
Bright Cluster Manager 6.0

User Manual
Revision: 3473

Date: Tue, 22 Jan 2013

Table of Contents

Table of Contents . i

1 Introduction 1
1.1 What Is A Beowulf Cluster? 1
1.2 Brief Network Description 2

2 Cluster Usage 5
2.1 Login To The Cluster Environment 5
2.2 Setting Up The User Environment 6
2.3 Environment Modules . 6
2.4 Compiling Applications . 9

3 Using MPI 11
3.1 Interconnects . 11
3.2 Selecting An MPI implementation 12
3.3 Example MPI Run . 12

4 Workload Management 17
4.1 What Is A Workload Manager? 17
4.2 Why Use A Workload Manager? 17
4.3 What Does A Workload Manager Do? 17
4.4 Job Submission Process . 18
4.5 What Do Job Scripts Look Like? 18
4.6 Running Jobs On A Workload Manager 18
4.7 Running Jobs In Cluster Extension Cloud Nodes Using cmsub 19

5 SLURM 21
5.1 Loading SLURM Modules And Compiling The Executable 21
5.2 Running The Executable With salloc 22
5.3 Running The Executable As A SLURM Job Script 24

6 SGE 29
6.1 Writing A Job Script . 29
6.2 Submitting A Job . 33
6.3 Monitoring A Job . 34
6.4 Deleting A Job . 35

7 PBS Variants: Torque And PBS Pro 37
7.1 Components Of A Job Script 38
7.2 Submitting A Job . 44

ii Table of Contents

8 Using GPUs 51
8.1 Packages . 51
8.2 Using CUDA . 51
8.3 Using OpenCL . 52
8.4 Compiling Code . 52
8.5 Available Tools . 53

9 User Portal 57

A MPI Examples 61
A.1 “Hello world” . 61
A.2 MPI Skeleton . 62
A.3 MPI Initialization And Finalization 64
A.4 What Is The Current Process? How Many Processes Are

There? . 64
A.5 Sending Messages . 64
A.6 Receiving Messages . 64

Preface

Welcome to the User Manual for the Bright Cluster Manager 6.0 clus-
ter environment. This manual is intended for users of a cluster running
Bright Cluster Manager.

This manual covers the basics of using the Bright Cluster Manager
user environment to run compute jobs on the cluster. Although it does
cover some aspects of general Linux usage, it is by no means comprehen-
sive in this area. Readers are advised to make themselves familiar with
the basics of a Linux environment.

Our manuals constantly evolve to match the development of the Bright
Cluster Manager environment, the addition of new hardware and/or ap-
plications and the incorporation of customer feedback. Your input as a
user and/or administrator is of great value to us and we would be very
grateful if you could report any comments, suggestions or corrections to
us at manuals@brightcomputing.com.

1
Introduction

This manual is intended for cluster users who need a quick introduction
to the Bright Beowulf Cluster Environment. It explains how to use the
MPI and batch environments, how to submit jobs to the queueing system,
and how to check job progress. The specific combination of hardware and
software installed may differ depending on the specification of the cluster,
which means that parts of this manual may not be relevant to the user’s
particular cluster.

1.1 What Is A Beowulf Cluster?
1.1.1 Background And History
In the history of the English language, Beowulf is the earliest surviving
epic poem written in English. It is a story about a hero with the strength
of many men who defeated a fearsome monster called Grendel.

In computing, a Beowulf class cluster computer is a multicomputer ar-
chitecture used for parallel computations, i.e., it uses many computers to-
gether so that it has the brute force to defeat fearsome number-crunching
problems.

The architecture was first popularized in the Linux community when
the source code used for the original Beowulf cluster built at NASA was
made widely available. The Beowulf class cluster computer design usu-
ally consists of one head node and one or more regular nodes connected
together via Ethernet or some other type of network. While the origi-
nal Beowulf software and hardware has long been superseded, the name
given to this basic design remains “Beowulf class cluster computer”, or
less formally “Beowulf cluster”.

1.1.2 Brief Hardware And Software Description
On the hardware side, commodity hardware is generally used in Be-
owulf clusters to keep costs down. These components are mainly Linux-
compatible PCs, standard Ethernet adapters, InfiniBand interconnects,
and switches.

On the software side, commodity software is generally used in Be-
owulf clusters to keep costs down. For example: the Linux operating
system, the GNU C compiler and the Message Passing Interface (MPI)
standard.

The head node controls the whole cluster and serves files and infor-
mation to the nodes. It is also the cluster’s console and gateway to the

© Bright Computing, Inc.

2 Introduction

outside world. Large Beowulf machines might have more than one head
node, and possibly other nodes dedicated to particular tasks, for exam-
ple consoles or monitoring stations. In most cases compute nodes in a
Beowulf system are dumb—in general, the dumber the better—with the
focus on the processing capability of the node within the cluster, rather
than other abilities a computer might generally have. A node may there-
fore have

• one or several “number-crunching” processors. The processors may
also be GPUs

• enough memory to deal with the processes passed on to the node

• a connection to the rest of the cluster

Nodes are configured and controlled by the head node, and do only
what they are told to do. One of the main differences between Beowulf
and a Cluster of Workstations (COW) is the fact that Beowulf behaves
more like a single machine rather than many workstations. In most cases
nodes do not have keyboards or monitors, and are accessed only via re-
mote login or possibly serial terminal. Beowulf nodes can be thought of
as a CPU + memory package which can be plugged into the cluster, just
like a CPU or memory module can be plugged into a motherboard.

1.2 Brief Network Description
A Beowulf Cluster consists of a login, compile and job submission node,
called the head, and one or more compute nodes, often referred to as
worker nodes. A second (fail-over) head node may be present in order to
take control of the cluster in case the main head node fails. Furthermore,
a second fast network may also have been installed for high performance
communication between the (head and the) nodes (see figure 1.1).

Figure 1.1: Cluster layout

The login node is used to compile software, to submit a parallel or
batch program to a job queueing system and to gather/analyze results.

© Bright Computing, Inc.

1.2 Brief Network Description 3

Therefore, it should rarely be necessary for a user to log on to one of
the nodes and in some cases node logins are disabled altogether. The
head, login and compute nodes usually communicate with each other
through a gigabit Ethernet network, capable of transmitting information
at a maximum rate of 1000 Mbps. In some clusters 10 gigabit Ethernet
(10GE, 10GBE, or 10GigE) is used, capable of up to 10 Gbps rates.

Sometimes an additional network is used by the cluster for even faster
communication between the compute nodes. This particular network is
mainly used for programs dedicated to solving large scale computational
problems, which may require multiple machines and could involve the
exchange of vast amounts of information. One such network topology is
InfiniBand, commonly capable of transmitting information at a maximum
rate of 56Gbps and about 1.2µs latency on small packets, for clusters in
2011.The commonly available maximum transmission rates will increase
over the years as the technology advances.

Applications relying on message passing benefit greatly from lower
latency. The fast network is usually complementary to a slower Ethernet-
based network.

© Bright Computing, Inc.

2
Cluster Usage

2.1 Login To The Cluster Environment
The login node is the node where the user logs in and works from. Simple
clusters have a single login node, but large clusters sometimes have mul-
tiple login nodes to improve the reliability of the cluster. In most clusters,
the login node is also the head node from where the cluster is monitored
and installed. On the login node:

• code can be compiled

• applications can be developed

• applications can be submitted to the cluster for execution

• running applications can be monitored

To carry out an ssh login to the cluster, a terminal can be used from
unix-like operating systems:

Example

$ ssh myname@cluster.hostname

On a Windows operating system, an SSH client such as for PuTTY can be
downloaded. The cluster’s address must be added, and the connect but-
ton clicked. The username and password must be entered when prompted.

If the administrator has changed the default SSH port from 22 to some-
thing else, the port can be specified with the -p <port> option:

$ ssh -p <port> <user>@<cluster>

Optionally, after logging in, the password used can be changed using
the passwd command:

$ passwd

© Bright Computing, Inc.

6 Cluster Usage

2.2 Setting Up The User Environment
By default, each user uses the bash shell interpreter. Each time a user
login takes place, a file named .bashrc is executed to set up the shell
environment for the user. The shell environment can be customized to
suit user preferences. For example,

• the prompt can be changed to indicate the current host and direc-
tory

• the size of the command history file can be increased

• aliases can be added for frequently used command sequences

• environment variables can be created or modified

• the location of software packages and versions that are to be used
by a user (the path to a package) can be set

Because there is a huge choice of software packages and versions,
it can be hard to set up the right environment variables and paths for
software that is to be used. To make setting up the environment easier,
Bright Cluster Manager provides preconfigured environment modules
(section 2.3).

2.3 Environment Modules
It can be quite hard to set up the correct environment to use a particular
software package and version.

For instance, managing several MPI software packages on the same
system or even different versions of the same MPI software package is
quite difficult for most users on a standard SUSE or Red Hat system be-
cause many software packages use the same names for executables and
libraries.

A user could end up with the problem of never being quite sure which
libraries have been used for the compilation of a program as multiple li-
braries with the same name may be installed. Very often a user would like
to test new versions of a software package before permanently installing
the package. Within Red Hat or SuSE this would be quite a complex task
to achieve. Environment modules, using the module command, make this
process much easier

2.3.1 Available commands
$ module help

Modules Release 3.2.6 2007-02-14 (Copyright GNU GPL v2 1991):

Usage: module [switches] [subcommand] [subcommand-args]

Switches:

-H|--help this usage info

-V|--version modules version & configuration options

-f|--force force active dependency resolution

-t|--terse terse format avail and list format

-l|--long long format avail and list format

© Bright Computing, Inc.

2.3 Environment Modules 7

-h|--human readable format avail and list format

-v|--verbose enable verbose messages

-s|--silent disable verbose messages

-c|--create create caches for avail and apropos

-i|--icase case insensitive

-u|--userlvl <lvl> set user level to (nov[ice],exp[ert],adv[anced])

Available SubCommands and Args:

+ add|load modulefile [modulefile ...]

+ rm|unload modulefile [modulefile ...]

+ switch|swap [modulefile1] modulefile2

+ display|show modulefile [modulefile ...]

+ avail [modulefile [modulefile ...]]

+ use [-a|--append] dir [dir ...]

+ unuse dir [dir ...]

+ update

+ refresh

+ purge

+ list

+ clear

+ help [modulefile [modulefile ...]]

+ whatis [modulefile [modulefile ...]]

+ apropos|keyword string

+ initadd modulefile [modulefile ...]

+ initprepend modulefile [modulefile ...]

+ initrm modulefile [modulefile ...]

+ initswitch modulefile1 modulefile2

+ initlist

+ initclear

2.3.2 Changing The Current Environment
The modules loaded into the user’s environment can be seen with:

$ module list

Modules can be loaded using the add or load options. A list of mod-
ules can be added by spacing them:

$ module add shared open64 openmpi/open64

The “module avail” command lists all modules that are available for
loading (some output elided):

Example

[fred@bright52 ~]$ module avail

---------------------------- /cm/local/modulefiles -----------------------------

cluster-tools/5.2 dot module-info shared

cmd freeipmi/1.0.2 null use.own

cmsh ipmitool/1.8.11 openldap version

---------------------------- /cm/shared/modulefiles ----------------------------

acml/gcc/64/4.4.0 intel/compiler/64/12.0/2011.5.220

acml/gcc/mp/64/4.4.0 intel-cluster-checker/1.7

acml/gcc-int64/64/4.4.0 intel-cluster-runtime/3.2

acml/gcc-int64/mp/64/4.4.0 intel-tbb-oss/ia32/30_221oss

acml/open64/64/4.4.0 intel-tbb-oss/intel64/30_221oss

...

© Bright Computing, Inc.

8 Cluster Usage

In the list there are two kinds of modules:

• local modules, which are specific to the node, or head node only

• shared modules, which are made available from a shared storage,
and which only become available for loading after the shared mod-
ule is loaded.

The shared module is obviously a useful local module, and is there-
fore loaded for the user by default on a default cluster.

Although version numbers are shown in the “module avail” output,
it is not necessary to specify version numbers, unless multiple versions
are available for a module. When no version is specified, the latest will
be chosen.

