
Parallel programming with Fortran 2008 coarrays

Anton Shterenlikht

Mech Eng Dept, The University of Bristol, Bristol BS8 1TR
mexas@bris.ac.uk

ABSTRACT

Coarrays are a Fortran 2008 standard feature intended for single program - multiple
data (SPMD) type parallel programming. The runtime environment starts a number of
identical executable images of the coarray program, on multiple processors, which could
be actual physical processors or threads.Each image has a unique number and its private
address space. Ordinary variables are private to an image. Coarray variables are avail-
able for read/write access from any other image. HPC literature coarrays are sometimes
considered to be an example of partitioned global address space (PGAS) parallel pro-
gramming model. Coarray communications are of "single sided" type, i.e. a remote call
from image A to image B does not need to be accompanied by a corresponding call in
image B. This feature makes coarray programming a lot simpler than MPI.The standard
provides synchronisation intrinsics to help avoid race conditions or deadlocks.Any ordi-
nary variable can be made into a coarray - scalars, arrays, intrinsic or derived data types,
pointers, allocatables are all allowed. Coarrayscan be declared in, and passed to, proce-
dures. Coarraysare thus very flexible and can be used for a number of purposes.For
example a collection of coarrays from all or some images can be thought of as a large sin-
gle array. This is the opposite of the model partitioning logic, typical in MPI programs.
A coarray program can exploit functional parallelism too, by delegating distinct tasks to
separate images or teams of images. Coarray collectives are expected to become a part of
the next version of the Fortran standard.A major unresolved problem of coarray pro-
gramming is the lack of standard parallel I/O facility in Fortran. Inthis talk several pro-
gram fragments and complete coarray programs are shown. Comparisonis made with
alternative parallel technologies - OpenMP, MPI and Fortran 2008 intrinsic "do concur-
rent". Interimage communication patterns and data transfer are illustrated.

28 January 2015

1. Coarray images

The runtime environment spawns a number of identical copies of the executable, calledimages.
Hence coarray programs follow SPMD model.

runtime environment

image 1 image 2 image n. . .

$ cat one.f90
use iso_fortran_env, only: output_unit
implicit none
integer :: img, nimgs
img = this_image()

nimgs = num_images()
write (output_unit,"(2(a,i2))") "image: ", img, " of ", nimgs
end
$
$ ifort -o one.x -coarray -coarray-num-images=5 one.f90
$./one.x
image: 1 of 5
image: 3 of 5
image: 4 of 5
image: 2 of 5
image: 5 of 5
$

iso_fortran_env is the intrinsic module, introduced in Fortran 2003, and expanded in Fortran
2008. Themodule provides several named constants, such asinput_unit, output_unit and
error_unit, and a derived type.

All I/O units, exceptinput_unit, are private to an image.However the runtime environment typi-
cally merges output_unit and error_unit streams from all images into a single stream.
input_unit is preconnected only on image 1.

this_image and num_images are new intrinsics in Fortran 2008.this_image() with no
arguments returns the index of the invoking image, starting from 1.num_images(), used always without
arguments, returns the total number of images.

With Intel compiler one can set the number of images with the environment variable:

$ FOR_COARRAY_NUM_IMAGES=3
$ export FOR_COARRAY_NUM_IMAGES
$./one.x
image: 1 of 3
image: 2 of 3
image: 3 of 3
$

Note: as with MPI the order of output statements is unpredictable.

-2-

2. Intel Fortran compiler on BlueCrystal

The course materials are available via subversion, so you need to load this module:

tools/subversion-1.8.4

Make a directory for the course, and download the materials, e.g.

$ mkdir zzz
$ cd zzz
$ svn co https://svn.ggy.bris.ac.uk/subversion-open/pgas .

We will use ifort v.15 on phase 3. Load these modules:

languages/intel-compiler-15
languages/intel-compiler-15-impi

Also set the environment variables for ifort.For Bourne shell and related shells do:

source /cm/shared/languages/Intel-Compiler-XE-15/bin/compilervars.sh intel64

For C shell and related shells do:

source /cm/shared/languages/Intel-Compiler-XE-15/bin/compilervars.csh intel64

The example problems and the solutions are under

examples/coarray
examples/coarray/sol

3. Example program: printing image number

cd examples/coarray/1img
make

Tasks:

• Try running the compiled program a number of times.Do the messages appear in image order?Is
the order of the messages the same for all runs? Explain these observations.

