl ex allocatabl e scalar coarray

integer, allocatable :: i[:,:,:] ! integer allocatable scalar coarray
|

with 3 codi nensions

As with non-allocatable coarrahe last upper codimension must be an asterisk on allocation, wofatlo
the number of images to be determined at runtime:

all ocate(r(100) [*], source=0.0)
al l ocate(c[*], source=cnpl x(0.0,0.0))
all ocate(i[7,8,*], source=0)

Sourced allocation was added in Fortran 2003.

Allocation and deallocation of coarrayyvave implicit image synchronisation. Hence coarray allo-
cation/deallocation must appear only in contexts whichlwalieage control statements. This means that all

5 A. Shterenlikht, “Fortran coarray library for 3D cellular automata microstructure simulatid®roaeed-
ings of the 7th International Conference on PGAS Programming Models, ed. M. Weiland, A. Jackson & N.
Johnson, The Uwersity of Edinturgh, UK (2013). ISBN: 978-0-9926615-0-2
http://www.pgas2013.org.uk/sites/default/files/finalpapers/Day2/R4/1_paper2.pdf.

-12-

images must allocate and deallocate a coarfdlyallocated coarrays are automatically deallocated at pro-
gram termination.
Coarrays must be allocated with the same bounds and cobounds on all images.

The following coarray allocations anet valid because the bounds or cobounds are not identical on
all images. Howeer, the processor (compiler) is not required to detect this violation of the standard.

allocate(r(10*this_image()) [*], source=0.0) I not valid
allocate(i[7*this_inmage(), 8,*], source=0) I not valid

Coarrays can be passed as arguments to subroutinescoarray is allocated in a subroutine, the
dummy argument must be declared witht ent (i nout) . The bounds and cobounds of the actugliar
ment must match those of the dummy argument.

nodul e coal | oc

cont ai ns

subroutine coal (i, b, cob)
i nteger, allocatable, intent(inout) :: i(:) [:,:]
integer, intent(in) :: b, cob

allocate(i(b) [cob,*], source=0)
end subroutine coal
end nodul e coal | oc

program z
use coal |l oc

integer, allocatable :: i(:) [:,:]
call coal(i, 8, 4)

end program z

If arrays with different bounds are needed on different images, a simple solution V& to&aay
components of a desed type:

$ cat pointer.f90

program z
inmplicit none
type t
integer, allocatable :: i(:)
end type
type(t) :: value[*]
integer :: ing
img = this_inmage()
al l ocate(val ue% (ing), source=ing) ! not coarray - no sync
sync al

if (img .eq. num.inmages()) value% (1) = value[1]% (1)
wite (*,*) "inmg", inmg, value%

end program z

$ifort -coarray -warn all -o pointer.x pointer.f90

$ setenv FOR _COARRAY_NUM | MAGES 3

$./pointer.x

i mg 1 1
i ng 2 2 2
i ng 3 1 3 3

$

-13-

15. Termination
In a coarray program a distinction is made betwesoriamal anderror termination.

Normal termination on one image allows other images to finish tlegk. W6TOP andEND PRO-
GRAM initiate normal termination.

New intrinsic ERROR STOP initiates error terminationThe purpose of error termination is to-ter
minateall images as soon as possible.

Example of a normal termination:

$ cat termf90
inmplicit none

integer :: i[*], iny
real :: r

img = this_i mge()

i = inyg

if (im-1.eq. 0) stop "inmg cannot conti nue"
do i =1, 100000000

r = atan(real (i))
end do
wite (*,*) "img", ing,
end
$ifort -coarray termf90 -0 termx
$./termx
i mg cannot continue

r-, r

i gy 2r 1. 570796

i gy 4 r 1. 570796

i gy 3r 1. 570796
$

Image 1 has encountered some error condition and cannot proceed fHidhewve, this does not
affect other images. Thecan continue doing theiravk. HenceSTOP is the best choice here.

Example of an error termination:

$ cat errtermf90
inmplicit none

integer :: i[*], iny
real :: r

img = this_i mge()

i = inyg

if (im-1 .eq. 0) error stop "inmg cannot continue"
do i =1, 100000000
r = atan(real (i))
end do
wite (*,*) "img", ing,
end
$ifort -coarray errtermf90 -0 errtermx
$.Jerrtermx
i mg cannot continue
application called MPI_Abort (comm=0x84000000, 3) - process O
rank 0 in job 1 newbl ue3 53066 caused col l ective abort of all ranks
exit status of rank O: return code 3

$

r-, r

Here the error condition on image 1 ivese. Itdoes not mak £nse for other images to continue.
ERROR STOP is the appropriate choice here.

-14-

Note: the following does not seem to be supported by the Intel compiler v.15.