To remove one or more modules, the “module unload” or “module
rm” command is used.

To remove all modules from the user’s environment, the “module
purge” command is used.

The user should be aware that some loaded modules can conflict with
others loaded at the same time. For example, loading openmpi/gcc/64/

without removing an already loaded openmpi/gcc/64/ can result in con-
fusion about what compiler opencc is meant to use.

2.3.3 Changing The Default Environment
The initial state of modules in the user environment can be set as a default
using the “module init*” subcommands. The more useful ones of these
are:

• module initadd: add a module to the initial state

• module initrm: remove a module from the initial state

• module initlist: list all modules loaded initially

• module initclear: clear all modules from the list of modules
loaded initially

Example

$ module initclear

$ module initlist

bash initialization file $HOME/.bashrc loads modules:

null

$ module initadd shared gcc/4.4.6 openmpi/gcc/64 torque

$ module initlist

bash initialization file $HOME/.bashrc loads modules:

null shared gcc/4.4.6 openmpi/gcc/64 torque

The new initial state module environment for the user is loaded from
the next login onwards.

If the user is unsure about what the module does, it can be checked
using “module whatis”:

$ module whatis sge

sge : Adds sge to your environment

The man pages for module gives further details on usage.

© Bright Computing, Inc.

2.4 Compiling Applications 9

2.4 Compiling Applications
Compiling an application is usually done on the head node or login node.
Typically, there are several compilers available on the head node. For
example: GNU compiler collection, Open64 compiler, Intel compilers,
Portland Group compilers. The following table summarizes the available
compiler commands on the cluster:

Language GNU Open64 Portland Intel

C gcc opencc pgcc icc

C++ g++ openCC pgCC icc

Fortran77 gfortran openf90 -ff77 pgf77 ifort

Fortran90 gfortran openf90 pgf90 ifort

Fortran95 gfortran openf95 pgf95 ifort

GNU compilers are the de facto standard on Linux and are installed
by default. They do not require a license. AMD’s Open64 is also installed
by default on Bright Cluster Manager. Commercial compilers by Portland
and Intel are available as packages via the Bright Cluster Manager YUM
repository, and require the purchase of a license to use them. To make a
compiler available to be used in a user’s shell commands, the appropriate
environment module (section 2.3) must be loaded first. On most clusters
two versions of GCC are available:

1. The version of GCC that comes along with the Linux distribution.
For example, for CentOS 6.0:

Example

[fred@bright52 ~]$ which gcc; gcc --version | head -1

/usr/bin/gcc

gcc (GCC) 4.4.4 20100726 (Red Hat 4.4.4-13)

2. The latest version suitable for general use that is packaged as a mod-
ule by Bright Computing:

Example

[fred@bright52 ~]$ module load gcc

[fred@bright52 ~]$ which gcc; gcc --version | head -1

/cm/shared/apps/gcc/4.4.6/bin/gcc

gcc (GCC) 4.4.6

To use the latest version of GCC, the gcc module must be loaded. To
revert to the version of GCC that comes natively with the Linux distribu-
tion, the gcc module must be unloaded.

The compilers in the preceding table are ordinarily used for applica-
tions that run on a single node. However, the applications used may fork,
thread, and run across as many nodes and processors as they can access
if the application is designed that way.

The standard, structured way of running applications in parallel is to
use the MPI-based libraries, which link to the underlying compilers in

© Bright Computing, Inc.

10 Cluster Usage

the preceding table. The underlying compilers are automatically made
available after choosing the parallel environment (MPICH, MVAPICH,
OpenMPI, etc.) via the following compiler commands:

Language C C++ Fortran77 Fortran90 Fortran95

Command mpicc mpiCC mpif77 mpif90 mpif95

2.4.1 Mixing Compilers
Bright Cluster Manager comes with multiple OpenMPI packages corre-
sponding to the different available compilers. However, sometimes mix-
ing compilers is desirable. For example, C-compilation may be preferred
using icc from Intel, while Fortran90-compilation may be preferred using
openf90 from Open64. In such cases it is possible to override the default
compiler path environment variable, for example:

[fred@bright52 ~]$ module list

Currently Loaded Modulefiles:

1) null 3) gcc/4.4.6 5) torque/2.5.5

2) shared 4) openmpi/gcc/64/1.4.2

[fred@bright52 ~]$ mpicc --version --showme; mpif90 --version --showme

gcc --version

gfortran --version

[fred@bright52 ~]$ export OMPI_CC=icc; export OMPI_FC=openf90

[fred@bright52 ~]$ mpicc --version --showme; mpif90 --version --showme

icc --version

openf90 --version

Variables that may be set are OMPI_CC, OMPI_FC, OMPI_F77, and
OMPI_CXX. More on overriding the OpenMPI wrapper settings is docu-
mented in the man pages of mpicc in the environment section.

© Bright Computing, Inc.

3
Using MPI

MPI libraries allow the compilation of code so that it can be used over
many processors at the same time.

The available MPI implementations for the variant MPI-1 are MPICH
and MVAPICH. For the variant MPI-2 they are MPICH2 and MVAPICH2.
OpenMPI supports both variants. These MPI libaries can be compiled
with GCC, Open64, Intel, or PGI.

Also, depending on the cluster, the interconnect available may be: Eth-
ernet (GE), InfiniBand (IB) or Myrinet (MX).

Also depending on the cluster configuration, MPI implementations
for different compilers can be loaded. By default MPI implementations
that are installed are compiled and made available using both GCC and
Open64.

The interconnect and compiler implementation can be worked out
from looking at the module and package name. The modules available
can be searched through for the compiler variant, and then the package
providing it can be found:

Example

[fred@bright52 ~]$ # search for modules starting with the name openmpi

[fred@bright52 ~]$ module -l avail 2>&1 | grep ^openmpi

openmpi/gcc/64/1.4.2 2011/05/03 0:37:51

openmpi/intel/64/1.4.2 2011/05/02 8:24:28

openmpi/open64/64/1.4.2 2011/05/02 8:43:13

[fred@bright52 ~]$ rpm -qa | grep ^openmpi

openmpi-ge-gcc-64-1.4.2-108_cm5.2.x86_64

openmpi-geib-open64-64-1.4.2-108_cm5.2.x86_64

openmpi-geib-intel-64-1.4.2-108_cm5.2.x86_64

Here, for example,

openmpi-geib-intel-64.x86_64

implies: OpenMPI compiled for both Gigabit Ethernet (“ge”) and Infini-
Band (“ib”), compiled with the Intel compiler for a 64-bit architecture.

3.1 Interconnects
Jobs can use a certain network for intra-node communication.

© Bright Computing, Inc.

12 Using MPI

3.1.1 Gigabit Ethernet
Gigabit Ethernet is the interconnect that is most commonly available. For
Gigabit Ethernet, no additional modules or libraries are needed. The
OpenMPI, MPICH and MPICH2 implementations will work over Gigabit
Ethernet.

3.1.2 InfiniBand
InfiniBand is a high-performance switched fabric which is characterized
by its high throughput and low latency. OpenMPI, MVAPICH and MVA-
PICH2 are suitable MPI implementations for InfiniBand.

3.2 Selecting An MPI implementation
Once the appropriate compiler module has been loaded, the MPI imple-
mentation is selected along with the appropriate library modules. In the
following list, <compiler> indicates a choice of gcc, intel, open64, or
pgi:

• mpich/ge/<compiler>/64/1.2.7

• mpich2/smpd/ge/<compiler>/64/1.3.2p1

• mvapich/<compiler>/64/1.2rc1

• mvapich2/<compiler>/64/1.6

• openmpi/<compiler>/64/1.4.2

• blas/<compiler>/64/1 1

• blacs/openmpi/compiler/64/1.1patch03

• globalarrays/<compiler>/openmpi/64/5.0.2

• gotoblas/<name of CPU>2/64/1.26

After the appropriate MPI module has been added to the user envi-
ronment, the user can start compiling applications. The mpich, mpich2
and openmpi implementations may be used on Ethernet. On InfiniBand,
mvapich, mvapich2 and openmpi may be used. The openmpi MPI imple-
mentation will attempt to use InfiniBand, but will revert to Ethernet if
InfiniBand is not available.

3.3 Example MPI Run
This example covers an MPI run, which can be run inside and outside of
a queuing system.

To use mpirun, the relevant environment modules must be loaded. For
example, to use mpich over Gigabit Ethernet (ge) compiled with GCC.

$ module add mpich/ge/gcc

Similarly, to use InfiniBand:

1Not recommended, except for testing purposes, due to lack of optimization
2<name of CPU> indicates a choice of the following: barcelona, core, opteron, penryn,

or prescott

© Bright Computing, Inc.

3.3 Example MPI Run 13

$ module add mvapich/gcc/64/1.2rc1

Depending on the libraries and compilers installed on the system, the
availability of these packages might differ. To see a full list on the system
the command “module avail” can be typed.

3.3.1 Compiling And Preparing The Application
The code must be compiled with MPI libraries and an underlying com-
piler. The correct library command can be found in the following table:

Language C C++ Fortran77 Fortran90 Fortran95

Command mpicc mpiCC mpif77 mpif90 mpif95

The following example uses the MPI with a C compiler:

$ mpicc myapp.c

This creates a binary a.out which can then be executed using the
mpirun command.

3.3.2 Creating A Machine File
A machine file contains a list of nodes which can be used by an MPI pro-
gram.

The workload management system creates a machine file based on
the nodes allocated for a job when the job is submitted with the workload
manager job submission tool. So if the user chooses to have the workload
management system allocate nodes for the job then creating a machine
file is not needed.

However, if an MPI application is being run “by hand” outside the
workload manager, then the user is responsible for creating a machine
file manually. Depending on the MPI implementation the layout of this
file may differ.

Machine files can generally be created in two ways:

• Listing the same node several times to indicate that more than one
process should be started on each node:

node001

node001

node002

node002

• Listing nodes once, but with a suffix for the number of CPU cores
to use on each node:

node001:2

node002:2

3.3.3 Running The Application
A Simple Parallel Processing Executable
A simple “hello world” program designed for parallel processing can be
built with MPI. After compiling it can be used to send a message about
how and where it is running:

© Bright Computing, Inc.

14 Using MPI

[fred@bright52 ~]$ cat hello.c

#include <stdio.h>

#include <mpi.h>

int main (int argc, char *argv[])

{

int id, np, i;

char processor_name[MPI_MAX_PROCESSOR_NAME];

int processor_name_len;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &np);

MPI_Comm_rank(MPI_COMM_WORLD, &id);

MPI_Get_processor_name(processor_name, &processor_name_len);

for(i=1;i<2;i++)

{printf("Hello world from process %03d out of %03d, processor name %s\n",

id, np, processor_name);

}

MPI_Finalize();

return 0;

}

[fred@bright52 ~]$ mpicc hello.c -o hello

[fred@bright52 ~]$./hello

Hello world from process 000 out of 001, processor name bright52.cm.cluster

However, it still runs on a single processor unless it is submitted to
the system in a special way.

Running An MPI Executable In Parallel Without A Workload Manager
After the relevant module files are chosen (section 3.3) for MPI, an exe-
cutable compiled with MPI libraries runs on nodes in parallel when sub-
mitted with mpirun. When using mpirun manually, outside a workload
manager environment, the number of processes -np) as well as the num-
ber of hosts (-machinefile) should be specified. For example, on a 2-
compute-node, 4-processor cluster:

Example

fred@bright52 ~]$ module add mvapich/gcc/64/1.2rc1 #or as appropriate

fred@bright52 ~]$ mpirun -np 4 -machinefile mpirun.hosts -nolocal hello

Hello world from process 003 out of 004, processor name node002.cm.cluster

Hello world from process 002 out of 004, processor name node001.cm.cluster

Hello world from process 001 out of 004, processor name node002.cm.cluster

Hello world from process 000 out of 004, processor name node001.cm.cluster

Here, the -nolocal option prevents the executable running on the lo-
cal node itself, and the file mpirun.hosts is a list of node names:

Example

[fred@bright52 ~]$ cat mpirun.hosts

node001

node002

© Bright Computing, Inc.