• Change the number of images usingFOR_COARRAY_NUM_IMAGES environment variable. Doyou
need to recompile the program?

• Change the number of images using-coarray-num-images compiler switch. Recompile and
re-run the program. Does the number of images match what you set? Fromifort(1) man page:

"Note that when a setting is specified in environment variable
FOR_COARRAY_NUM_IMAGES, it overrides the compiler option setting."

• Hav ea look at theifort(1) man page. Search forcoarray.

-3-

4. Coarray syntax

The standard1, 2, 3uses the square brackets[], to denotes a coarray variable. Acoarray variable can
be also declared withcodimension attribute. Any image has read/write access to all coarray variables
on all images. It makes no sense to declare coarray parameters.

The last upper cobound is always an*, meaning that it is only determined at run time.

Examples of coarray variables:

integer :: i[*] ! scalar integer coarray with a single
! codimension

integer, codimension(*) :: i ! equivalent to the above

! lower upper
! cobound cobound
! | |
! | |
! upper | |
! bound | |
! lower | | |
! bound | | |
! | | | |
complex :: c(7,0:13) [-3:2,5,*] ! complex array coarray of corank 3
! | | | | |
! subscripts cosubscripts
!

Similar to ordinary Fortran arrays,corank is the number of cosubscripts.Eachcosubscript runs from
its lower cobound to its upper cobound. New intrinsics are introduced to return these values:lcobound
anducobound.

1 ISO/IEC 1539-1:2010,Information technology - Programming languages - Fortran - Part 1: Base lan-
guage.

2 ISO/IEC 1539-1:2010/Cor 1:2012,Information technology - Programming languages - Fortran - Part 1:
Base language TECHNICAL CORRIGENDUM 1.

3 ISO/IEC 1539-1:2010/Cor 2:2013,Information technology - Programming languages - Fortran - Part 1:
Base language TECHNICAL CORRIGENDUM 2.

-4-

5. Cosubscript sets

this_image can take a coarray variable as an argument. Inthis case it returns aset of cosubscripts
corresponding to the invoking image. New intrinsic image_index is the inverse of this_image.
Given a valid set of cosubscripts as an input,image_index returns the index of the invoking image.
Note that there can be subscript sets which do not map to a valid image index. For suchinvalid cosubscript
setsimage_index returns0.

% cat cob.f90
program cob
implicit none
character(len=10) :: i[-2:2,2,1:*]
if (this_image() .eq. num_images()) then

write (*,*) "this_image()", this_image()
write (*,*) "this_image(i)", this_image(i)
write (*,*) "lcobound(i)", lcobound(i)
write (*,*) "ucobound(i)", ucobound(i)
write (*,*) "image_index(ucobound(i))", image_index(i, ucobound(i))

end if
end program cob
% ifort -o cob.x -coarray cob.f90
% setenv FOR_COARRAY_NUM_IMAGES 20
% ./cob.x
this_image() 20
this_image(i) 2 2 2
lcobound(i) -2 1 1
ucobound(i) 2 2 2
image_index(ucobound(i)) 20
% setenv FOR_COARRAY_NUM_IMAGES 24
% ./cob.x
this_image() 24
this_image(i) 1 1 3
lcobound(i) -2 1 1
ucobound(i) 2 2 3
image_index(ucobound(i)) 0
%

6. Example program: cobounds and cosubscript sets

cd examples/coarray/2cob
make

Tasks:

• What number of images must be used forucobound(i) to return a valid cosubscript set?

• Change the cobounds of coarrayi to make sureucobound(i) will return a valid cosubscript set
when run on 8 images.

-5-

7. Remote operations, execution segments and image control statements

Remote operations are easily expressed in coarray notation. If a coarray variable does not have the
square brackets,[], then the reference is to the variable of the invoking image. The syntax thus clearly
indicates which statements involve remote operations.

integer :: i[*], j
real :: r(3,8) [4,*]
!
i[5] = i ! remote write
r(:,:) = r(:,:) [3,3] ! remote read
i = j ! both i and j taken from the invoking image

There are several rules governing remote calls.Only one image can be referenced in each statement.
For array coarray the bracket notation,(), must be used if a coarray variable is an array. A valid set of
cosubscripts must be used to refer to an image, not the image index.