The standard provides sawto determine, via image control statemesytac i mages andsync
al I , whether ag image has initiated normal terminatioRor this both statements can useat = speci-
fier. If at the point of an image control statement some image has already initiated normal termination, then
the integer variable gén to st at = will be defined with the constast at _st opped_i nmage from the
intrinsic modulei so_f ortran_env. The images that are stilkecuting might decide to taka @rtain
action with this knowledge:

use, intrinsic :: iso fortran_env
integer :: errstat=0
I all imges do work

sync all(stat=errstat)

if (errstat .eq. stat_stopped_inmage) then
I save ny data and exit

end if

I otherwi se continue normally

Below is a £hematic flowchart illustrating steps taken during normal and error termination.

normal
termination
initialised

SYNC ALL
fatal error

: SYNC IMAGES
€. avby§ \” with STAT=

ERROR STOP

END PROGRA

16

17

18

-15-

. Example program: allocatable component of a derived type

cd examples/coarray/6pointer
make

Tasks

Is image synchronisation necessary in t@sneple? Wk? Where?

Add the necessary image synchronisation statement.

Does the program work as expected on different numbers of images?

. Example program: allocatable coarray

cd examples/coarray/7alloc
make

Tasks

How mary execution segments does the programe?a

What would happen if only one image called subroutioal ?
Doescoal need to be deallocated at the end of the program?

. Example program: normal and error termination

cd examples/coarray/8term
make

Tasks
Change the program to use error termination.

-16-

19. Next standard

The next Fortran standard is expected in 2015. It wilehaw marray features, detailed in the tech-
nical specification TS 18508, "AdditionahRallel Features in Fortran", WG5/N2033his is the 6th draft
of this TS. It was appred in NOV-2014, subject to further corrections. TS 18508 includes:

. Teams - subsets of imagesnking on independent tasks. This feature helps exploit functional paral-

lelism in coarray programs. Proposedvratatements ardckOCRMTEAM CHANCGE TEAM andSYNC
TEAM Proposed ne intrinsics areGET_TEAMandTEAM | D.

. Events - similar to locksProposed ne statements arédeVENT POST andEVENT WAI T. Proposed
new intrinsic iIsEVENT _QUERY.

. Facilities to deal withdiled images - thinkxascale... Proposethwv statements are=Al L | MAGE.
Proposed neg intrinsics areFAI LED | MAGES, | MAGE_STATUS andSTOPPED _| MAGES.

. New a@omic intrinsics, such a&sTOM C_ADD, ATOM C_ORor ATOM C_XOR.
. Collectives: CO_MAX, CO_M N, CO_SUM CO_REDUCE andCO_BROADCAST.

20. Coarray resources
The standard is the best reference. Draft versiovaitahle onlin€ for free.
A more readable, but just as thorough, resource is the® ldddk.
Sections on coarrays, with examples, can be foundsamadurther books: 1% 11 12

At this time Fortran 2008 coarrays are fully supported only by the Cray compilee Intel v15
coarray support is nearly completeve'found bugs in both Cray and Intel compilers though.

Fortran 2008 Features Absoft | Cray | g95 gfortran | HP | IBM Intel | NAG @ Oracle | Pathscale | PGI

Compiler version number 14 83.0 48 15.1 15 6.0 37,32 | 4 14.4
2 Submodules N Y N N Y N N N N N
3 Coarrays N Y P P20 [N N ¥ N N N N

(From ACM Fortran Forur?)

G95 and GCC compilers support syntax, but until recenthyethttke underlying inter-image commu-

nication library Howeve, a lecent announcement of the OpenCoarrays project (http://opencoaghys.or
for "developing, porting and tuning transport layers that support coarray Fortran compilers" is likely to

change this. The delopers claim that GCC5 can already be used with OpenCoarrays.

In addition there are clairtfsthat Rice Compiler (Rice Uwérsity, USA) and OpenUH (Unersity of
Houston, USA) also support coarrays.

The Fortran mailing listCOMP- FORTRAN- 90@ | SCMVAI L. AC. UK, and the Fortran Usenet we-
group,conp. | ang. f ort r an, are invaluable resources for all things Fortran, including coarrays.

61SO/IEC JTC1/SC22/WG5 N2033S 18508 Additional Parallel Featuresin Fortran (6-NOV-2014).

"ISO/IEC JTC1/SC22/WG5 WD1539-1,J3/10-007r1 F2008 Working Document. http:/j3-for-
tran.org/doc/year/10/10-007r1.pdf.

8 M. Metcalf, J. Reid, and M. Coheklodern Fortran explained, Oxford, 7 Ed. (2011).

91. Chivers and J. Sleightholméntroduction to Programming with Fortran, Springer 2 Ed. (2012).

10 A, Markus,Modern Fortran in practice, Cambridge (2012).

11R. J. Hanson and. Hopkins,Numerical Computing with Modern Fortran, SIAM (2013).

12N. s. Clerman and W Spectpdern Fortran: style and usage, Cambridge (2012).

131, D. Chivers and J. Sleightholme, “Compiler support for the Fortran 2003 and 2008 stand@idsror-
tran Forum 33(2), pp. 38-51, revision 15 (AUG-2014).