3.3 Example MPI Run 15

Running the executable with mpirun as shown does not take the re-
sources of the cluster into account. To handle running jobs with cluster
resources is of course what workload managers such as SLURM are de-
signed to do.

Running an application through a workload manager is introduced in
Chapter 4.

Appendix A contains a number of simple MPI programs.

© Bright Computing, Inc.

4
Workload Management

4.1 What Is A Workload Manager?
A workload management system (also known as a queueing system, job
scheduler or batch submission system) manages the available resources
such as CPUs, GPUs, and memory for jobs submitted to the system by
users.

Jobs are submitted by the users using job scripts. Job scripts are con-
structed by users and include requests for resources. How resources are
allocated depends upon policies that the system administrator sets up for
the workload manager.

4.2 Why Use A Workload Manager?
Workload managers are used so that users do not manually have to keep
track of node usage in a cluster in order to plan efficient and fair use of
cluster resources.

Users may still perhaps run jobs on the compute nodes outside of
the workload manager, if that is administratively permitted. However,
running jobs outside a workload manager tends to eventually lead to an
abuse of the cluster resources as more people use the cluster, and thus
inefficient use of available resources. It is therefore usually forbidden as
a policy by the system administrator on production clusters.

4.3 What Does A Workload Manager Do?
A workload manager uses policies to ensure that the resources of a cluster
are used efficiently, and must therefore track cluster resources and jobs.
To do this, a workload manager must:

• Monitor the node status (up, down, load average)

• Monitor all available resources (available cores, memory on the nodes)

• Monitor the jobs state (queued, on hold, deleted, done)

• Control the jobs (freeze/hold the job, resume the job, delete the job)

Some advanced options in workload managers can prioritize jobs and
add checkpoints to freeze a job.

© Bright Computing, Inc.

18 Workload Management

4.4 Job Submission Process
Whenever a job is submitted, the workload management system checks
on the resources requested by the job script. It assigns cores and memory
to the job, and sends the job to the nodes for computation. If the required
number of cores or memory are not yet available, it queues the job until
these resources become available. If the job requests resources that are
always going to exceed those that can become available, then the job ac-
cordingly remains queued indefinitely.

The workload management system keeps track of the status of the job
and returns the resources to the available pool when a job has finished
(that is, been deleted, has crashed or successfully completed).

4.5 What Do Job Scripts Look Like?
A job script looks very much like an ordinary shell script, and certain
commands and variables can be put in there that are needed for the job.
The exact composition of a job script depends on the workload manager
used, but normally includes:

• commands to load relevant modules or set environment variables

• directives for the workload manager to request resources, control
the output, set email addresses for messages to go to

• an execution (job submission) line

When running a job script, the workload manager is normally respon-
sible for generating a machine file based on the requested number of pro-
cessor cores (np), as well as being responsible for the allocation any other
requested resources.

The executable submission line in a job script is the line where the job
is submitted to the workload manager. This can take various forms.

Example

For the SLURM workload manager, the line might look like:

srun --mpi=mpich1_p4 ./a.out

Example

For Torque or PBS Pro it may simply be:

mpirun ./a.out

Example

For SGE it may look like:

mpirun -np 4 -machinefile $TMP/machines ./a.out

4.6 Running Jobs On A Workload Manager
The details of running jobs through the following workload managers is
discussed next:

• SLURM (Chapter 5)

• SGE (Chapter 6)

• Torque (with Maui or Moab) and PBS Pro (Chapter 7)

© Bright Computing, Inc.

4.7 Running Jobs In Cluster Extension Cloud Nodes Using cmsub 19

4.7 Running Jobs In Cluster Extension Cloud Nodes
Using cmsub

Extra computational power from cloud service providers such as Amazon
can be used by an appropriately configured cluster managed by Bright
Cluster Manager.

If the head node is running outside a cloud services provider, and at
least some of the compute nodes are in the cloud, then this “hybrid” clus-
ter configuration is called a Cluster Extension cluster, with the compute
nodes in the cloud being the cloud extension of the cluster.

For a Cluster Extension cluster, job scripts to a workload manager
should be submitted using the cmsub cluster manager utility. This allows
the job to be considered for running on the extension (the cloud nodes),
as well as on the local regular nodes (not in the clouds).

The environment module (section 2.3) cluster-tools must be loaded
in order for the cmsub utility to be available for use.

The basic usage for cmsub is:

cmsub [OPTIONS] script

Users that are used to running jobs as root should note that the root
user cannot usefully run a job with cmsub.

The user can submit some cloud-related values as options to cmsub on
the command line, followed by the job script.

Example

$ cat myscript1

#!/bin/sh

hostname

$ cmsub --regions=eu-west-1 myscript1

Upload job id: 1

User job id: 2

Download job id: 3

The cloud-related values can also be specified in a job-directive style
format in the job script itself, using the “#CMSUB” tag to indicate a cloud-
related option.

Example

$ cat myscript2

#!/bin/sh

#CMSUB --regions=us-west-2,eu-west-1

#CMSUB --input-list=/home/user/myjob.in

#CMSUB --output-list=/home/user/myjob.out

#CMSUB --remote-output-list=/home/user/file-which-will-be-created

#CMSUB --input=/home/user/onemoreinput.dat

#CMSUB --input=/home/user/myexec

myexec

$ cmsub myscript2

Upload job id: 4

User job id: 5

Download job id: 6

© Bright Computing, Inc.

20 Workload Management

The man page for cmsub gives details on the cloud-related option val-
ues.

© Bright Computing, Inc.

5
SLURM

SLURM (Simple Linux Utility for Resource Management) is a workload
management system developed originally at the Lawrence Livermore Na-
tional Laboratory. It has both a graphical interface and command line
tools for submitting, monitoring, modifying and deleting jobs.

SLURM is normally used with job scripts to submit and execute jobs.
Various settings can be put in the job script, such as number of processors,
resource usage and application specific variables.

The steps for running a job through SLURM are to:

• Create the script or executable that will be handled as a job

• Create a job script that sets the resources for the script/executable

• Submit the job script to the workload management system

The details of SLURM usage depends upon the MPI implementa-
tion used. The description in this chapter will cover using SLURM’s
Open MPI implementation, which is quite standard. SLURM documen-
tation can be consulted (https://computing.llnl.gov/linux/slurm/
mpi_guide.html) if the implementation the user is using is very differ-
ent.

5.1 Loading SLURM Modules And Compiling The
Executable

In section 3.3.3 an MPI “Hello, world!” executable that can run in parallel
is created and run in parallel outside a workload manager.

The executable can be run in parallel using the SLURM workload
manager. For this, the SLURM module should first be loaded by the user
on top of the chosen MPI implementation, in this case Open MPI:

Example

[fred@bright52 ~]$ module list

Currently Loaded Modulefiles:

1) gcc/4.4.6 3) shared

2) openmpi/gcc/64/1.4.2 4) cuda40/toolkit/4.0.17

[fred@bright52 ~]$ module add slurm; module list

Currently Loaded Modulefiles:

1) gcc/4.4.6 3) shared 5) slurm/2.2.4

2) openmpi/gcc/64/1.4.2 4) cuda40/toolkit/4.0.17

© Bright Computing, Inc.

https://computing.llnl.gov/linux/slurm/mpi_guide.html
https://computing.llnl.gov/linux/slurm/mpi_guide.html

22 SLURM

The “hello world” executable from section 3.3.3 can then be com-
piled and run for one task outside the workload manager as:

mpicc hello.c -o hello

mpirun -np 1 hello

5.2 Running The Executable With salloc

Running it as a job managed by SLURM can be done interactively with
the SLURM allocation command, salloc, as follows

[fred@bright52 ~]$ salloc mpirun hello

SLURM is more typically run as a batch job (section 5.3). However
execution via salloc uses the same options, and it is more convenient as
an introduction because of its interactive behavior.

In a default Bright Cluster Manager configuration, SLURM auto-
detects the cores available and by default spreads the tasks across the
cores that are part of the allocation request.

To change how SLURM spreads the executable across nodes is typi-
cally determined by the options in the following table:

Short Long
Option Option Description

-N --nodes= Request this many nodes on the

cluster.

Use all cores on each node by default

-n --ntasks= Request this many tasks on the

cluster.

Defaults to 1 task per node.

-c --cpus-per-task= request this many CPUs per task,

(not implemented by Open MPI yet)

(none) --ntasks-per-node= request this number of tasks

per node .

The full options list and syntax for salloc can be viewed with “man
salloc”.

The requirement of specified options to salloc must be met before
the executable is allowed to run. So, for example, if --nodes=4 and the
cluster only has 3 nodes, then the executable does not run.

5.2.1 Node Allocation Examples
The following session illustrates and explains some node allocation op-
tions and issues for SLURM using a cluster with just 1 compute node and
4 CPU cores:

Default settings: The hello MPI executable with default settings of
SLURM runs successfully over the first (and in this case, the only) node
that it finds:

© Bright Computing, Inc.

5.2 Running The Executable With salloc 23

[fred@bright52 ~]$ salloc mpirun hello

salloc: Granted job allocation 572

Hello world from process 0 out of 4, host name node001

Hello world from process 1 out of 4, host name node001

Hello world from process 2 out of 4, host name node001

Hello world from process 3 out of 4, host name node001

salloc: Relinquishing job allocation 572

The preceding output also displays if -N1 (indicating 1 node) is specified,
or if -n4 (indicating 4 tasks) is specified.

The node and task allocation is almost certainly not going to be
done by relying on defaults. Instead, node specifications are supplied
to SLURM along with the executable.

To understand SLURM node specifications, the following cases con-
sider and explain where the node specification is valid and invalid.

Number of nodes requested: The value assigned to the -N|--nodes=
option is the number of nodes from the cluster that is requested for allo-
cation for the executable. In the current cluster example it can only be 1.
For a cluster with, for example, 1000 nodes, it could be a number up to
1000.

A resource allocation request for 2 nodes with the --nodes option
causes an error on the current 1-node cluster example:

[fred@bright52 ~]$ salloc -N2 mpirun hello

salloc: error: Failed to allocate resources: Node count specification in\

valid

salloc: Relinquishing job allocation 573

Number of tasks requested per cluster: The value assigned to the
-n|--ntasks option is the number of tasks that are requested for allo-
cation from the cluster for the executable. In the current cluster example,
it can be 1 to 4 tasks. The default resources available on a cluster are the
number of available processor cores.

A resource allocation request for 5 tasks with the --ntasks option
causes an error because it exceeds the default resources available on the
4-core cluster:

[fred@bright52 ~]$ salloc -n5 mpirun hello

salloc: error: Failed to allocate resources: More processors requested t\

han permitted

Adding and configuring just one more node to the current cluster
would allows the resource allocation to succeed, since an added node
would provide at least one more processor to the cluster.

Number of tasks requested per node: The value assigned to the
--ntasks-per-node option is the number of tasks that are requested for
allocation from each node on the cluster. In the current cluster example, it
can be 1 to 4 tasks. A resource allocation request for 5 tasks per node with
--ntasks-per-node fails on this 4-core cluster, giving an output like:

[fred@bright52 ~]$ salloc --ntasks-per-node=5 mpirun hello

salloc: error: Failed to allocate resources: More processors requested t\

han permitted

© Bright Computing, Inc.

24 SLURM

Adding and configuring another 4-core node to the current cluster
would still not allow resource allocation to succeed, because the request
is for at least 5 cores per node, rather than per cluster.

Restricting the number of tasks that can run per node: A resource al-
location request for 2 tasks per node with the --ntasks-per-node option,
and simultaneously an allocation request for 1 task to run on the cluster
using the --ntasks option, runs successfully, although it uselessly ties up
resources for 1 task per node:

[fre@bright52 ~]$ salloc --ntasks-per-node=2 --ntasks=1 mpirun hello

salloc: Granted job allocation 574

Hello world from process 0 out of 1, host name node005

salloc: Relinquishing job allocation 574

The other way round, that is, a resource allocation request for 1 task
per node with the --ntasks-per-node option, and simultaneously an al-
location request for 2 tasks to run on the cluster using the --ntasks op-
tion, fails because on the 1-cluster node, only 1 task can be allocated re-
sources on the single node, while resources for 2 tasks are being asked for
on the cluster:

[fred@bright52 ~]$ salloc --ntasks-per-node=1 --ntasks=3 mpirun hello

salloc: error: Failed to allocate resources: Requested node configuratio\

n is not available

salloc: Job allocation 575 has been revoked.