A Coarray program consists of one or moreexecution segments. The segments are separated by
image control statements. If there are no image control statements in a program, then this program has a
single execution segment. sync all is a simple image control statement.To use it, each image must
execute this statement.On reaching this statement each image waits for each other. Its effect is in ordering
the execution segments on all images. All statements on all images beforesync all must complete
before any image starts executing statements aftersync all. In other words all imagessynchronise
with each other. Thussync all is a global barrier, similar to MPI routine MPI_Barrier.

integer :: i[*] ! Segment 1 start
if (this_image() .eq. 1) & ! Image 1 sets its value for i.
i = 100 ! Segment 1 end

!
! All images must wait for image 1 to set its i,
! before reading i from image 1.

sync all ! Image control statement
i = i[1] ! Segment 2 start - all images read i from image 1
end ! Segment 2 end

Note that not using the image control statement in this example will result in a race condition - some
images might try to readi from image 1 before image 1 finished setting its value. However, the standard
does not allow this:

"if a variable is defined on an image in a segment, it shall not be referenced, defined or become
undefined in a segment on another image unless the segments are ordered"

Thus a standard conforming coarray program should not suffer from races.

All coarray programs implicitly synchronise at start and at termination.

Another new image control statement issync images. It provides a more flexible means for
image control.sync images takes a list of image indices with which it must synchronise:

if (this_image() .eq. 3) sync images((/ 2, 4, 5 /))

There must becorresponding sync images statements on the images referenced bysync images
statement on image 3, e.g.:

if (this_image() .eq. 2) sync images(3)
if (this_image() .eq. 4) sync images(3)
if (this_image() .eq. 5) sync images(3)

Asterisk,*, is an allowed input. The meaning is that an image must synchronise with all other images:

if (this_image() .eq. 1) sync images(*)
if (this_image() .eq. 1) sync images(1)

-6-

In this example all images must synchronise with image 1, but not with each other, as would have been the
case withsync all.

For cases when there are multiplesync images statements with identical sets of image indices,
the standard sets the rules which determine whichsync images statements correspond:

"Executions of SYNC IMAGES statements on images M and T correspond if the number of
times image M has executed a SYNC IMAGES statement with T in its image set is the same as
the number of times image T has executed a SYNC IMAGES statement with M in its image
set. Thesegments that executed before the SYNC IMAGES statement on either image precede
the segments that execute after the corresponding SYNC IMAGES statement on the other
image."

Here’s an example of swapping coarray values between two images.

$ cat swap.f90
integer :: img, nimgs, i[*], tmp

! implicit sync all
img = this_image()

nimgs = num_images()
i = img ! i is ready to use

if (img .eq. 1) then
sync images(nimgs) ! explicit sync 1 with last img
tmp = i[nimgs]
sync images(nimgs) ! explicit sync 2 with last img

i = tmp
end if

if (img .eq. nimgs) then
sync images(1) ! explicit sync 1 with img 1
tmp = i[1]
sync images(1) ! explicit sync 2 with img 1

i = tmp
end if
write (*,*) img, i

! all other images wait here
end
$ ifort -coarray swap.f90
$ setenv FOR_COARRAY_NUM_IMAGES 5
$./a.out

3 3
1 5
2 2
4 4
5 1

$

How many execution segments are there on each image?

Whichsync images statements correspond?

-7-

8. Example program: segments and image control statements

cd examples/coarray/3swap
make

Tasks:

• Make the program standard conforming withsync all image control statements.

• Make the program standard conforming withsync images statements.

• Can you make the program deadlock?

9. Example program: deadlock

cd examples/coarray/4deadlock
make

Tasks:

• Try to run the program.Terminate with CTRL/C if stuck.

• Explain why the program deadlocks in terms of execution segments and image control statements.

• Modify the program to avoid the deadlock.