14 A. Fanfarillo, T. Burnus, S. Filippone, MCardellini, D. Nagle, and D. W. Rouson, “OpenCoarrays:
open-source transport layers supporting coarragrr&h compilers” inPGAS conf. (2014). http://opencoar
rays.org/yahoo_site_admin/assets/docs/pgas14_submission_7.30712505.pdf.

-17-

21. Example: parallel image processing
This example implements a halo exchange algorithm to speed up an image processing program.

We will need to vievimages on screen. Please connect to BlueCrystabwith - X.

cd examples/coarray/9laplace
make

This directory contains seral programs, each producing a separate output file.

program output
. edge.f90 edge.pgm
serial back.fo0 back.pgm

co_edgel.f90 co_edgel.pgm
coarray fragmented along 1 co_back1.f90 co_backl.pgm

co_edge2.f90 co_edge2.pgm
coarray fragmented along 1 and 200_back2.f90 co_back2.pgm

File r ef . pgmis the reference picture:

To avoid confusion with coarray images, we use "picture" in tlsngple to refer to a graphical image.
This is a photo of Cray XC30, similar to the one installed as Ar¢hercurrent UK national supercom-

puter. r ef _edge. pgmis a reference edge file:

pgm o. f 90 is a module dealing with reading and writing of the PGM files.
If the picture is read into a 2D arrpythen the 2D array of edges, can be calculated likthis:
e(i,j) =p(i-1,j) +p(i+l,j) + p(i,j-1) + p(i,j+1) - 4 * p(i,j)

wherei takes values betwednbound(p, di mF1) andubound(p, dinrl) andj takes \alues

between bound(p, di m=2) andubound(p, di m=2).
Note that the expression feruses values outside of the actual data arBaywe reed to &tend the
array sizes by one in each direction to store the "halo" elements.
You might recognise that the expressiondas a Laplacian of the original picture intensity:
_. _%p_d%p
Ap=pi=53* ay2

-18-

Given the edges of a picture, it is possible to reconstruct the original picture, i.e.tsolaplace
equation, e.g. using the iteraicobi method.Inverting the expression far we get the follaring simple
iterative dgorithm:
pnew(i,j) =0.25* (p(i-1,j) + p(i+l,j) + p(i,j-1) + p(i,j+1) - e(i,j))

p = pnew
which is repeated until coargence.

However, corvergence of this algorithm isary slav. Typically 1 — 1¢P iterations are requirediVe

will use coarrays to speed-up theseution.

The ley idea is to partition the picture into smaller fragments, andydel@rocessing of each frag-
ment to a separate processor (image). The picture may be partitioned along dimension 1:

or along dimension 2:

or along both dimensions 1 and 2:

Tasks:

. Study and run the serial edge detection progeaige. f 90. It produces fileedge. pgm Make
sure it matches the reference edgerfégé _edge. pgm You can use UNIX commardi f f , possi-
bly with - g switch.

-19-

Study and run the serial picture reconstruction progtaamck. f 90. This program produces
back. pgm Try different number of iterationgj t er , inback. f 90 until you get the exact match
with r ef . pgm Write down the recution time ofback. f 90, required to achiee mrvergence.
You can use UNIX commanti e, for example asusr/bin/time-fE

Studyco_edgel. f 90. This is a coarray edge detection program, implementing picture fragmenta-
tion along direction 1. Run itlt produces the edge fileo_edgel. pgm Does it agree with

ref edge. pgn? Why? Add the missing image control statements to aehiee desired xecu-

tion order Make sureco_edgel. pgmagrees witlr ef _edge. pgm

Studyco_backl. f 90. This is a coarray picture reconstruction program, implementing fragmenta-
tion along direction 1. Use the same value fiort er that you found withback. f 90. Run
co_backl. f 90. It produces the reconstructed picture file_backl. pgm Does it agree with

ref . pgn? Why? Add the missing image control statements to aehfee desired>aecution order
Make sureco_backl1. pgmagrees witlr ef . pgm

Collect the run times afo_back1. f 90 for different numbers of images.
Doco_edgel. f 90 orco_backl. f 90 work with just one image? Why?

Studyco_edge?2. f 90. This is a coarray edge detection program, implementing picture fragmenta-
tion along both directions 1 and Run it. Note that this program takes the number of images along
1 as ts only agument. Sg/ou need to makaure this agument is consistent with the total number of
images.

co_edge2. f 90 produces the edge fileo_edge2. pgm Does it agree withr ef _edge. pgm

Why? Addthe missing image control statements to aehine desiredecution order Make sure

the resultingco_edge2. pgmagrees witlhr ef _edge. pgm

Studyco_back?2. f 90. This is a coarray picture reconstruction program, implementing fragmenta-
tion along both directions 1 and 2. Run it. Note that this prograestdie number of images along

1 as ts only agument. Itproduces the reconstructed picture &le_back2. pgm Does it agree
with r ef . pgm Why? Add the missing image control statements to aehiee desiredecution
order Make wre the resultingo back?2. pgmagrees wittlr ef . pgm

Doco_edge2. f 90 orco_back2. f 90 work with just one image? Why?
What is the highest speed-up you can aafie