5.3 Running The Executable As A SLURM Job Script
Instead of using options appended to the salloc command line as in sec-
tion 5.2, it is usually more convenient to send jobs to SLURM with the
sbatch command acting on a job script.

A job script is also sometimes called a batch file. In a job script, the
user can add and adjust the SLURM options, which are the same as the
salloc options of section 5.2. The various settings and variables that go
with the application can also be adjusted.

5.3.1 SLURM Job Script Structure
A job script submission for the SLURM batch job script format is illus-
trated by the following:

[fred@bright52 ~]$ cat slurmhello.sh

#!/bin/sh

#SBATCH -o my.stdout

#SBATCH --time=30 #time limit to batch job

#SBATCH --ntasks=1

#SBATCH --ntasks-per-node=4

module add shared openmpi/gcc/64/1.4.2 slurm

mpirun hello

The structure is:

shebang line: shell definition line.

© Bright Computing, Inc.

5.3 Running The Executable As A SLURM Job Script 25

SBATCH lines: optional job script directives (section 5.3.2).

shell commands: optional shell commands, such as loading necessary
modules.

application execution line: execution of the MPI application using
sbatch, the SLURM submission wrapper.

In SBATCH lines, �#SBATCH� is used to submit options. The various
meanings of lines starting with �#� are:

Line Starts With Treated As

Comment in shell and SLURM

#SBATCH Comment in shell, option in SLURM

SBATCH Comment in shell and SLURM

After the SLURM job script is run with the sbatch command (Sec-
tion 5.3.4), the output goes into file my.stdout, as specified by the “-o”
command.

If the output file is not specified, then the file takes a name of the
form ”slurm-<jobnumber>.out”, where <jobnumber> is a number start-
ing from 1.

The command “sbatch --usage” lists possible options that can be
used on the command line or in the job script. Command line values
override script-provided values.

5.3.2 SLURM Job Script Options
Options, sometimes called “directives”, can be set in the job script file
using this line format for each option:

#SBATCH {option} {parameter}

Directives are used to specify the resource allocation for a job so that
SLURM can manage the job optimally. Available options and their de-
scriptions can be seen with the output of sbatch --help. The more
overviewable usage output from sbatch --usage may also be helpful.

Some of the more useful ones are listed in the following table:

© Bright Computing, Inc.

26 SLURM

Directive Description Specified As

Name the job <jobname> #SBATCH -J <jobname>

Request at least <minnodes> nodes #SBATCH -N <minnodes>

Request <minnodes> to <maxn-
odes> nodes

#SBATCH -N

<minnodes>-<maxnodes>

Request at least <MB> amount of
temporary disk space

#SBATCH --tmp <MB>

Run the job for a time of <wall-
time>

#SBATCH -t <walltime>

Run the job at <time> #SBATCH --begin <time>

Set the working directory to <di-
rectorypath>

#SBATCH -D <directorypath>

Set error log name to <job-
name.err>*

#SBATCH -e <jobname.err>

Set output log name to <job-
name.log>*

#SBATCH -o <jobname.log>

Mail <user@address> #SBATCH --mail-user

<user@address>

Mail on any event #SBATCH --mail-type=ALL

Mail on job end #SBATCH --mail-type=END

Run job in partition #SBATCH -p <destination>

Run job using GPU with ID <num-
ber>, as described in section 8.5.2

#SBATCH --gres=gpu:<number>

*By default, both standard output and standard error go to a file
“slurm-<%j>.out”, where <%j> is the job number.

5.3.3 SLURM Environment Variables
Available environment variables include:

SLURM_CPUS_ON_NODE - processors available to the job on this node

SLURM_JOB_ID - job ID of executing job

SLURM_LAUNCH_NODE_IPADDR - IP address of node where job launched

SLURM_NNODES - total number of nodes

SLURM_NODEID - relative node ID of current node

SLURM_NODELIST - list of nodes allocated to job

SLURM_NTASKS - total number of processes in current job

SLURM_PROCID - MPI rank (or relative process ID) of the current process

SLURM_SUBMIT_DIR - directory from with job was launched

SLURM_TASK_PID - process ID of task started

SLURM_TASKS_PER_NODE - number of task to be run on each node.

CUDA_VISIBLE_DEVICES - which GPUs are available for use

Typically, end users use SLURM_PROCID in a program so that an input of
a parallel calculation depends on it. The calculation is thus spread across
processors according to the assigned SLURM_PROCID, so that each proces-
sor handles the parallel part of the calculation with different values.

More information on environment variables is also to be found in the
man page for sbatch.

© Bright Computing, Inc.

5.3 Running The Executable As A SLURM Job Script 27

5.3.4 Submitting The SLURM Job Script
Submitting a SLURM job script created like in the previous section is done
by executing the job script with sbatch:

[fred@bright52 ~]$ sbatch slurmhello.sh

Submitted batch job 703

[fred@bright52 ~]$ cat slurm-703.out

Hello world from process 001 out of 004, processor name node001

...

Queues in SLURM terminology are called “partitions”. SLURM has a
default queue called defq. The administrator may have removed this or
created others.

If a particular queue is to be used, this is typically set in the job script
using the -p or --partition option:

#SBATCH --partition=bitcoinsq

It can also be specified as an option to the sbatch command during sub-
mission to SLURM.

5.3.5 Checking And Changing Queued Job Status
After a job has gone into a queue, the queue status can be checked using
the squeue command. The job number can be specified with the -j option
to avoid seeing other jobs. The man page for squeue covers other options.

Jobs can be canceled with “scancel <job number>”.
The scontrol command allows users to see and change the job direc-

tives while the job is still queued. For example, a user may have speci-
fied a job, using the --begin directive, to start at 10am the next day by
mistake. To change the job to start at 10pm tonight, something like the
following session may take place:

[fred@bright52 ~]$ scontrol show jobid=254 | grep Time

RunTime=00:00:04 TimeLimit=UNLIMITED TimeMin=N/A

SubmitTime=2011-10-18T17:41:34 EligibleTime=2011-10-19T10:00:00

StartTime=2011-10-18T17:44:15 EndTime=Unknown

SuspendTime=None SecsPreSuspend=0

The parameter that should be changed is “EligibleTime”, which can
be done as follows:

[fred@bright52 ~]$ scontrol update jobid=254 EligibleTime=2011-10-18T22:00:00

An approximate GUI SLURM equivalent to scontrol is the sview

tool. This allows the job to be viewed under its jobs tab, and the job to
be edited with a right click menu item. It can also carry out many other
functions, including canceling a job.

Webbrowser-accessible job viewing is possible from the workload tab
of the User Portal (section 9.0.6).

© Bright Computing, Inc.

6
SGE

Sun Grid Engine (SGE) is a workload management and job scheduling
system first developed to manage computing resources by Sun Microsys-
tems. SGE has both a graphical interface and command line tools for
submitting, monitoring, modifying and deleting jobs.

SGE uses job scripts to submit and execute jobs. Various settings can
be put in the job script, such as number of processors, resource usage and
application specific variables.

The steps for running a job through SGE are to:

• Create a job script

• Select the directives to use

• Add the scripts and applications and runtime parameters

• Submit it to the workload management system

6.1 Writing A Job Script
A binary cannot be submitted directly to SGE—a job script is needed for
that. A job script can contain various settings and variables to go with the
application. A job script format looks like:

#!/bin/bash

#$ Script options # Optional script directives

shell commands # Optional shell commands

application # Application itself

6.1.1 Directives
It is possible to specify options (’directives’) to SGE by using �#$� in the
script. The difference in the meaning of lines that start with the �#� char-
acter in the job script file should be noted:

Line Starts With Treated As

Comment in shell and SGE

#$ Comment in shell, directive in SGE

$ Comment in shell and SGE

© Bright Computing, Inc.

30 SGE

6.1.2 SGE Environment Variables
Available environment variables:

$HOME - Home directory on execution machine

$USER - User ID of job owner

$JOB_ID - Current job ID

$JOB_NAME - Current job name; (like the -N option in qsub, qsh, qrsh, q\

login and qalter)

$HOSTNAME - Name of the execution host

$TASK_ID - Array job task index number

6.1.3 Job Script Options
Options can be set in the job script file using this line format for each
option:

#$ {option} {parameter}

Available options and their descriptions can be seen with the output
of qsub -help:

Table 6.1.3: SGE Job Script Options

Option and parameter Description

-a date_time request a start time

-ac context_list add context variables

-ar ar_id bind job to advance reservation

-A account_string account string in accounting record

-b y[es]|n[o] handle command as binary

-binding [env|pe|set] exp|lin|str binds job to processor cores

-c ckpt_selector define type of checkpointing for job

-ckpt ckpt-name request checkpoint method

-clear skip previous definitions for job

-cwd use current working directory

-C directive_prefix define command prefix for job script

-dc simple_context_list delete context variable(s)

-dl date_time request a deadline initiation time

-e path_list specify standard error stream path(s)

-h place user hold on job

-hard consider following requests "hard"

-help print this help

-hold_jid job_identifier_list define jobnet interdependencies

-hold_jid_ad job_identifier_list define jobnet array interdependencies

-i file_list specify standard input stream file(s)

-j y[es]|n[o] merge stdout and stderr stream of job

-js job_share share tree or functional job share

...continued

© Bright Computing, Inc.

6.1 Writing A Job Script 31

Table 6.1.3: SGE Job Script Options...continued

Option and parameter Description

-jsv jsv_url job submission verification script to be
used

-l resource_list request the given resources

-m mail_options define mail notification events

-masterq wc_queue_list bind master task to queue(s)

-notify notify job before killing/suspending it

-now y[es]|n[o] start job immediately or not at all

-M mail_list notify these e-mail addresses

-N name specify job name

-o path_list specify standard output stream path(s)

-P project_name set job’s project

-p priority define job’s relative priority

-pe pe-name slot_range request slot range for parallel jobs

-q wc_queue_list bind job to queue(s)

-R y[es]|n[o] reservation desired

-r y[es]|n[o] define job as (not) restartable

-sc context_list set job context (replaces old context)

-shell y[es]|n[o] start command with or without wrapping
<loginshell> -c

-soft consider following requests as soft

-sync y[es]|n[o] wait for job to end and return exit code

-S path_list command interpreter to be used

-t task_id_range create a job-array with these tasks

-tc max_running_tasks throttle the number of concurrent tasks
(experimental)

-terse tersed output, print only the job-id

-v variable_list export these environment variables

-verify do not submit just verify

-V export all environment variables

-w e|w|n|v|p verify mode (error|warning|none|just
verify|poke) for jobs

-wd working_directory use working_directory

-@ file read commandline input from file

More detail on these options and their use is found in the man page
for qsub.

6.1.4 The Executable Line
In a job script, the executable line is launched with the job launcher com-
mand after the directives lines have been dealt with, and after any other
shell commands have been carried out to set up the execution environ-
ment.

© Bright Computing, Inc.

32 SGE

Using mpirun In The Executable Line
The mpirun job-launcher command is used for executables compiled with
MPI libraries. Executables that have not been compiled with MPI li-
braries, or which are launched without any specified number of nodes,
run on a single free node chosen by the workload manager.

The executable line to run a program myprog that has been compiled
with MPI libraries is run by placing the job-launcher command mpirun

before it as follows:

mpirun myprog

Using cm-launcher With mpirun In The Executable Line
For SGE, for some MPI implementations, jobs sometimes leave processes
behind after they have ended. A default Bright Cluster Manager instal-
lation provides a cleanup utility that removes such processes. To use it,
the user simply runs the executable line using the cm-launcher wrapper
before the mpirun job-launcher command:

cm-launcher mpirun myprog

The wrapper tracks processes that the workload manager launches.
When it sees processes that the workload manager is unable to clean up
after a job is over, it carries out the cleanup instead. Using cm-launcher

is recommended if jobs that do not get cleaned up correctly are an issue
for the user or administrator.