10. New Fortran 2008 construct: do concurrent

This do loop is intended for cases when the order of loop iterations is of no importance. The idea is
that such loops can be optimised by a compiler.

integer :: i, a1(100)=0, a2(100)=1
do concurrent(i=1, 100)
a1(i) = i ! valid, independent
a2(i) = sum(a2(1:i)) ! invalid, order is important

end do

The exact list of restrictions on what can appear inside ado concurrent loop is long. These restric-
tions severely limit the usefulness of thedo concurrent construct. Whilethis new construct is poten-
tially a portable parallelisation tool, there might or might not be a performance gain, depending on the
implementation. Inthis tutorialdo concurrent is used for comparison with coarrays in theπ calcula-
tion example.

-8-

11. Implementation and performance

The standard deliberately (and wisely) says nothing on this.

A variety of underlying parallel technologies can be, and some are, used - MPI, OpenMP, SHMEM,
GASNet, ARMCI, etc. As always, performance depends on a multitude of factors.4

The Standardexpects, but does not require it, that coarrays are implemented in a way that each image
knows the address of all coarrays in memories of all images, something like the integer coarrayi in the
illustration below. This is sometimes calledsymmetric memory. An ordinary, non-coarray, variabler
might be stored at different addresses by different processes. Cray compiler certainly does this, other com-
pilers likely do too.

xf3d r

real :: r

some image

i(:)[5]=i

xf0f ...
xf0e i(2)
xf0d i(1)
xf0c ...
.... ...
xb5a r

image 5

i(:)[5]=i

real :: r
addraddr

xf0c ...
xf0d i(1)
xf0e i(2)
xf0f ...
.... ...

Example: calculation ofπ using the Gregory - Leibniz series:

π = 4Σ∞
n=1

(−1)n−1

2n − 1

Given the series upper limit, each image sums the terms beginning with its image number and with a
stride equal to the number of images. Then image 1 sums the contributions from all images.The segments
are ordered bysync all to make sure all images finish calculating their partial sums before image 1
reads the values from all other images and adds those together.

Below is a sample scaling performance with ifort on 16-core nodes with 2.6Hz SandyBridge cores.
As always, a great many things affect performance, coarrays are no exception.

1

10

1 2 4 8 16 32 64
1

10
time, s speed-up

images

time, s
speed-up

4 A. Fanfarillo, T. Burnus, S. Filippone, V. Cardellini, D. Nagle, and D. W. I. Rouson, “OpenCoarrays: open-
source transport layers supporting coarray Fortran compilers” inPGAS conf. (2014). http://opencoar-
rays.org/yahoo_site_admin/assets/docs/pgas14_submission_7.30712505.pdf.

-9-

The key segment of the code, - the loop for partialπ , and the calculation of the totalπ value, is
shown below for the coarray code, and also for MPI, Fortran 2008 new intrinsicDO CONCURRENT and
OpenMP.

Coarrays

do i = this_image(), limit, num_images()
pi = pi + (-1)**(i+1) / real(2*i-1, kind=rk)
end do
sync all ! global barrier
if (img .eq. 1) then
do i = 2, nimgs
pi = pi + pi[i]

end do
pi = pi * 4.0_rk

end if

MPI

do i = rank+1, limit, nprocs
pi = pi + (-1)**(i+1) / real(2*i-1, kind=rk)
end do
call MPI_REDUCE(pi, picalc, 1, MPI_DOUBLE_PRECISION, &

MPI_SUM, 0, MPI_COMM_WORLD, ierr)

picalc = picalc * 4.0_rk

DO CONCURRENT

loops = limit / dc_limit
do j = 1, loops
shift = (j-1)*dc_limit
do concurrent (i = 1:dc_limit)
pi(i) = (-1)**(shift+i+1) / real(2*(shift+i)-1, kind=rk)

end do
pi_calc = pi_calc + sum(pi)

end do

pi_calc = pi_calc * 4.0_rk

OpenMP

!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(i) REDUCTION(+:pi)
do i = 1, limit
pi = pi + (-1)**(i+1) / real(2*i-1, kind=rk)
end do
!$OMP END PARALLEL DO

pi = pi * 4.0_rk

Coarray implementation is closest to MPI.When coarray collectives are in the standard, the similar-
ity will be even greater.

The table below is a subjective comparison of these four parallelisation methods.

-10-

Parallel
method/language

Fortran
standard

shared
memory

distributed
memory

ease of use flexibility performance

coarrays yes yes yes easy high high
do concurrent yes possibly possibly easy poor uncertain

OpenMP no yes no easy limited medium
MPI no yes yes hard high high

12. Example program: calculation of π

cd examples/coarray/5pi
make all
make run

For comparison, the same problem is solved with coarrays,do concurrent OpenMP and MPI.
The source code files are: (1) coarray -pi_ca.f90, (2) do concurrent -pi_dc.f90, (3) OpenMP -
pi_omp.f90 and (4) MPIpi_mpi.f90.

Tasks

• Examine the coarray source code,pi_ca.f90, and add the necessary image control statements
where required.

• Change the number of images and rerun the program, noting down the run time. What speed-up can
you achieve?

• What is the relative speed of the 4 programs?

• Split the work between the images in an alternative fashion, by changing thedo loop todo i =
(img-1)*cs+1, img*cs wherecs=limit/nimgs. Is the accuracy of the code maintained?
Does the code run faster or slower?

• What happens when the series limit is not an exact multiple of the number of images?

• Try using several nodes.For this you need to submit your job to the queue.pbs.sh is the template
job submission script. Make sure to modify the path to where your course files are.

• Intel compiler requires different options for shared and distributed memory compilation. The shared
memory executable ispi_ca.xs. The distributed memory executable ispi_ca.xd. Examine the
Makefile for more details.For distributed memory the Intel compiler needs a configuration file.
The template is provided inca.conf. The file must contain the number of processor and the name
of the executable as the last argument. Thisfile is updated frompbs.sh.

-11-

13. Another scaling example

1

10

100

1000

8 64 512 4096 32768

speed-up

Number of cores, Hector XE6

SYNC ALL

SYNC IMAGES serial

SYNC IMAGES d&c

co_sum

This scaling data was obtained on Hector, the previous generation UK national supercomputer. The
code is a microstructure simulation cellular automata model.5 A three order magnitude speed has been
achieved between 8 and 32k cores, an efficiency of about 25%.

co_sum is at present a Cray extension to the standard. This is acollective sum operation. Note that
ev en syncall shows very impressive scaling, despite being the simplest image control statement, a global
barrier.

14. Allocatable coarrays and coarray components of derived types

Coarray variables can be allocatable.Allocatable coarrays are declared with: for each dimension
and each codimension:

real, allocatable :: r(:) [:] ! real allocatable array coarray
complex, allocatable :: c[:] ! complex allocatable scalar coarray
integer, allocatable :: i[:,:,:] ! integer allocatable scalar coarray

! with 3 codimensions

As with non-allocatable coarray, the last upper codimension must be an asterisk on allocation, to allow for
the number of images to be determined at runtime:

allocate(r(100) [*], source=0.0)
allocate(c[*], source=cmplx(0.0,0.0))
allocate(i[7,8,*], source=0)

Sourced allocation was added in Fortran 2003.

Allocation and deallocation of coarrays involve implicit image synchronisation. Hence coarray allo-
cation/deallocation must appear only in contexts which allow image control statements. This means that all

5 A. Shterenlikht, “Fortran coarray library for 3D cellular automata microstructure simulation” inProceed-
ings of the 7th International Conference on PGAS Programming Models, ed. M. Weiland, A. Jackson & N.
Johnson, The University of Edinburgh, UK (2013). ISBN: 978-0-9926615-0-2
http://www.pgas2013.org.uk/sites/default/files/finalpapers/Day2/R4/1_paper2.pdf.

-12-

images must allocate and deallocate a coarray. All allocated coarrays are automatically deallocated at pro-
gram termination.

Coarrays must be allocated with the same bounds and cobounds on all images.