6.1.5 Job Script Examples
Some job script examples are given in this section. Each job script can use
a number of variables and directives.

Single Node Example Script
An example script for SGE.

#!/bin/sh

#$ -N sleep

#$ -S /bin/sh

Make sure that the .e and .o file arrive in the

working directory

#$ -cwd

#Merge the standard out and standard error to one file

#$ -j y

sleep 60

echo Now it is: `date`

Parallel Example Script
For parallel jobs the pe environment must be assigned to the script. De-
pending on the interconnect, there may be a choice between a number
of parallel environments such as MPICH (Ethernet) or MVAPICH (Infini-
Band).

#!/bin/sh

#

Your job name

#$ -N My_Job

#

© Bright Computing, Inc.

6.2 Submitting A Job 33

Use current working directory

#$ -cwd

#

Join stdout and stderr

#$ -j y

#

pe (Parallel environment) request. Set your number of processors here.

#$ -pe mpich NUMBER_OF_CPUS

#

Run job through bash shell

#$ -S /bin/bash

If modules are needed, source modules environment:

. /etc/profile.d/modules.sh

Add any modules you might require:

module add shared

The following output will show in the output file. Used for debugging.

echo ``Got $NSLOTS processors.''

echo ``Machines:''

cat $TMPDIR/machines

Use MPIRUN to run the application

mpirun -np $NSLOTS -machinefile $TMPDIR/machines ./application

6.2 Submitting A Job
The SGE module must be loaded first so that SGE commands can be ac-
cessed:

$ module add shared sge

With SGE a job can be submitted with qsub. The qsub command has
the following syntax:

qsub [options] [jobscript | -- [jobscript args]]

After completion (either successful or not), output is put in the user’s
current directory, appended with the job number which is assigned by
SGE. By default, there is an error and an output file.

myapp.e#{JOBID}

myapp.o#{JOBID}

6.2.1 Submitting To A Specific Queue
Some clusters have specific queues for jobs which run are configured to
house a certain type of job: long and short duration jobs, high resource
jobs, or a queue for a specific type of node.

To see which queues are available on the cluster the qstat command
can be used:

qstat -g c

CLUSTER QUEUE CQLOAD USED RES AVAIL TOTAL aoACDS cdsuE

© Bright Computing, Inc.

34 SGE

long.q 0.01 0 0 144 288 0 144

default.q 0.01 0 0 144 288 0 144

The job is then submitted, for example to the long.q queue:

qsub -q long.q sleeper.sh

6.3 Monitoring A Job
The job status can be viewed with qstat. In this example the sleeper.sh
script has been submitted. Using qstat without options will only display
a list of jobs, with no queue status options:

$ qstat

job-ID prior name user state submit/start at queue slots

249 0.00000 Sleeper1 root qw 12/03/2008 07:29:00 1

250 0.00000 Sleeper1 root qw 12/03/2008 07:29:01 1

251 0.00000 Sleeper1 root qw 12/03/2008 07:29:02 1

252 0.00000 Sleeper1 root qw 12/03/2008 07:29:02 1

253 0.00000 Sleeper1 root qw 12/03/2008 07:29:03 1

More details are visible when using the -f (for full) option:

• The Queuetype qtype can be Batch (B) or Interactive (I).

• The used/tot or used/free column is the count of used/free slots
in the queue.

• The states column is the state of the queue.

$ qstat -f

queuename qtype used/tot. load_avg arch states

--

all.q@node001.cm.cluster BI 0/16 -NA- lx26-amd64 au

--

all.q@node002.cm.cluster BI 0/16 -NA- lx26-amd64 au

##

- PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS

##

249 0.55500 Sleeper1 root qw 12/03/2008 07:29:00 1

250 0.55500 Sleeper1 root qw 12/03/2008 07:29:01 1

Job state can be:

• d(eletion)

• E(rror)

• h(old)

• r(unning)

• R(estarted)

• s(uspended)

© Bright Computing, Inc.

6.4 Deleting A Job 35

• S(uspended)

• t(ransfering)

• T(hreshold)

• w(aiting)

The queue state can be:

• u(nknown) if the corresponding sge_execd cannot be contacted

• a(larm) - the load threshold is currently exceeded

• A(larm) - the suspend threshold is currently exceeded

• C(alendar suspended) - see calendar_conf

• s(uspended) - see qmod

• S(ubordinate)

• d(isabled) - see qmod

• D(isabled) - see calendar_conf

• E(rror) - sge_execd was unable to locate the sge_shepherd - use
qmod to fix it.

• o(rphaned) - for queue instances

By default the qstat command shows only jobs belonging to the cur-
rent user, i.e. the command is executed with the option -u $user. To see
jobs from other users too, the following format is used:

$ qstat -u ``*''

6.4 Deleting A Job
A job can be deleted in SGE with the following command

$ qdel <jobid>

The job-id is the number assigned by SGE when the job is submitted
using qsub. Only jobs belonging to the logged-in user can be deleted. Us-
ing qdel will delete a user’s job regardless of whether the job is running
or in the queue.

© Bright Computing, Inc.

7
PBS Variants: Torque And PBS

Pro
Bright Cluster Manager works with Torque and PBS Pro, which are two
forks of Portable Batch System (PBS). PBS was a workload management
and job scheduling system first developed to manage computing re-
sources at NASA in the 1990s.

Torque and PBS Pro can differ significantly in the output they present
when using their GUI visual tools. However because of their historical
legacy, their basic design structure and job submission methods from the
command line remain very similar for the user. Both Torque and PBS
Pro are therefore covered in this chapter. The possible Torque schedulers
(Torque’s built-in scheduler, Maui, or Moab) are also covered when dis-
cussing Torque.

Torque and PBS Pro both offer a graphical interface and command line
tools for submitting, monitoring, modifying and deleting jobs.

For submission and execution of jobs, both workload managers use
PBS “job scripts”. The user puts values into a job script for the resources
being requested, such as the number of processors, memory. Other values
are also set for the runtime parameters and application-specific variables.

The steps for running a job through a PBS job script are:

• Creating an application to be run via the job script

• Creating the job script, adding directives, applications, runtime pa-
rameters, and application-specific variables to the script

• Submitting the script to the workload management system

This chapter covers the using the workload managers and job scripts
with the PBS variants so that users can get a basic understanding of how
they are used, and can get started with typical cluster usage.

In this chapter:

• section 7.1 covers the components of a job script and job script ex-
amples

• section 7.2.1 covers submitting, monitoring, and deleting a job with
a job script

More depth on using these workload managers is to be found in the
PBS Professional User Guide and in the online Torque documentation at
http://www.adaptivecomputing.com/resources/docs/.

© Bright Computing, Inc.

http://www.adaptivecomputing.com/resources/docs/

38 PBS Variants: Torque And PBS Pro

7.1 Components Of A Job Script
To use Torque or PBS Pro, a batch job script is created by the user. The
job script is a shell script containing the set of commands that the user
wants to run. It also contains the resource requirement directives and
other specifications for the job. After preparation, the job script is submit-
ted to the workload manager using the qsub command. The workload
manager then tries to make the job run according to the job script specifi-
cations.

A job script can be resubmitted with different parameters (e.g. differ-
ent sets of data or variables).

7.1.1 Sample Script Structure
A job script in PBS Pro or Torque has a structure illustrated by the follow-
ing basic example:

Example

#!/bin/bash

#

#PBS -l walltime=1:00:00

#PBS -l nodes=4

#PBS -l mem=500mb

#PBS -j oe

cd ${HOME}/myprogs

mpirun myprog a b c

The first line is the standard “shebang” line used for scripts.
The lines that start with #PBS are PBS directive lines, described shortly

in section 7.1.2.
The last two lines are an example of setting remaining options or con-

figuration settings up for the script to run. In this case, a change to the
directory myprogs is made, and then run the executable myprog with ar-
guments a b c. The line that runs the program is called the executable
line (section 7.1.3).

To run the executable file in the executable line in parallel, the job
launcher mpirun is placed immediately before the executable file. The
number of nodes the parallel job is to run on is assumed to have been
specified in the PBS directives.

7.1.2 Directives
Job Script Directives And qsub Options
A job script typically has several configurable values called job script di-
rectives, set with job script directive lines. These are lines that start with
a “#PBS”. Any directive lines beyond the first executable line are ignored.

The lines are comments as far as the shell is concerned because they
start with a “#”. However, at the same time the lines are special com-
mands when the job script is processed by the qsub command. The dif-
ference is illustrated by the following:

• The following shell comment is only a comment for a job script pro-
cessed by qsub:

PBS

© Bright Computing, Inc.

7.1 Components Of A Job Script 39

• The following shell comment is also a job script directive when pro-
cessed by qsub:

#PBS

Job script directive lines with the “#PBS ” part removed are the same
as options applied to the qsub command, so a look at the man pages of
qsub describes the possible directives and how they are used. If there is
both a job script directive and a qsub command option set for the same
item, the qsub option takes precedence.

Since the job script file is a shell script, the shell interpreter used can be
changed to another shell interpreter by modifying the first line (the “#!”
line) to the preferred shell. Any shell specified by the first line can also be
overridden by using the “#PBS -S” directive to set the shell path.

Walltime Directive
The workload manager typically has default walltime limits per queue
with a value limit set by the administrator. The user sets walltime limit
by setting the ”#PBS -l walltime” directive to a specific time. The time
specified is the maximum time that the user expects the job should run
for, and it allows the workload manager to work out an optimum time to
run the job. The job can then run sooner than it would by default.

If the walltime limit is exceeded by a job, then the job is stopped, and
an error message like the following is displayed:

=� PBS: job killed: walltime <runningtime> exceeded limit <settime>

Here, <runningtime> indicates the time for which the job actually went
on to run, while <settime> indicates the time that the user set as the wall-
time resource limit.

Resource List Directives
Resource list directives specify arguments to the -l directive of the job
script, and allow users to specify values to use instead of the system de-
faults.

For example, in the sample script structure earlier, a job walltime of
one hour and a memory space of at least 500MB are requested (the script
requires the size of the space be spelled in lower case, so “500mb” is used).

If a requested resource list value exceeds what is available, the job is
queued until resources become available.

For example, if nodes only have 2000MB to spare and 4000MB is re-
quested, then the job is queued indefinitely, and it is up to the user to fix
the problem.

Resource list directives also allow, for example, the number of nodes
(-l nodes) and the virtual processor cores per nodes (-l ppn) to be spec-
ified. If no value is specified, the default is 1 core per node.

If 8 cores are wanted, and it does not matter how the cores are allo-
cated (e.g. 8 per node or 1 on 8 nodes) the directive used in Torque is:

#PBS -l nodes=8

For PBS Pro v11 this also works, but is deprecated, and the form “#PBS
-l select=8” is recommended instead.

© Bright Computing, Inc.

40 PBS Variants: Torque And PBS Pro

Further examples of node resource specification are given in a table
on page 41.

Job Directives: Job Name, Logs, And IDs
If the name of the job script file is jobname, then by default the output and
error streams are logged to jobname.o<number> and jobname.e<number>

respectively, where <number> indicates the associated job number. The
default paths for the logs can be changed by using the -o and -e directives
respectively, while the base name (jobname here) can be changed using
the -N directive.

Often, a user may simply merge both logs together into one of the two
streams using the -j directive. Thus, in the preceding example, “-j oe”
merges the logs to the output log path, while “-j eo” would merge it to
error log path.

The job ID is an identifier based on the job number and the FQDN of
the login node. For a login node called bright52.cm.cluster, the job ID
for a job number with the associated value <number> from earlier, would
by default be <number>.bright52.cm.cluster, but it can also simply be ab-
breviated to <number>.

Job Queues
Sending a job to a particular job queue is sometimes appropriate. An ad-
ministrator may have set queues up so that some queues are for very long
term jobs, or some queues are for users that require GPUs. Submitting a
job to a particular queue <destination> is done by using the directive “#PBS
-q <destination>”.