The following coarray allocations arenot valid because the bounds or cobounds are not identical on
all images. However, the processor (compiler) is not required to detect this violation of the standard.

allocate(r(10*this_image()) [*], source=0.0) ! not valid
allocate(i[7*this_image(), 8,*], source=0) ! not valid

Coarrays can be passed as arguments to subroutines.If a coarray is allocated in a subroutine, the
dummy argument must be declared withintent(inout). The bounds and cobounds of the actual argu-
ment must match those of the dummy argument.

module coalloc
contains
subroutine coal(i, b, cob)
integer, allocatable, intent(inout) :: i(:) [:,:]
integer, intent(in) :: b, cob
allocate(i(b) [cob,*], source=0)

end subroutine coal
end module coalloc

program z
use coalloc
integer, allocatable :: i(:) [:,:]
call coal(i, 8, 4)
end program z

If arrays with different bounds are needed on different images, a simple solution is to have coarray
components of a derived type:

$ cat pointer.f90
program z
implicit none
type t
integer, allocatable :: i(:)

end type
type(t) :: value[*]
integer :: img

img = this_image()
allocate(value%i(img), source=img) ! not coarray - no sync
sync all
if (img .eq. num_images()) value%i(1) = value[1]%i(1)
write (*,*) "img", img, value%i
end program z
$ ifort -coarray -warn all -o pointer.x pointer.f90
$ setenv FOR_COARRAY_NUM_IMAGES 3
$./pointer.x
img 1 1
img 2 2 2
img 3 1 3 3
$

-13-

15. Termination

In a coarray program a distinction is made between anormal anderror termination.

Normal termination on one image allows other images to finish their work. STOP andEND PRO-
GRAM initiate normal termination.

New intrinsicERROR STOP initiates error termination.The purpose of error termination is to ter-
minateall images as soon as possible.

Example of a normal termination:

$ cat term.f90
implicit none
integer :: i[*], img
real :: r
img = this_image()
i = img

if (img-1 .eq. 0) stop "img cannot continue"
do i=1,100000000
r = atan(real(i))
end do
write (*,*) "img", img, "r", r
end
$ ifort -coarray term.f90 -o term.x
$./term.x
img cannot continue
img 2 r 1.570796
img 4 r 1.570796
img 3 r 1.570796
$

Image 1 has encountered some error condition and cannot proceed further. Howev er, this does not
affect other images. They can continue doing their work. HenceSTOP is the best choice here.

Example of an error termination:

$ cat errterm.f90
implicit none
integer :: i[*], img
real :: r
img = this_image()
i = img

if (img-1 .eq. 0) error stop "img cannot continue"
do i=1,100000000
r = atan(real(i))
end do
write (*,*) "img", img, "r", r
end
$ ifort -coarray errterm.f90 -o errterm.x
$./errterm.x
img cannot continue
application called MPI_Abort(comm=0x84000000, 3) - process 0
rank 0 in job 1 newblue3_53066 caused collective abort of all ranks
exit status of rank 0: return code 3

$

Here the error condition on image 1 is severe. It does not make sense for other images to continue.
ERROR STOP is the appropriate choice here.

-14-

Note: the following does not seem to be supported by the Intel compiler v.15.

The standard provides a way to determine, via image control statementssync images andsync
all, whether any image has initiated normal termination.For this both statements can usestat= speci-
fier. If at the point of an image control statement some image has already initiated normal termination, then
the integer variable given to stat= will be defined with the constantstat_stopped_image from the
intrinsic moduleiso_fortran_env. The images that are still executing might decide to take a certain
action with this knowledge:

use, intrinsic :: iso_fortran_env
integer :: errstat=0
! all images do work

sync all(stat=errstat)
if (errstat .eq. stat_stopped_image) then
! save my data and exit

end if
! otherwise continue normally

Below is a schematic flowchart illustrating steps taken during normal and error termination.

normal
termination
initialised

END PROGRAM

normal
termination

complete

SYNC ALL
SYNC IMAGES

with STAT=

other
images

informed

SYNC ALL
SYNC IMAGES

other
images

not informed

other
images

continue
working

fatal error
e.g. div by 0ERROR STOP

error
termination

STOP

-15-

16. Example program: allocatable component of a derived type

cd examples/coarray/6pointer
make

Tasks

• Is image synchronisation necessary in this example? Why? Where?

• Add the necessary image synchronisation statement.

• Does the program work as expected on different numbers of images?

17. Example program: allocatable coarray

cd examples/coarray/7alloc
make

Tasks

• How many execution segments does the program have?

• What would happen if only one image called subroutinecoal?

• Doescoal need to be deallocated at the end of the program?

18. Example program: normal and error termination

cd examples/coarray/8term
make

Tasks

• Change the program to use error termination.

-16-

19. Next standard

The next Fortran standard is expected in 2015. It will have new coarray features, detailed in the tech-
nical specification TS 18508, "Additional Parallel Features in Fortran", WG5/N2033.6 This is the 6th draft
of this TS. It was approved in NOV-2014, subject to further corrections. TS 18508 includes:

• Teams - subsets of images working on independent tasks. This feature helps exploit functional paral-
lelism in coarray programs. Proposed new statements are:FORM TEAM, CHANGE TEAM andSYNC
TEAM. Proposed new intrinsics are:GET_TEAM andTEAM_ID.

• Events - similar to locks?Proposed new statements are:EVENT POST andEVENT WAIT. Proposed
new intrinsic isEVENT_QUERY.

• Facilities to deal with failed images - think exascale... Proposednew statements are:FAIL IMAGE.
Proposed new intrinsics are:FAILED_IMAGES, IMAGE_STATUS andSTOPPED_IMAGES.

• New atomic intrinsics, such as:ATOMIC_ADD, ATOMIC_OR or ATOMIC_XOR.

• Collectives:CO_MAX, CO_MIN, CO_SUM, CO_REDUCE andCO_BROADCAST.

20. Coarray resources

The standard is the best reference. Draft version is available online7 for free.

A more readable, but just as thorough, resource is the MFE8 book.

Sections on coarrays, with examples, can be found in several further books.9, 10, 11, 12

At this time Fortran 2008 coarrays are fully supported only by the Cray compiler. The Intel v.15
coarray support is nearly complete. I’ve found bugs in both Cray and Intel compilers though.

(From ACM Fortran Forum13)

G95 and GCC compilers support syntax, but until recently lacked the underlying inter-image commu-
nication library. Howev er, a recent announcement of the OpenCoarrays project (http://opencoarrays.org)
for "developing, porting and tuning transport layers that support coarray Fortran compilers" is likely to
change this. The developers claim that GCC5 can already be used with OpenCoarrays.

In addition there are claims14 that Rice Compiler (Rice University, USA) and OpenUH (University of
Houston, USA) also support coarrays.

The Fortran mailing list,COMP-FORTRAN-90@JISCMAIL.AC.UK, and the Fortran Usenet news-
group,comp.lang.fortran, are invaluable resources for all things Fortran, including coarrays.

6 ISO/IEC JTC1/SC22/WG5 N2033,TS 18508 Additional Parallel Features in Fortran (6-NOV-2014).
7 ISO/IEC JTC1/SC22/WG5 WD1539-1,J3/10-007r1 F2008 Working Document. http://j3-for-

tran.org/doc/year/10/10-007r1.pdf.
8 M. Metcalf, J. Reid, and M. Cohen,Modern Fortran explained, Oxford, 7 Ed. (2011).
9 I. Chivers and J. Sleightholme,Introduction to Programming with Fortran, Springer, 2 Ed. (2012).
10 A. Markus,Modern Fortran in practice, Cambridge (2012).
11 R. J. Hanson and T. Hopkins,Numerical Computing with Modern Fortran, SIAM (2013).
12 N. S. Clerman and W Spector,Modern Fortran: style and usage, Cambridge (2012).
13 I. D. Chivers and J. Sleightholme, “Compiler support for the Fortran 2003 and 2008 standards,” ACM For-

tran Forum 33(2), pp. 38-51, revision 15 (AUG-2014).
14 A. Fanfarillo, T. Burnus, S. Filippone, V. Cardellini, D. Nagle, and D. W. I. Rouson, “OpenCoarrays:

open-source transport layers supporting coarray Fortran compilers” inPGAS conf. (2014). http://opencoar-
rays.org/yahoo_site_admin/assets/docs/pgas14_submission_7.30712505.pdf.

-17-

21. Example: parallel image processing

This example implements a halo exchange algorithm to speed up an image processing program.

We will need to view images on screen. Please connect to BlueCrystal withssh -X.

cd examples/coarray/9laplace
make

This directory contains several programs, each producing a separate output file.

program output

edge.f90 edge.pgm
back.f90 back.pgm

serial

co_edge1.f90 co_edge1.pgm
co_back1.f90 co_back1.pgm

coarray fragmented along 1

co_edge2.f90 co_edge2.pgm
co_back2.f90 co_back2.pgm

coarray fragmented along 1 and 2

File ref.pgm is the reference picture:

To avoid confusion with coarray images, we use "picture" in this example to refer to a graphical image.
This is a photo of Cray XC30, similar to the one installed as Archer, the current UK national supercom-
puter. ref_edge.pgm is a reference edge file:

pgmio.f90 is a module dealing with reading and writing of the PGM files.