Directives Summary
A summary of the job directives covered, with a few extras, are shown in
the following table:

Directive Description Specified As

Name the job <jobname> #PBS -N <jobname>

Run the job for a time of <walltime> #PBS -l <walltime>

Run the job at <time> #PBS -a <time>

Set error log name to <jobname.err> #PBS -e <jobname.err>

Set output log name to <jobname.log> #PBS -o <jobname.log>

Join error messages to output log #PBS -j eo

Join output messages to error log #PBS -j oe

Mail to <user@address> #PBS -M <user@address>

Mail on <event> #PBS -m <event>

where <event> takes the (a)bort

value of the letter in (b)egin

the parentheses (e)nd

(n) do not send email

Queue is <destination> #PBS -q <destination>

Login shell path is <shellpath> #PBS -S <shellpath>

© Bright Computing, Inc.

7.1 Components Of A Job Script 41

Resource List Directives Examples
Examples of how requests for resource list directives work are shown in
the following table:

Resource Example Description “#PBS -l” Specification

Request 500MB memory mem=500mb

Set a maximum runtime of 3
hours 10 minutes and 30 seconds

walltime=03:10:30

8 nodes, anywhere on the cluster nodes=8*

8 nodes, anywhere on the cluster select=8**

2 nodes, 1 processor per node nodes=2:ppn=1

3 nodes, 8 processors per node nodes=3:ppn=8

5 nodes, 2 processors per node
and 1 GPU per node

nodes=5:ppn=2:gpus=1*

5 nodes, 2 processors per node,
and 1 GPU per node

select=5:ncpus=2:ngpus=1**

5 nodes, 2 processors per node, 3
virtual processors for MPI code

select=5:ncpus=2:mpiprocs=3**

5 nodes, 2 processors per node,
using any GPU on the nodes

select=5:ncpus=2:ngpus=1**

5 nodes, 2 processors per node,
using a GPU with ID 0 from
nodes

select=5:ncpus=2:gpu_id=0**

*For Torque 2.5.5
**For PBS Pro 11

Some of the examples illustrate requests for GPU resource usage. GPUs
and the CUDA utilities for Nvidia are introduced in Chapter 8. In the
Torque and PBS Pro workload managers, GPU usage is treated like the
attributes of a resource which the cluster administrator will have pre-
configured according to local requirements.

For further details on resource list directives, the Torque and PBS Pro
user documentation should be consulted.

7.1.3 The Executable Line
In the job script structure (section 7.1.1), the executable line is launched
with the job launcher command after the directives lines have been dealt
with, and after any other shell commands have been carried out to set up
the execution environment.

Using mpirun In The Executable Line
The mpirun command is used for executables compiled with MPI libraries.
Executables that have not been compiled with MPI libraries, or which are
launched without any specified number of nodes, run on a single free
node chosen by the workload manager.

The executable line to run a program myprog that has been compiled
with MPI libraries is run by placing the job-launcher command mpirun

before it as follows:

mpirun myprog

© Bright Computing, Inc.

42 PBS Variants: Torque And PBS Pro

Using cm-launcher With mpirun In The Executable Line
For Torque, for some MPI implementations, jobs sometimes leave pro-
cesses behind after they have ended. A default Bright Cluster Manager
installation provides a cleanup utility that removes such processes. To
use it, the user simply runs the executable line using the cm-launcher

wrapper before the mpirun job-launcher command:

cm-launcher mpirun myprog

The wrapper tracks processes that the workload manager launches.
When it sees processes that the workload manager is unable to clean up
after the job is over, it carries out the cleanup instead. Using cm-launcher

is recommended if jobs that do not get cleaned up correctly are an issue
for the user or administrator.

7.1.4 Example Batch Submission Scripts
Node Availability
The following job script tests which out of 4 nodes requested with “-l
nodes” are made available to the job in the workload manager:

Example

#!/bin/bash

#PBS -l walltime=1:00

#PBS -l nodes=4

echo -n "I am on: "

hostname;

echo finding ssh-accessible nodes:

for node in $(cat ${PBS_NODEFILE}) ; do

echo -n "running on: "

/usr/bin/ssh $node hostname

done

The directive specifying walltime means the script runs at most for 1
minute. The ${PBS_NODEFILE} array used by the script is created and ap-
pended with hosts by the queueing system. The script illustrates how the
workload manager generates a ${PBS_NODEFILE} array based on the re-
quested number of nodes, and which can be used in a job script to spawn
child processes. When the script is submitted, the output from the log
will look like:

I am on: node001

finding ssh-accessible nodes:

running on: node001

running on: node002

running on: node003

running on: node004

This illustrates that the job starts up on a node, and that no more than
the number of nodes that were asked for in the resource specification are
provided.

The list of all nodes for a cluster can be found using the pbsnodes

command (section 7.2.6).

© Bright Computing, Inc.

7.1 Components Of A Job Script 43

Using InfiniBand
A sample PBS script for InfiniBand is:

#!/bin/bash

#!

#! Sample PBS file

#!

#! Name of job

#PBS -N MPI

#! Number of nodes (in this case 8 nodes with 4 CPUs each)

#! The total number of nodes passed to mpirun will be nodes*ppn

#! Second entry: Total amount of wall-clock time (true time).

#! 02:00:00 indicates 02 hours

#PBS -l nodes=8:ppn=4,walltime=02:00:00

#! Mail to user when job terminates or aborts

#PBS -m ae

If modules are needed by the script, then source modules environment:

. /etc/profile.d/modules.sh

Add any modules you might require:

module add shared mvapich/gcc torque maui pbspro

#! Full path to application + application name

application="<application>"

#! Run options for the application

options="<options>"

#! Work directory

workdir="<work dir>"

###

You should not have to change anything below this line

###

#! change the working directory (default is home directory)

cd $workdir

echo Running on host $(hostname)

echo Time is $(date)

echo Directory is $(pwd)

echo PBS job ID is $PBS_JOBID

echo This job runs on the following machines:

echo $(cat $PBS_NODEFILE | uniq)

$mpirun_command="mpirun $application $options"

#! Run the parallel MPI executable (nodes*ppn)

echo Running $mpirun_command

eval $mpirun_command

© Bright Computing, Inc.

44 PBS Variants: Torque And PBS Pro

In the preceding script, no machine file is needed, since it is automati-
cally built by the workload manager and passed on to the mpirun parallel
job launcher utility. The job is given a unique ID and run in parallel on
the nodes based on the resource specification.

7.1.5 Links To Other Resources About Job Scripts In Torque
And PBS Pro

A number of useful links are:

• Torque examples:
http://bmi.cchmc.org/resources/software/torque/examples

• PBS Pro script files:
http://www.ccs.tulane.edu/computing/pbs/pbs.phtml

• Running PBS Pro jobs and directives:
http://wiki.hpc.ufl.edu/index.php/Job_Submission_Queues

7.2 Submitting A Job
7.2.1 Preliminaries: Loading The Modules Environment
To submit a job to the workload management system, the user must en-
sure that the following environment modules are loaded:

• If using Torque with no external scheduler:

$ module add shared torque

• If using Torque with Maui:

$ module add shared torque maui

• If using Torque with Moab:

$ module add shared torque moab

• If using PBS Pro:

$ module add shared pbspro

Users can pre-load particular environment modules as their default
using the “module init*” commands (section 2.3.3).

7.2.2 Using qsub

The command qsub is used to submit jobs to the workload manager sys-
tem. The command returns a unique job identifier, which is used to query
and control the job and to identify output. The usage format of qsub and
some useful options are listed here:

USAGE: qsub [<options>] <job script>

Option Hint Description

------ ---- -----------

© Bright Computing, Inc.

http://bmi.cchmc.org/resources/software/torque/examples
http://www.ccs.tulane.edu/computing/pbs/pbs.phtml
http://wiki.hpc.ufl.edu/index.php/Job_Submission_Queues

7.2 Submitting A Job 45

-a at run the job at a certain time

-l list request certain resource(s)

-q queue job is run in this queue

-N name name of job

-S shell shell to run job under

-j join join output and error files

For example, a job script called mpirun.job with all the relevant di-
rectives set inside the script, may be submitted as follows:

Example

$ qsub mpirun.job

A job may be submitted to a specific queue testq as follows:

Example

$ qsub -q testq mpirun.job

The man page for qsub describes these and other options. The options
correspond to PBS directives in job scripts (section 7.1.1). If a particular
item is specified by a qsub option as well as by a PBS directive, then the
qsub option takes precedence.

7.2.3 Job Output
By default, the output from the job script <scriptname> goes into the home
directory of the user for Torque, or into the current working directory for
PBS Pro.

By default, error output is written to <scriptname>.e<jobid> and the
application output is written to <scriptname>.o<jobid>, where <jobid> is a
unique number that the workload manager allocates. Specific output and
error files can be set using the -o and -e options respectively. The error
and output files can usefully be concatenated into one file with the -j oe

or -j eo options. More details on this can be found in the qsub man page.

7.2.4 Monitoring A Job
To use the commands in this section, the appropriate workload manager
module must be loaded. For example, for Torque, torque module needs
to be loaded:

$ module add torque

qstat Basics
The main component is qstat, which has several options. In this exam-
ple, the most frequently used options are discussed.

In PBS/Torque, the command “qstat -an” shows what jobs are cur-
rently submitted or running on the queuing system. An example output
is:

[fred@bright52 ~]$ qstat -an

bright52.cm.cluster:

Req'd Req'd Elap

© Bright Computing, Inc.

46 PBS Variants: Torque And PBS Pro

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

----------- -------- ------ ------- ------ --- --- ------ ----- - -----

78.bright52 fred shortq tjob 10476 1 1 555mb 00:01 R 00:00

79.bright52 fred shortq tjob -- 1 1 555mb 00:01 Q --

The output shows the Job ID, the user who owns the job, the queue,
the job name, the session ID for a running job, the number of nodes re-
quested, the number of CPUs or tasks requested, the time requested (-l
walltime), the job state (S) and the elapsed time. In this example, one job
is seen to be running (R), and one is still queued (Q). The -n parameter
causes nodes that are in use by a running job to display at the end of that
line.

Possible job states are:

Job States Description

C Job is completed (regardless of success or failure)

E Job is exiting after having run

H Job is held

Q job is queued, eligible to run or routed

R job is running

S job is suspend

T job is being moved to new location

W job is waiting for its execution time

The command “qstat -q” shows what queues are available. In the fol-
lowing example, there is one job running in the testq queue and 4 are
queued.

$ qstat -q

server: master.cm.cluster

Queue Memory CPU Time Walltime Node Run Que Lm State

---------------- ------ -------- -------- ---- --- --- -- -----

testq -- -- 23:59:59 -- 1 4 -- E R

default -- -- 23:59:59 -- 0 0 -- E R

----- -----

1 4

showq From Maui
If the Maui scheduler is running, and the Maui module loaded (module
add maui), then Maui’s showq command displays a similar output. In this
example, one dual-core node is available (1 node, 2 processors), one job is
running and 3 are queued (in the Idle state).

$ showq

ACTIVE JOBS-----------

JOBNAME USERNAME STATE PROC REMAINING STARTTIME

45 cvsupport Running 2 1:59:57 Tue Jul 14 12:46:20

1 Active Job 2 of 2 Processors Active (100.00%)

1 of 1 Nodes Active (100.00%)

© Bright Computing, Inc.

7.2 Submitting A Job 47

IDLE JOBS-------------

JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME

46 cvsupport Idle 2 2:00:00 Tue Jul 14 12:46:20

47 cvsupport Idle 2 2:00:00 Tue Jul 14 12:46:21

48 cvsupport Idle 2 2:00:00 Tue Jul 14 12:46:22

3 Idle Jobs

BLOCKED JOBS----------

JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME

Total Jobs: 4 Active Jobs: 1 Idle Jobs: 3 Blocked Jobs: 0

Viewing Job Details With qstat And checkjob

Job Details With qstat With qstat -f the full output of the job is dis-
played. The output shows what the jobname is, where the error and out-
put files are stored, and various other settings and variables.