If the picture is read into a 2D arrayp, then the 2D array of edges,e, can be calculated like this:

e(i,j) = p(i-1,j) + p(i+1,j) + p(i,j-1) + p(i,j+1) - 4 * p(i,j)

wherei takes values betweenlbound(p, dim=1) andubound(p, dim=1) andj takes values
betweenlbound(p, dim=2) andubound(p, dim=2).

Note that the expression fore uses values outside of the actual data array. So we need to extend the
array sizes by one in each direction to store the "halo" elements.

You might recognise that the expression fore is a Laplacian of the original picture intensity:

∆p = p,ii =
∂2 p

∂x2
+

∂2 p

∂y2

-18-

Given the edges of a picture, it is possible to reconstruct the original picture, i.e. solve the Laplace
equation, e.g. using the iterative Jacobi method.Inverting the expression fore we get the following simple
iterative algorithm:

pnew(i,j) = 0.25 * (p(i-1,j) + p(i+1,j) + p(i,j-1) + p(i,j+1) - e(i,j))
p = pnew

which is repeated until convergence.

However, convergence of this algorithm is very slow. Typically 105 − 106 iterations are required.We
will use coarrays to speed-up the execution.

The key idea is to partition the picture into smaller fragments, and delegate processing of each frag-
ment to a separate processor (image). The picture may be partitioned along dimension 1:

or along dimension 2:

or along both dimensions 1 and 2:

Tasks:

• Study and run the serial edge detection programedge.f90. It produces fileedge.pgm. Make
sure it matches the reference edge fileref_edge.pgm. You can use UNIX commanddiff, possi-
bly with -q switch.

-19-

• Study and run the serial picture reconstruction programback.f90. This program produces
back.pgm. Try different number of iterations,niter, in back.f90 until you get the exact match
with ref.pgm. Write down the execution time ofback.f90, required to achieve convergence.
You can use UNIX commandtime, for example as/usr/bin/time -fE.

• Studyco_edge1.f90. This is a coarray edge detection program, implementing picture fragmenta-
tion along direction 1. Run it.It produces the edge fileco_edge1.pgm. Does it agree with
ref_edge.pgm? Why? Add the missing image control statements to achieve the desired execu-
tion order. Make sureco_edge1.pgm agrees withref_edge.pgm.

• Studyco_back1.f90. This is a coarray picture reconstruction program, implementing fragmenta-
tion along direction 1. Use the same value forniter that you found withback.f90. Run
co_back1.f90. It produces the reconstructed picture fileco_back1.pgm. Does it agree with
ref.pgm? Why? Add the missing image control statements to achieve the desired execution order.
Make sureco_back1.pgm agrees withref.pgm.

• Collect the run times ofco_back1.f90 for different numbers of images.

• Do co_edge1.f90 or co_back1.f90 work with just one image? Why?

• Studyco_edge2.f90. This is a coarray edge detection program, implementing picture fragmenta-
tion along both directions 1 and 2.Run it. Note that this program takes the number of images along
1 as its only argument. Soyou need to make sure this argument is consistent with the total number of
images.

• co_edge2.f90 produces the edge fileco_edge2.pgm. Does it agree withref_edge.pgm.
Why? Addthe missing image control statements to achieve the desired execution order. Make sure
the resultingco_edge2.pgm agrees withref_edge.pgm.

• Studyco_back2.f90. This is a coarray picture reconstruction program, implementing fragmenta-
tion along both directions 1 and 2. Run it. Note that this program takes the number of images along
1 as its only argument. Itproduces the reconstructed picture fileco_back2.pgm. Does it agree
with ref.pgm. Why? Add the missing image control statements to achieve the desired execution
order. Make sure the resultingco back2.pgm agrees withref.pgm.

• Do co_edge2.f90 or co_back2.f90 work with just one image? Why?

• What is the highest speed-up you can achieve?