$ qstat -f

Job Id: 19.mascm4.cm.cluster

Job_Name = TestJobPBS

Job_Owner = cvsupport@mascm4.cm.cluster

job_state = Q

queue = testq

server = mascm4.cm.cluster

Checkpoint = u

ctime = Tue Jul 14 12:35:31 2009

Error_Path = mascm4.cm.cluster:/home/cvsupport/test-package/TestJobPBS

.e19

Hold_Types = n

Join_Path = n

Keep_Files = n

Mail_Points = a

mtime = Tue Jul 14 12:35:31 2009

Output_Path = mascm4.cm.cluster:/home/cvsupport/test-package/TestJobPB

S.o19

Priority = 0

qtime = Tue Jul 14 12:35:31 2009

Rerunable = True

Resource_List.nodect = 1

Resource_List.nodes = 1:ppn=2

Resource_List.walltime = 02:00:00

Variable_List = PBS_O_HOME=/home/cvsupport,PBS_O_LANG=en_US.UTF-8,

PBS_O_LOGNAME=cvsupport,

PBS_O_PATH=/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/sbin:/usr/

sbin:/home/cvsupport/bin:/cm/shared/apps/torque/2.3.5/bin:/cm/shar

ed/apps/torque/2.3.5/sbin,PBS_O_MAIL=/var/spool/mail/cvsupport,

PBS_O_SHELL=/bin/bash,PBS_SERVER=mascm4.cm.cluster,

PBS_O_HOST=mascm4.cm.cluster,

PBS_O_WORKDIR=/home/cvsupport/test-package,PBS_O_QUEUE=default

etime = Tue Jul 14 12:35:31 2009

submit_args = pbs.job -q default

© Bright Computing, Inc.

48 PBS Variants: Torque And PBS Pro

Job Details With checkjob The checkjob command (only for Maui) is
particularly useful for checking why a job has not yet executed. For a job
that has an excessive memory requirement, the output looks something
like:

[fred@bright52 ~]$ checkjob 65

checking job 65

State: Idle

Creds: user:fred group:fred class:shortq qos:DEFAULT

WallTime: 00:00:00 of 00:01:00

SubmitTime: Tue Sep 13 15:22:44

(Time Queued Total: 2:53:41 Eligible: 2:53:41)

Total Tasks: 1

Req[0] TaskCount: 1 Partition: ALL

Network: [NONE] Memory >= 0 Disk >= 0 Swap >= 0

Opsys: [NONE] Arch: [NONE] Features: [NONE]

Dedicated Resources Per Task: PROCS: 1 MEM: 495M

IWD: [NONE] Executable: [NONE]

Bypass: 0 StartCount: 0

PartitionMask: [ALL]

Flags: RESTARTABLE

PE: 1.01 StartPriority: 173

job cannot run in partition DEFAULT (idle procs do not meet requirement\

s : 0 of 1 procs found)

idle procs: 3 feasible procs: 0

Rejection Reasons: [CPU : 3]

The -v option gives slightly more detail.

7.2.5 Deleting A Job
An already submitted job can be deleted using the qdel command:

$ qdel <jobid>

The job ID is printed to the terminal when the job is submitted. To get the job
ID of a job if it has been forgotten, the following can be used:

$ qstat

or

$ showq

7.2.6 Monitoring Nodes In Torque And PBS Pro
The nodes that the workload manager knows about can be viewed using the
pbsnodes command.

The following output is from a cluster made up of 2-core nodes, as indicated
by the value of 2 for ncpu for Torque and PBS Pro. If the node is available to run
scripts, then its state is free or time-shared. When a node is used exclusively
(section 8.5.2) by one script, the state is job-exclusive.

For Torque the display resembles (some output elided):

© Bright Computing, Inc.

7.2 Submitting A Job 49

[fred@bright52 ~]$ pbsnodes -a

node001.cm.cluster

state = free

np = 3

ntype = cluster

status = rectime=1317911358,varattr=,jobs=96...ncpus=2...

gpus = 1

node002.cm.cluster

state = free

np = 3

...

gpus = 1

...

For PBS Pro the display resembles (some output elided):

[fred@bright52 ~]$ pbsnodes -a

node001.cm.cluster

Mom = node001.cm.cluster

ntype = PBS

state = free

pcpus = 3

resources_available.arch = linux

resources_available.host = node001

...

sharing = default_shared

node002.cm.cluster

Mom = node002.cm.cluster

ntype = PBS

state = free

...

...

© Bright Computing, Inc.

8
Using GPUs

GPUs (Graphics Processing Units) are chips that provide specialized parallel pro-
cessing power. Originally, GPUs were designed to handle graphics processing
as part of the video processor, but their ability to handle non-graphics tasks in a
similar manner has become important for general computing. GPUs designed for
general purpose computing task are commonly called General Purpose GPUs, or
GPGPUs.

A GPU is suited for processing an algorithm that naturally breaks down into
a process requiring many similar calculations running in parallel.

Physically, one GPU is typically a built-in part of the motherboard of a node
or a board in a node, and consists of hundreds of processing cores. There are also
dedicated standalone units, commonly called GPU Units, consisting of several
GPUs in one chassis, and which are typically assigned to particular nodes via
PCI-Express connections.

Bright Cluster Manager contains several tools which can be used to set up and
program GPUs for general purpose computations.

8.1 Packages
A number of different GPU-related packages are included in Bright Cluster Man-
ager. For CUDA 4.0 these are:

• cuda40-driver: Provides the GPU driver

• cuda40-libs: Provides the libraries that come with the driver (libcuda etc)

• cuda40-toolkit: Provides the compilers, cuda-gdb, and math libraries

• cuda40-tools: Provides the CUDA tools SDK

• cuda40-profiler: Provides the CUDA visual profiler

• cuda40-sdk: Provides additional tools, development files and source ex-
amples

CUDA versions 4.1, 4.2, and 5.0 are also provided by Bright Cluster Manager.
The exact implementation depends on how the system administrator has config-
ured CUDA.

8.2 Using CUDA
After installation of the packages, for general usage and compilation it is sufficient
to load just the CUDA4/toolkit module.

module add cuda40/toolkit

© Bright Computing, Inc.

52 Using GPUs

Also available are several other modules related to CUDA:

• cuda40/blas/4.0.17: Provides paths and settings for the CUBLAS library.

• cuda40/fft: Provides paths and settings for the CUFFT library.

The toolkit comes with the necessary tools and compilers to compile CUDA
C code.

Extensive documentation on how to get started, the various tools, and how to
use the CUDA suite is in the $CUDA_INSTALL_PATH/doc directory.

8.3 Using OpenCL
OpenCL functionality is provided with the environment module cuda40/toolkit.

Examples of OpenCL code can be found in the $CUDA_SDK/OpenCL directory.

8.4 Compiling Code
Both CUDA and OpenCL involve running code on different platforms:

• host: with one or more CPUs

• device: with one or more CUDA enabled GPUs

Accordingly, both the host and device manage their own memory space, and it
is possible to copy data between them. The CUDA and OpenCL Best Practices
Guides in the doc directory, provided by the CUDA toolkit package, have more
information on how to handle both platforms and their limitations.

The nvcc command by default compiles code and links the objects for both
the host system and the GPU. The nvcc command distinguishes between the two
and it can hide the details from the developer. To compile the host code, nvcc will
use gcc automatically.

nvcc [options] <inputfile>

A simple example to compile CUDA code to an executable is:

nvcc testcode.cu -o testcode

The most used options are:

• -g or �debug <level>: This generates debug-able code for the host

• -G or �device-debug <level>: This generates debug-able code for the GPU

• -o or �output-file <file>: This creates an executable with the name
<file>

• -arch=sm_13: This can be enabled if the CUDA device supports compute
capability 1.3, which includes double-precision

If double-precision floating-point is not supported or the flag is not set, warn-
ings such as the following will come up:

warning : Double is not supported. Demoting to float

The nvcc documentation manual, “The CUDA Compiler Driver NVCC” has
more information on compiler options.

The CUDA SDK has more programming examples and information accessible
from the file $CUDA_SDK/C/Samples.html.

For OpenCL, code compilation can be done by linking against the OpenCL
library:

gcc test.c -lOpenCL

g++ test.cpp -lOpenCL

nvcc test.c -lOpenCL

© Bright Computing, Inc.

8.5 Available Tools 53

8.5 Available Tools
8.5.1 CUDA gdb
The CUDA debugger can be started using: cuda-gdb. Details of how to use it
are available in the “CUDA-GDB (NVIDIA CUDA Debugger)” manual, in the doc

directory. It is based on GDB, the GNU Project debugger, and requires the use of
the “-g” or “-G” options compiling.

Example

nvcc -g -G testcode.cu -o testcode

8.5.2 nvidia-smi
The NVIDIA System Management Interface command, nvidia-smi, can be used
to allow exclusive access to the GPU. This means only one application can run on
a GPU. By default, a GPU will allow multiple running applications.
Syntax:

nvidia-smi [OPTION1 [ARG1]] [OPTION2 [ARG2]] ...

The steps for making a GPU exclusive:

• List GPUs

• Select a GPU

• Lock GPU to a compute mode

• After use, release the GPU

After setting the compute rule on the GPU, the first application which exe-
cutes on the GPU will block out all others attempting to run. This application
does not necessarily have to be the one started by the user that set the exclusivity
lock on the the GPU!

To list the GPUs, the -L argument can be used:

$ nvidia-smi -L

GPU 0: (05E710DE:068F10DE) Tesla T10 Processor (S/N: 706539258209)

GPU 1: (05E710DE:068F10DE) Tesla T10 Processor (S/N: 2486719292433)

To set the ruleset on the GPU:

$ nvidia-smi -i 0 -c 1

The ruleset may be one of the following:

• 0 - Default mode (multiple applications allowed on the GPU)

• 1 - Exclusive thread mode (only one compute context is allowed to run on
the GPU, usable from one thread at a time)

• 2 - Prohibited mode (no compute contexts are allowed to run on the GPU)

• 3 - Exclusive process mode (only one compute context is allowed to run on
the GPU, usable from multiple threads at a time)

To check the state of the GPU:

$ nvidia-smi -i 0 -q

COMPUTE mode rules for GPU 0: 1

In this example, GPU0 is locked, and there is a running application using
GPU0. A second application attempting to run on this GPU will not be able to
run on this GPU.

© Bright Computing, Inc.

54 Using GPUs

$ histogram --device=0

main.cpp(101) : cudaSafeCall() Runtime API error :

no CUDA-capable device is available.

After use, the GPU can be unlocked to allow multiple users:

nvidia-smi -i 0 -c 0

8.5.3 CUDA Utility Library
CUTIL is a simple utility library designed for use in the CUDA SDK samples.
There are 2 parts for CUDA and OpenCL. The locations are:

• $CUDA_SDK/C/lib

• $CUDA_SDK/OpenCL/common/lib

Other applications may also refer to them, and the toolkit libraries have already
been pre-configured accordingly. However, they need to be compiled prior to use.
Depending on the cluster, this might have already have been done.

[fred@demo ~] cd

[fred@demo ~] cp -r $CUDA_SDK

[fred@demo ~] cd $(basename $CUDA_SDK); cd C

[fred@demo C] make

[fred@demo C] cd $(basename $CUDA_SDK); cd OpenCL

[fred@demo OpenCL] make

CUTIL provides functions for:

• parsing command line arguments

• read and writing binary files and PPM format images

• comparing data arrays (typically used for comparing GPU results with CPU
results)

• timers

• macros for checking error codes

• checking for shared memory bank conflicts

8.5.4 CUDA “Hello world” Example
A hello world example code using CUDA is:

Example

/*

CUDA example

"Hello World" using shift13, a rot13-like function.

Encoded on CPU, decoded on GPU.

rot13 cycles between 26 normal alphabet characters.

shift13 shifts 13 steps along the normal alphabet characters

So it translates half the alphabet into non-alphabet characters

shift13 is used because it is simpler than rot13 in c

so we can focus on the point

© Bright Computing, Inc.

8.5 Available Tools 55

(c) Bright Computing

Taras Shapovalov <taras.shapovalov@brightcomputing.com>

*/

#include <cuda.h>

#include <cutil_inline.h>

#include <stdio.h>

// CUDA kernel definition: undo shift13

__global__ void helloWorld(char* str) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;

str[idx] -= 13;

}

int main(int argc, char** argv)

{

char s[] = "Hello World!";

printf("String for encode/decode: %s\n", s);

// CPU shift13

int len = sizeof(s);

for (int i = 0; i < len; i++) {

s[i] += 13;

}

printf("String encoded on CPU as: %s\n", s);

// Allocate memory on the CUDA device

char *cuda_s;

cudaMalloc((void**)&cuda_s, len);

// Copy the string to the CUDA device

cudaMemcpy(cuda_s, s, len, cudaMemcpyHostToDevice);

// Set the grid and block sizes (dim3 is a type)

// and "Hello World!" is 12 characters, say 3x4

dim3 dimGrid(3);

dim3 dimBlock(4);

// Invoke the kernel to undo shift13 in GPU

helloWorld<<< dimGrid, dimBlock >>>(cuda_s);

// Retrieve the results from the CUDA device

cudaMemcpy(s, cuda_s, len, cudaMemcpyDeviceToHost);

// Free up the allocated memory on the CUDA device

cudaFree(cuda_s);

printf("String decoded on GPU as: %s\n", s);

return 0;

}

The preceding code example may be compiled and run with:

[fred@bright52 ~]$ nvcc hello.cu -o hello

[fred@bright52 ~]$ module add shared openmpi/gcc/64/1.4.4 slurm

© Bright Computing, Inc.

56 Using GPUs

[fred@bright52 ~]$ salloc -n1 --gres=gpu:1 mpirun hello

salloc: Granted job allocation 2263

String for encode/decode: Hello World!

String encoded on CPU as: Uryy|-d|yq.

String decoded on GPU as: Hello World!

alloc: Relinquishing job allocation 2263

salloc: Job allocation 2263 has been revoked.

The number of characters displayed in the encoded string appear less than ex-
pected because there are unprintable characters in the encoding due to the cipher
used being not exactly rot13.

© Bright Computing, Inc.

9
User Portal

The user portal allows users to login via a browser and view the state of the cluster
themselves. It is a read-only interface.

The first time a browser is used to login to the cluster portal, a warning about
the site certificate being untrusted appears in a default Bright Cluster configura-
tion. This can safely be accepted.

9.0.5 Home Page
The default home page allows a quick glance to convey the most important cluster-
related information for users (figure 9.1):

Figure 9.1: User Portal: Default Home Page

The following items are displayed on a default home page:

• a Message Of The Day. The administrator may put up important messages
for users here

© Bright Computing, Inc.

58 User Portal

• links to the documentation for the cluster

• contact information. This typically shows how to contact technical support

• an overview of the cluster state, displaying some cluster parameters

• a workload overview. This is a table displaying a summary of queues and
their associated jobs

9.0.6 The WORKLOAD Tab
The page opened by clicking on the WORKLOAD tab allows a user to see workload-
related information for the cluster (figure 9.2).

Figure 9.2: User Portal: Workload Page

The following two tables are displayed:

• A workload overview table (the same as the table in the home page).

• A table displaying the current jobs running on the cluster

9.0.7 The NODES Tab
The page opened by clicking on the NODES tab shows a list of nodes on the cluster
(figure 9.3).

Figure 9.3: User Portal: Nodes Page

© Bright Computing, Inc.

59

The following information about the head or regular nodes is presented:

• Hostname: the node name

• State: For example, UP, DOWN, INSTALLING

• Memory: RAM on the node

• Cores: Number of cores on the node

• CPU: Type of CPU, for example, Dual-Core AMD Opteron™

• Speed: Processor speed

• GPU: Number of GPUs on the node, if any

• NICs: Number of network interface cards on the node, if any

• IB: Number of InfiniBand interconnects on the node, if any

• Category: The node category that the node has been allocated by the ad-
ministrator (by default it is default)

9.0.8 The GRAPHS Tab
By default the GRAPHS tab displays the cluster occupation rate for the last hour
(figure 9.4).

Figure 9.4: User Portal: Graphs Page

Selecting other values is possible for

• Workload Management Metrics. The following workload manager metrics
can be viewed:

– RunningJobs

© Bright Computing, Inc.

60 User Portal

– QueuedJobs

– FailedJobs

– CompletedJobs

– EstimatedDelay

– AvgJobDuration

– AvgExpFactor

• Cluster Management Metrics. The following metrics can be viewed

– OccupationRate

– NetworkBytesRecv

– NetworkBytesSent

– DevicesUp

– NodesUp

– TotalMemoryUsed

– TotalSwapUsed

– PhaseLoad

– CPUCoresAvailable

– GPUAvailable

– TotalCPUUser

– TotalCPUSystem

– TotalCPUIdle

• Datapoints: The number of points used for the graph can be specified. The
points are interpolated if necessary

• Interval (Hours): The period over which the data points are displayed

The Update button must be clicked to display any changes made.

© Bright Computing, Inc.

A
MPI Examples

A.1 “Hello world”
A quick application to test the MPI libraries and the network.

/*

``Hello World'' Type MPI Test Program

*/

#include <mpi.h>

#include <stdio.h>

#include <string.h>

#define BUFSIZE 128

#define TAG 0

int main(int argc, char *argv[])

{

char idstr[32];

char buff[BUFSIZE];

int numprocs;

int myid;

int i;

MPI_Status stat;

/* all MPI programs start with MPI_Init; all 'N' processes exist thereafter */

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs); /* find out how big the SPMD world is */

MPI_Comm_rank(MPI_COMM_WORLD,&myid); /* and this processes' rank is */

/* At this point, all the programs are running equivalently, the rank is used to

distinguish the roles of the programs in the SPMD model, with rank 0 often used

specially... */

if(myid == 0)

{

printf("%d: We have %d processors\n", myid, numprocs);

for(i=1;i<numprocs;i++)

{

sprintf(buff, "Hello %d! ", i);

MPI_Send(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD);

}

for(i=1;i<numprocs;i++)

{

62 MPI Examples

MPI_Recv(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD, &stat);

printf("%d: %s\n", myid, buff);

}

}

else

{

/* receive from rank 0: */

MPI_Recv(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD, &stat);

sprintf(idstr, "Processor %d ", myid);

strcat(buff, idstr);

strcat(buff, "reporting for duty\n");

/* send to rank 0: */

MPI_Send(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD);

}

/* MPI Programs end with MPI Finalize; this is a weak

synchronization point */

MPI_Finalize();

return 0;

}

A.2 MPI Skeleton
The sample code below contains the complete communications skeleton for a dy-
namically load balanced head/compute node application. Following the code is
a description of some of the functions necessary for writing typical parallel appli-
cations.

include <mpi.h>

#define WORKTAG 1

#define DIETAG 2

main(argc, argv)

int argc;

char *argv[];

{

int myrank;

MPI_Init(&argc, &argv); /* initialize MPI */

MPI_Comm_rank(

MPI_COMM_WORLD, /* always use this */

&myrank); /* process rank, 0 thru N-1 */

if (myrank == 0) {

head();

} else {

computenode();

}

MPI_Finalize(); /* cleanup MPI */

}

head()

{

int ntasks, rank, work;

double result;

MPI_Status status;

MPI_Comm_size(

MPI_COMM_WORLD, /* always use this */

A.2 MPI Skeleton 63

&ntasks); /* #processes in application */

/*

* Seed the compute nodes.

*/

for (rank = 1; rank < ntasks; ++rank) {

work = /* get_next_work_request */;

MPI_Send(&work, /* message buffer */

1, /* one data item */

MPI_INT, /* data item is an integer */

rank, /* destination process rank */

WORKTAG, /* user chosen message tag */

MPI_COMM_WORLD);/* always use this */

}

/*

* Receive a result from any compute node and dispatch a new work

* request work requests have been exhausted.

*/

work = /* get_next_work_request */;

while (/* valid new work request */) {

MPI_Recv(&result, /* message buffer */

1, /* one data item */

MPI_DOUBLE, /* of type double real */

MPI_ANY_SOURCE, /* receive from any sender */

MPI_ANY_TAG, /* any type of message */

MPI_COMM_WORLD, /* always use this */

&status); /* received message info */

MPI_Send(&work, 1, MPI_INT, status.MPI_SOURCE,

WORKTAG, MPI_COMM_WORLD);

work = /* get_next_work_request */;

}

/*

* Receive results for outstanding work requests.

*/

for (rank = 1; rank < ntasks; ++rank) {

MPI_Recv(&result, 1, MPI_DOUBLE, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

}

/*

* Tell all the compute nodes to exit.

*/

for (rank = 1; rank < ntasks; ++rank) {

MPI_Send(0, 0, MPI_INT, rank, DIETAG, MPI_COMM_WORLD);

}

}

computenode()

{

double result;

int work;

MPI_Status status;

for (;;) {

MPI_Recv(&work, 1, MPI_INT, 0, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

64 MPI Examples

/*

* Check the tag of the received message.

*/

if (status.MPI_TAG == DIETAG) {

return;

}

result = /* do the work */;

MPI_Send(&result, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);

}

}

Processes are represented by a unique rank (integer) and ranks are numbered
0, 1, 2, ..., N-1. MPI_COMM_WORLD means all the processes in the MPI appli-
cation. It is called a communicator and it provides all information necessary to
do message passing. Portable libraries do more with communicators to provide
synchronisation protection that most other systems cannot handle.

A.3 MPI Initialization And Finalization
As with other systems, two functions are provided to initialize and clean up an
MPI process:

MPI_Init(&argc, &argv);

MPI_Finalize();

A.4 What Is The Current Process? How Many
Processes Are There?

Typically, a process in a parallel application needs to know who it is (its rank) and
how many other processes exist.

A process finds out its own rank by calling:

MPI_Comm_rank():

Int myrank;

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

The total number of processes is returned by MPI_Comm_size():

int nprocs;

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

A.5 Sending Messages
A message is an array of elements of a given data type. MPI supports all the
basic data types and allows a more elaborate application to construct new data
types at runtime. A message is sent to a specific process and is marked by a
tag (integer value) specified by the user. Tags are used to distinguish between
different message types a process might send/receive. In the sample code above,
the tag is used to distinguish between work and termination messages.

MPI_Send(buffer, count, datatype, destination, tag, MPI_COMM_WORLD);

A.6 Receiving Messages
A receiving process specifies the tag and the rank of the sending process. MPI_ANY_TAG
and MPI_ANY_SOURCE may be used optionally to receive a message of any tag and
from any sending process.

MPI_Recv(buffer, maxcount, datatype, source, tag, MPI_COMM_WORLD, &status);

A.6 Receiving Messages 65

Information about the received message is returned in a status variable. The
received message tag is status.MPI_TAG and the rank of the sending process is
status.MPI_SOURCE. Another function, not used in the sample code, returns the
number of data type elements received. It is used when the number of elements
received might be smaller than maxcount.

MPI_Get_count(&status, datatype, &nelements);

With these few functions, almost any application can be programmed. There
are many other, more exotic functions in MPI, but all can be built upon those
presented here so far.

	Table of Contents
	Introduction
	What Is A Beowulf Cluster?
	Brief Network Description

	Cluster Usage
	Login To The Cluster Environment
	Setting Up The User Environment
	Environment Modules
	Compiling Applications

	Using MPI
	Interconnects
	Selecting An MPI implementation
	Example MPI Run

	Workload Management
	What Is A Workload Manager?
	Why Use A Workload Manager?
	What Does A Workload Manager Do?
	Job Submission Process
	What Do Job Scripts Look Like?
	Running Jobs On A Workload Manager
	Running Jobs In Cluster Extension Cloud Nodes Using cmsub

	SLURM
	Loading SLURM Modules And Compiling The Executable
	Running The Executable With salloc
	Running The Executable As A SLURM Job Script

	SGE
	Writing A Job Script
	Submitting A Job
	Monitoring A Job
	Deleting A Job

	PBS Variants: Torque And PBS Pro
	Components Of A Job Script
	Submitting A Job

	Using GPUs
	Packages
	Using CUDA
	Using OpenCL
	Compiling Code
	Available Tools

	User Portal
	MPI Examples
	``Hello world''
	MPI Skeleton
	MPI Initialization And Finalization
	What Is The Current Process? How Many Processes Are There?
	Sending Messages
	Receiving Messages

